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A B S T R A C T

Image splicing is very common and fundamental in image tampering. Therefore, image splicing detection has
attracted more and more attention recently in digital forensics. Gray images are used directly, or color images
are converted to gray images before be processed in previous image splicing detection algorithms. However,
most forgery images are color images. In order to make use of the color information in images, a classification
algorithm is put forward which can use color images directly. In this paper, an algorithm based on Markov in
quaternion discrete cosine transform (QDCT) domain is proposed for image splicing detection. First of all, color
information is extracted from blocked images to construct quaternion in a whole manner, and the QDCT
coefficients of quaternion blocked images can be obtained. Secondly, the expanded Markov features generated
from the transition probability matrices in QDCT domain can not only capture the intra-block, but also the
inter-block correlation between block QDCT coefficients. Finally, support vector machine (SVM) is exploited to
classify the Markov feature vector. The experiment results demonstrate that the proposed algorithm not only
make use of color information of images, but also can yield considerably better detection performance compared
with the state-of-the-art splicing detection methods tested on the same dataset.

1. Introduction

In recent years, with the rapid development of mobile digital
electronic technology and multimedia internet technology, human
can easily use multimedia devices such as mobile phones, digital
cameras to take pictures they expect. They also can use image
processing software to edit pictures on computer optionally, to make
the pictures can be spread in the Internet, which result in a problem
that the content of original digital image has copyright is difficult to be
protected. Recently, several of image tampering incidents happened
[1], which threaten social justice and national security, hence, how to
effectively identify the authenticity of images have been paid widely
attention. Therefore, it is significant to develop some effective methods
to detect tampering with the digital image.

As to the development of image processing technology [2], forensic
technology also will be developed. Digital image authentication can be
roughly divided into two categories, referred to as active [3] and
passive [4], respectively. Compared with the active methods, an image
can be authenticated by the passive ones that do not require prior
information about the source image, which has attracted more and
more attentions recently.

Although passive techniques need to depend on the concept of
hypothesis, any trace may not be left in tampering images on the vision.
In other words, the underlying statistics of tampering images are likely
to be changed. Passive techniques are used these inconsistencies to
detect the tampering. In image tampering, there are two common
problems: copy-move tamper and image splicing tamper. For these two
tamper technology, scholars put forward the corresponding detection
methods, namely Copy-move detection and image splicing detection.
The primary mission of copy-move detection is to detect whether two
or more similar regions in a single image exist, and to locate them if
there is any. The use of local visual features such as SIFT [4] for copy-
move detection attracts much interest. Image splicing detection, on the
contrary, aims at detecting whether a given image is synthesized from
cutting and joining two or more pictures. In this paper, we mainly focus
on the detection of digital image splicing forgery.

At the same time, image processing methods of quaternion discrete
cosine transform have been applied to the color image registration [5],
image saliency detection [6], and other fields. The superiority of QDCT
in color image processing is fully reflected in these applications. But in
the most of current image tamper detection algorithms, color image is
converted to gray image before the image is processed, and the color
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information are not taken into account. Images can be processed by
quaternion in a whole manner and the color distortion can be avoided,
thus the accuracy of the image tamper detection algorithm is improved.
Meanwhile, the energy of spectral coefficient through QDCT is inten-
sive with good property of eliminating redundancy, and QDCT is easy
to quantitative analysis. Therefore, an image tamper detection algo-
rithm under QDCT transform domain is put forward in this paper, new
ideas for image tamper detection research are provided, and the
algorithm has a certain theoretical and practical significance.

The remainder of paper is organized as Section 2 contains related
work on splicing detection. Section 3 presents introduction to the
proposed method. Section 4 is experiments and results. Section 5 is
conclusion.

2. Related work

Image splicing forgery technique generally includes two categories.
First one is a part of the image which is copied and pasted in another
part of the same image to conceal an object or to duplicate certain
image elements. Second one is merging two or more images together.
Thus the original image is obviously changed to form a forged image.
Supposing that different backgrounds of image are merged, it becomes
difficult to perceive the changes of the borders and boundaries. As
shown in Fig. 1, if there is no Fig. 1(a) and (b) as the standard
reference, it's difficult to find Fig. 1(c) is spliced by two images from the
front. Important traces are provided by presence of abrupt modifica-
tion between different regions are combined and their backgrounds, so
that splicing can be detected in the image.

