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Abstract Neuron can receive electric signals or forc-
ing currents from more than one channel, and these
forcing currents could show some diversity. Based
on the Hindmarsh–Rose neuron model, mixed forc-
ing currents, which are composed of low-frequency,
high-frequency and constant signals, are imposed on
the neuron, and multiple modes of electric activities
could be observed alternately (in turn) from the neu-
ron. Based on the Helmholtz theorem, the Hamilton
energy is calculated to discern the energy dependence
on the mode selection of the electric activities of neu-
ron. It is found that the response of electrical activi-
ties much depends on the amplitude than the frequency
when mixed signals are imposed on the neuron syn-
chronously; however, the rhythm of electrical activities
could be adjusted by the frequency of the periodical sig-
nals in the mixed signal. It is confirmed that the energy
is much dependent on the mode of electrical activi-
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ties instead of the external forcing currents directly,
and a smaller energy occurs under bursting states. The
delayed response of Hamilton energy to external forc-
ing currents confirms that neuron contributes to energy
coding. These results could be helpful for further inves-
tigation on energy problems in neuronal network asso-
ciated with model transition for collective behaviors.

Keywords Neuron · Hamilton energy · Bursting
state · Helmholtz theorem

1 Introduction

Neurons are responsible for exchanging signals to and
from the central nervous system (CNS). Neural infor-
mation is encoded and transmitted as spikes in mem-
brane electrical potential that action potentials are gen-
erated [1–11]. For example, Behdad et al.[4] designed
an artifical neuronal circuit to explore the dynamics in
Morris–Lecar neuron. Gonzalez-Miranda [5] reported
the possible pacemaker behaviors in Morris–Lecar
(ML) model. Newby et al. [6] analyzed the excitabil-
ity of ML neuron driven by channel noise. Ciszak et al.
[7] explained the autonomous transitions betweenwak-
ing and sleep states modulated by synaptic plasticity.
Tang et al. [8] constructed a minimal neuron-astrocyte
network model by connecting a neurons chain and an
astrocytes chain, and the possible role astrocytes play
in the SDs propagation was discussed. Wang et al. [9]
studied the multiple responses of ML neuron driven
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by various stimuli. Ibarz et al. [11] proposed a map-
based neuron model, and its dynamics was also dis-
cussed. Neurons also can produce bursting oscillation
that is a relatively slow rhythmic alternation between
an active phase of rapid spiking and a quiescent phase
without spiking. In computational neuroscience, exter-
nal forcing current and other bifurcation parameters
[12–21] could be adjusted to observe the transition
between modes of electric activities, for example, the
Hindmarsh–Rose (HR) neuron model [10] can present
quiescent, spiking, bursting and even chaotic state by
increasing the external forcing current carefully. For
example, Storace et al. [12] presented detailed bifur-
cation analysis within HR neuron. Innocenti et al. [13]
investigated the mode transition of electrical activities.
Wang et al.[14] suggested that time-delayed feedback
control can control the behavior of neuron. Zhang et al.
[15] discussed the transition in electrical activities by
systemsize in coupledneurons.Li et al.[16] reported the
synchronizationdependenceonorder parameter in neu-
ronal network. Barrio et al. [17] analyzed the chaotic
structure in chaotic bursting neurons