For the past few years, various kinds of passive image splicing
detection approaches have been proposed. Farid [7] exploited bispec-
tral analysis to detect unnatural higher-order correlations into the
signal by the forgery process, show their effectiveness in analyzing
human speech. Quadratic phase coupling was used in detection
algorithm of natural images and splicing images by Ng and Chang S-
F who works in Columbia University, success rate was 72% [8]. For this
work, they created a data set [9]. In New Jersey Institute of
Technology, the basis of the model of natural images, 266-d feature
vector consist of Wavelet moment characteristics and Markov features
was used to identify splicing images by Shi et al. success rate was 91.8%
[10] on columbia image splicing detection evaluation dataset [9]. The
advantage of this method is the low dimension of feature vectors, and
can acquire high accuracy.

Wang et al. [11] proposed a method for splicing detection for color
images using gray level co-occurrence matrix (GLCM) in Institute of
Automation Chinese Academy of Sciences. GLCM of the threshold edge
image was used. In literature [12], the edge image of image chroma
component was modeled as a finite-state Markov chain and low

dimensional feature vector was extracted from its stationary distribu-
tion for tampering detection. The detection accuracy of 95.6% was
achieved on their own constructed Image Splicing Detection Evaluation
Dataset (CASIA TIDE V2.0) [13]. Sutthiwan et al. [14] had pointed out
two problems of the database [13] and shown how to rectify the CASIA
TIDE V2.0 dataset, their experimental results showed that the detec-
tion rate of the causal Markov model based features was reduced to
78% on the rectified dataset.

Recently, most of the methods [15–18] are based on the Markov
features, because the Markov transition probability features can reveal
the dependencies between adjacent pixels when there is a change due
to splicing. A 2-D noncausal Markov model was proposed by Zhao et al.
[15] in the block discrete cosine transformation domain and the
discrete Meyer wavelet transform domain, a higher detection rate
was achieved. A tamper detection algorithm of natural images and
splicing images was proposed by Huang et al. in Sun Yat sen
University, their method used Markov features in DCT and DWT
domain, and the precision of detection was up to 93.42% [16] on
columbia image splicing detection evaluation dataset [9]. They
achieved detection accuracy of 89.76% on image splicing detection
evaluation dataset (CASIA TIDE V2.0) [13]. The weaknesses of this
method is the high dimension of feature vectors, and can consume
much time to extract feature vectors.

Like other algorithms, we will also make image Splicing problem as
a pattern recognition problem, in other words we make this problem as
a binary classification problem. Pattern recognition in many ways
[19,20], because of the nature of SVM has a good sample, nonlinear
nature, these advantages it is suitable for classification of the problem,
so we chose SVM as the classifier. Because these algorithms mainly use
the gray information of images or certain color component information
to detect whether the images have been spliced, the whole color
information is not used effectively. In order to make full use of the
color information, QDCT is introduced into image splicing detection
algorithm in this paper. QDCT was put forward by Feng Wei and Hu Bo
[5] in 2008, the calculation was given and the application of QDCT in
color template matching was analyzed. A detection algorithm of image
saliency based on QDCT was proposed by Schauerte et al. [6] in 2012.
Therefore, an image tamper detection method in QDCT domain is
proposed in this paper. This new idea has a certain theoretical
significance.

3. The proposed approach

In this section, the whole frame work of the proposed algorithm is
presented, followed by detailed description of each part.

Fig. 1. Multi-image splicing image tampering sample.(a) source image 1, (b) source image 2, (c) splicing image.
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3.1. Algorithm framework

The framework of the proposed approach based on Markov features
is shown in Fig. 2. Compared with literature [16], we extract Markov
features in QDCT domain. Expanded Markov features in QDCT domain
are obtained in this paper. Compared with [10], we introduce main
diagonal difference matrices, minor diagonal difference matrices, main
diagonal transition probability matrices and minor diagonal transition
probability matrices in QDCT. Different the literature [10,16], we also
consider QDCT coefficients correlation between the intra-block corre-
lation and the inter-block in main diagonal and minor diagonal
direction. First of all, color information is extracted from blocked
images to construct quaternion and apply QDCT with it, thus the QDCT
coefficients of blocked images can be obtained. Secondly, the expanded
Markov features generated from the transition probability matrices in
QDCT domain can not only capture the intra-block, but also the inter-
block correlation between block QDCT coefficients. Finally, the feature
vector obtained is used to distinguish authentic and spliced images
with Primal SVM [21] as the classifier.

3.2. Quaternion discrete cosine transform

3.2.1. Definition and operational rule of quaternion
Quaternion could be regarded as the generalization of complex

number, it includes a real part component and several imaginary part
components, such as Quaternion, Octonion, Sedenion and so on.
Quaternion is one of the most common and simple expression, the
definition and some basic operation properties are introduced as
follows:

(1) The definition of quaternion

q w xi yj zk= + + + (1)

Here w x y z, , , are real number, i, j and k are operators of complex
number and vector, they all satisfy Hamilton rule:

j k jk i ki jji k kj i ik j= , = , = = − , = − , = −

And they also satisfy i j k ijk= = = = −12 2 2 , but they do not satisfy
commutative property of multiplication. The conjugate of quaternion is
q w xi yj zk= − − − the module is:

q w x y z= + + +2 2 2 2 (2)

Here, the quaternion with zero real part is pure quaternion, and the
quaternion with unit module is called unit quaternion.

(2) Plural expression of quaternion.
Clay-Dickson theorem [22] has indicated how to construct a

quaternion by two complex numbers, suppose
m n C m w xi n y zi w x y z R, ∈ , = + , = + , , , , ∈ , then

q m nj q Q j= + , ∈ , = −12 (3)

Thus,

q w xi y zi j w xi yj zij w xi yj zk= + + ( + ) = + + + = + + +

The transformation above show the process of establishing quaternion
by complex numbers, and the quaternion can be called the complex
number of complex number or hypercomplex number. i j k, , are three
mutually perpendicular axes, from Hamilton rule, the relationship
between them are obtained and right-handed rule is also satisfied.

In some calculations, quaternion is not always decomposed accord-
ing to the directions of i j, strictly, which requires a unit pure imaginary
quaternion coordinate axis of isomorphic i j, axes need to be con-

structed when quaternion is processed. Suppose that axes of the two
unit pure imaginary quaternion are μ μ,1 2 respectively, and they satisfy
μ μ⊥1 2, then q can be decomposed one complex coordinate at the
direction μ1, and q can also be decomposed another complex coordinate
at the direction μ2.

q m n μ x Q μ= ′ + ′ , ∈ , = −12 2
2

(4)

Where, m w x μ n y z μ w x y z R′ = ′ + ′ , ′ = ′ + ′ , ′, ′, ′, ′ ∈1 1 then q w= ′
x μ y μ z μ+ ′ + ′ + ′1 2 3 . Here, μ μ μ=3 1 2, and μ μ⊥3 1, μ μ⊥3 2.
A series of transformation above are similar to planimetric co-

ordinate transformation, but the coordinate is expressed from the
perspective of three imaginary numbers basis of quaternion: the
coordinate x y z( , , ) under i j k, , is transformed into the coordinate
w x y z( ′, ′, ′, ′) under μ μ μ, ,1 2 3. The transformation will be applied in the
realization of DWT.

3.2.2. Quaternion discrete cosine transform
In the field of real number and the field of complex number,

concentration degree of energy of inputing information through two-
dimensional discrete cosine transform (DCT) is higher than the
inputting information's after DFT transform. The inputing information
can be got approximatively by inverse transformation of several main
coefficients (also known as pivot elements) after two-dimensional DCT.

The research of QDCT is prompted by the precedents of the
successful application of real number and complex number domain,
the basic principle of QDCT was proposed by Feng and Hu [5], and the
actual algorithm was given.
h m n( , )q is a two-dimensional M N× quaternion matrix,m and n is row
and column of the matrix respectively, here, m M∈ [0, − 1],
n N∈ [0, − 1], the definition of L-QDCT and R-QDCT are as follows:

L-QDCT:

∑ ∑J p s α p α s u h m n T p s m n( , ) = ( ) ( ) · ( , )· ( , , , )q
L

m

M

n

N

q q
=0

−1

=0

−1

(5)

R-QDCT:

∑ ∑J p s α p α s h m n T p s m n u( , ) = ( ) ( ) ( , )· ( , , , )·q
R

m

M

n

N

q q
=0

−1

=0

−1

(6)

In formula (5) and (6), uq is a unit pure quaternion, it can represent
the direction of axis of transformation, and it satisfies u = −1q

2 , p and s
is row and column of the transform matrix respectively. it is similar to
DCT in real number and complex number domain the definition of
α p α s( ), ( ) and T p s m n( , , , ) are as follows:

⎪

⎪

⎪

⎪

⎧
⎨
⎩

⎧
⎨
⎩

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

α p
M p
M p

α s N s
N s

T p s m

n π m p
M

π n s
N

( ) =
1/ = 0
2/ ≠ 0,

( ) = 1/ = 0
2/ ≠ 0.

( , , ,

) = cos (2 + 1)
2

cos (2 + 1)
2

The spectral coefficient of J p s( , ) through transformation is still a
quaternion matrix of M N× , and its representation is by formula (7).

J p s J p s J p s i J p s j J p s k( , ) = ( , ) + ( , ) + ( , ) + ( , )0 1 2 3 (7)

In our algorithm, we chose L-QDCT to do block QDCT. The realization
of QDCT transform: the computational complexity of QDCT transform
can be seen from its definition, in order to avoid wasting of resources
resulted from complicated calculation, the approach of QDCT is
designed on the basis of DCT that is widely used in the field of real
number and complex number, the steps are as follows (take L-QDCT as

Fig. 2. Illustration of the stages of our algorithm.
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an example):
(a) For a given quaternion matrix h m n( , ), transform it into Cayley-

Dickson form: h m n h m n h m n u( , ) = ( , ) + ( , )∥ ⊥ 2, decompose it into a
specified axis, here, h m n( , )∥ and h m n( , )⊥ are complex matrices;.

(b) According to Clay-Dickson theorem, convert h m n( , )∥ and
h m n( , )⊥ under the coordinate u1 into h m n( , )a and h m n( , )b under the
coordinate i, thus h m n h m n h m n j′( , ) = ( , ) + ( , )a b ;.

(c) Calculate the discrete cosine of standard complex number
domain of h m n( , )a and h m n( , )b to obtain J p s( , )a and J p s( , )b , then
obtain J p s J p s J p s j′( , ) = ( , ) + ( , )a b ;.

(d) Multiply J p s′( , ) and original axis to obtain QDCT, that is
J p s u J p s( , ) = · ′( , )q , here, uq is a unit pure quaternion of u u u, ,1 2 3.

3.3. Block QDCT

The Expanded Markov features in DCT domain proposed in [16]
are very remarkable in capturing the differences between authentic and
spliced images. They can be calculated by seven steps.

Unlike the first step, the original color images are blocked into 8×8
non-repeatedly, and each block is still color image. Secondly, three
color components of R, G and B of blocked images are utilized to
construct quaternion matrix, and the quaternion matrix is processed by
QDCT transform to obtain QDCT coefficient matrix of each block, then
the real part(r) and three imaginary parts i j k( , , ) of the square root of
the four parts are calculated. Finally, all calculated matrices need to
reassemble according to the site of blocking, thus a 8×8 blocked QDCT
matrix F of original color image can be acquired. It is shown in Fig. 3.

3.4. Expanded Markov features in QDCT domain

Compared with the literature [16], expanded Markov features in
QDCT domains are obtained in this paper. Besides, reference [10], we
introduce main diagonal difference matrices, minor diagonal difference
matrices, main diagonal transition probability matrices and minor
diagonal transition probability matrices in QDCT. Different with the
literature [10,16], we also consider QDCT coefficients correlation
between intra-block correlation and inter-block in main diagonal and
minor diagonal direction. Except this different, other steps are roughly
the same. The following steps are shown.

Firstly, apply 8×8 block QDCT on the original image pixel array
following Part 3.3, and the corresponding QDCT coefficient array A is
obtained.

Secondly, we are round the QDCT coefficients A to integer and take
absolute value (denote the obtained arrays F).

Thirdly, calculate the horizontal, vertical, main diagonal and minor
diagonal intra-block difference 2-D arrays Fh, Fv, Fd and F d− by applying
Eqs. (8) to (11).

F u v F u v F u v( , ) = ( , ) − ( + 1, )h (8)

F u v F u v F u v( , ) = ( , ) − ( , + 1)v (9)

F u v F u v F u v( , ) = ( , ) − ( + 1, + 1)d (10)

F u v F u v F u v( , ) = ( + 1, ) − ( , + 1)d− (11)

and calculate the horizontal, vertical, main diagonal and minor
diagonal inter-block difference 2-D arrays Gh, Gv, Gd and G d− by
applying Eqs. (12) to (15).

G u v F u v F u v( , ) = ( , ) − ( + 8, )h (12)

G u v F u v F u v( , ) = ( , ) − ( , + 8)v (13)

G u v F u v F u v( , ) = ( , ) − ( + 8, + 8)d (14)

G u v F u v F u v( , ) = ( + 8, ) − ( , + 8)d− (15)

Fourthly, introduce a threshold T T N( ∈ )+ , if the value of an
element in Fh(or F F F d G G G, , , , ,v d h v d− and G d− ) is either greater than
T or smaller than T− , replace it with T or T− , respectively, applying
Eqs. (16).

⎧
⎨⎪
⎩⎪

a
T a T

T a T
a otherwise

=
, ≥

− , ≤
, .

new

old

old

old (16)

Fifthly, calculate the horizontal, vertical, main diagonal and minor
diagonal transition probability matrices of F F F F G G G, , , , , ,h v d d h v d− and
G d− by applying Eqs. (17) to (28).

P i j
δ F u v i F u v j

δ F u v i
1 ( , ) =

∑ ∑ ( ( , ) = , ( + 1, ) = )

∑ ∑ ( ( , ) = )
h

u
S

v
S

h h

u
S

v
S

h

=1
−2

=1

=1 =1

u v

u v
(17)

P i j
δ F u v i F u v j

δ F u v i
1 ( , ) =

∑ ∑ ( ( , ) = , ( , + 1) = )

∑ ∑ ( ( , ) = )
v

u
S

v
S

h h

u
S

v
S

h

=1
−1

=1
−1

=1
−1

=1
−1

u v

u v
(18)

P i j
δ F u v i F u v j

δ F u v i
2 ( , ) =

∑ ∑ ( ( , ) = , ( + 1, ) = )

∑ ∑ ( ( , ) = )
h

u
S

v
S

v v

u
S

v
S

v

=1
−1

=1
−1

=1
−1

=1
−1

u v

u v
(19)

P i j
δ F u v i F u v j

δ F u v i
2 ( , ) =

∑ ∑ ( ( , ) = , ( , + 1) = )

∑ ∑ ( ( , ) = )
v

u
S

v
S

v v

u
S

v
S

v

=1
−1

=1
−1

=1
−1

=1
−1

u v

u v
(20)

P i j
δ F u v i F u v j

δ F u v i
1 ( , ) =

∑ ∑ ( ( , ) = , ( + 1, + 1) = )

∑ ∑ ( ( , ) = )
d

u
S

v
S

d d

u
S

v
S

d

=1
−2

=1
−2

=1
−2

=1
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u v

u v
(21)

P i j
δ F u v i F u v j

δ F u v i
1 ( , ) =
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d

u
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S
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−
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(22)
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δ G u v i
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δ G u v i G u v j
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Fig. 3. Illustration of the stages of 8×8 Block QDCT.
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where i j T T T T, ∈ {− , − + 1,…,0, … − 1, }, su and sv denote the
dimensions of the original source image. δ (·) = 1 if and only if its
arguments are satisfied, otherwise δ (·) = 0. Thus

T T(2 + 1) × (2 + 1) × 12 dimensionality Markov features in QDCT
domain are obtained.

4. Experiments and results

In this section, we introduce the experiment image datasets at first,
and then present a set of experiments to demonstrate the high
performance and effectiveness of the proposed algorithm.

Fig. 4. Some example images of CASIA TIDE V2.0 dataset (authentic images in the top row, their forgery counter parts in the bottom row).

Fig. 5. Some example images of CASIA TIDE V2.0 dataset (authentic images in the top and middle row, their forgery counter parts in the bottom row).
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4.1. Image dataset

Two available public image datasets for tampering detection,
especially for splicing detection, are provided by DVMM, Columbia
University [9]. The color information is not provided by their data of

gray images, the amount of data of color images dataset is few, and
doesn't have reality. In order to provide a more realistic and challen-
ging evaluation database for image tampering detection, two color
image datasets which is constructed by Institute of Automation Chinese
Academy of Sciences are chosen to test our proposed approach. They
are CASIA TIDE V1.0 (the CASIA image tempering detection evalua-
tion database V1.0) and CASIA TIDE V2.0 (the CASIA image tempering
detection evaluation database V2.0).

CASIA TIDE V1.0 is focus on splicing detection evaluation. Image
splicing is de-fined as a simple cut-and-paste operation of image
regions from one image to the same or another image without
performing post-processing, which is a fundamental operation of
tampering. CASIA TIDE V1.0 dataset contains 800 authentic images
and 921 spliced color images of size 384×256 pixels with JPEG format.
The authentic images are mostly collected from the Corel image dataset
and others are taken by the authors digital cameras. V2.0 is upgrade of
V1.0, so we only give some pictures examples of V2.0 dataset.

Compared to CASIA TIDE V1.0, CASIA TIDE V2.0 is with larger
size and with more realistic and challenged fake images by using post-
processing of tampered regions. It contains 7491 authentic and 5123
tampered color images. The images in CASIA TIDE V2.0 are with
difference size, various from 240×160 to 900×600 pix-els. Unlike
CASIA TIDE V1.0, CASIA TIDE V2.0 concludes uncompressed images
and also JPEG images with different Q factors. The author added an
extra indoor category to consider the impact of image illumination and
consider post-processing of (boundary of) spliced regions. Some
examples of CASAI TIDE V2.0 are shown in Figs. 4 and 5. Fig. 4
shows some example of single image splicing. Fig. 5 shows some
example of multi-image splicing. As can be seen from these examples,
splicing images are similar with nature images, so it brought a great
challenge to classify splicing images nature images.

The two problems of the dataset CASAI TIDE V1.0 and CASAI TIDE
V2.0 have been pointed out by Patchara et al. [14]. First one is the
JPEG compression applied to authentic images is one-time less than
that applied to tampered images; the second one is for JPEG images,
the size of chrominance components of 7,140 authentic images is only
one quarter of that of 2,061 tampered images. For fairness purpose, We
according to the processing method to modify the database in the
article [14]. However, the Ycbcr color space can not be used, so we just
only need to solve the the first problem of CASAI TIDE V2.0. we used
Matlab for standard JPEG compression to lessen the influence of the
difference in the number of JPEG compressions by the following
procedure: (1)Re-compressing 7,437 JPEG authentic images with
quality factor=84; (2) Compressing 3,059 TIFF tampered images by
Matlab with quality factor=84; (3)Leaving 2,064 JPEG tampered
images untouched. The database CASAI TIDE V1.0 as well.

4.2. Classification

There are many classification methods of binary classification
problem, such as clustering methods [23], support vector
machine(SVM) methods, deep learning and so on. While simulta-
neously maximizing the geometric margin between two different
classes, SVM can minimize the empirical classification error. In our
experiment we chose PrimalSVM [19] to classification. The PrimalSVM
have more kernel function, such as rbf, liner, histogram intersection
and so on. After the comparison with several experiments, the
histogram intersection kernel have the highest classification accuracy.
Therefore, histogram intersection is chosen as kernel function. To be
fair, we chose the threshold T same as other. For CASIA TIDE V1.0,
CASIA TIDE V2.0 dataset, we chose T=4, then it will produce 972-
dimensional feature vector.

In order to evaluate the performance of the proposed algorithm, all
the experiments and comparisons are tested on the dataset mentioned
above and the same classifier. The testing platform is Matlab R2012b,
and the hardware platform is a PC with a 2 G core i3 processor. In each

Table 1
Classification results of the proposed algorithm with different threshold T on CASIA
TIDE V1.0 dataset.

Threshold T Dimensionality n TP (%) TN (%) Accuracy (%)

3 588 95.881 95.073 95.478
4 972 95.440 96.470 95.958
5 1452 95.735 97.131 96.435

Table 2
Classification results of the proposed algorithm with different threshold T on CASIA
TIDE V2.0 dataset.

Threshold T Dimensionality n TP (%) TN (%) Accuracy (%)

3 588 88.371 95.637 92.003
4 972 89.185 95.567 92.377
5 1452 89.426 95.914 92.668

Fig. 6. The accuracy of different kernel functions.

Table 3
Classification results of the proposed algorithm without main diagonal and minor
diagonal transition probability matrices on CASIA TIDE V1.0 dataset.

Threshold T Dimensionality n TP (%) TN (%) Accuracy (%)

3 392 92.648 90.810 91.727
4 648 93.825 92.647 93.236
5 968 94.854 95.581 95.217

Table 4
Experiment results obtained on CASIA TIDE V2.0 dataset.

Feature vector NIM[10] He[16] Our method

Dimensionality 266 100 972
Accuracy (%) 84.86 89.76 92.38
Feature extraction time (s) 4.479 2.218 4.61
Feature selection time (s) 0 2.158 0
Total time (s) 4.479 4.376 4.61
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experiment, the average rate of 20 repeating independent tests is
recorded. In each of the 50 runs, 5/6 of the authentic images are
randomly select and the SVM classifier is trained to 5/6 of the spliced
images in the dataset. Then the remaining 1/6 of the authentic and
spliced images are used to test the trained classifier.

4.3. The detection performance of the proposed approach

Some common experiments are conducted first to assess the
detection ability of the proposed algorithm. The detailed results are
shown in Tables 2, 3. Here, TP(true positive) rate is the ratio of correct
classification of authentic images. TN (true negative) rate is the ratio of
correct classification of spliced images. Accuracy of detection is the
weighted average value of TP rate and TN rate.

4.3.1. Choice of threshold T
Another issue is the choice of the threshold T, which is used to

reduce the Markov features dimensionality. To select an appropriate T,
the following points should be taken into account. The T cannot be too
small. If T is too small, the artifacts caused by splicing will not be able
to be catched by the elements of the transition probability matrix
sensitively. On the other hand, this T cannot be too large. If T is too
large, the dimensionality of the transition probability matrix will be too
large, which makes the computational complexity non-manageable,
hence losing the meaning of using thresholding technique.

In Tables 1 and 2 we provide the performance of Markov features
with three different T.

4.3.2. The contribution of diagonal transition probability matrices
In our algorithm, we not only considered horizontal and vertical

transition probability matrices, but also considered main diagonal and
minor diagonal transition probability matrices. In this section we will
discuss how much the contribution of main diagonal and minor
diagonal transition probability matrices for the classification accuracy.
Through the comparison of Tables 1, 3, we can acquire a conclusion
that main diagonal and minor diagonal transition probability matrices
will improve nature and splicing image classification accuracy.

4.3.3. Choice of kernel function
Evaluation results obtained from the average classification accuracy

of five times random training and testing. As shown in Fig. 6, we can
see that with the ratio of images in each training sample increase from
1/6 to 5/6, the average accuracy with all kernels is improved, but the
histogram intersection kernel have the highest classification accuracy.
Therefore, we choose histogram intersection as kernel function, the
ratio of training samples fixed at 5/6.

4.3.4. Comparison with other algorithms
To evaluate the proposed algorithm comprehensively, a comparison

between the proposed algorithm and some state-of-the-art image
splicing detection methods should be done. To ensure the validity
and fairness of the reported results of different methods, all the
comparison experiments are conducted in the same experimental setup
described in Section 4.2, 4.3.1 and 4.3.2 The results of the experiments
are shown in Table 3 (the feature vectors proposed in [10,16] are
denoted as NIM and He respectively). Table 4 shows that the proposed
algorithm outperforms other two presented splicing detection schemes.
As far as we know, the detection accuracy 92.38% achieved by the
proposed algorithm is the highest one having been attained on the
CASIA TIDE V2.0 Dataset. The algorithms of NIM and Huang was
firstly converted color image to gray image and extracted Markov
features from DCT and DWT coefficients of gray image. Our algorithm
is directly extracted Markov features from QDCT coefficients of image
and obtained a higher accuracy than their algorithms. This was showed
that our algorithm has more practical value.

5. Conclusion

In the most of current image tamper detection algorithms, color
image is converted to gray image before the image is processed, and the
color information are not taken into account. In our method, images
can be processed by quaternion in a whole manner and the color
distortion can be avoided, thus the accuracy of the image tamper
detection algorithm is improved. Meanwhile, the energy of spectral
coefficient through QDCT is intensive with good property of eliminat-
ing redundancy, and QDCT is easy to quantitative analysis. Therefore, a
image tamper detection algorithm under QDCT transform domain is
put forward in this paper, an algorithm based on Markov in QDCT
domain is proposed for image splicing detection. The essence of the
proposed method is blind detection of color image change by extending
the Markov transition probability characteristics features from QDCT
frequency domains to reveal the dependencies between adjacent pixels
when there is a change due to splicing. The experiment results
demonstrate that the proposed algorithm not only make use of color
information of images, but also can significantly lead to improving the
tampering detection rate, with more than 92.38% accuracy, as com-
pared with the state-of-the-art splicing detection methods tested on the
same dataset. Because the tamper images are mostly color in real life,
this new idea for image tamper detection research has a certain
theoretical and more practical significance.
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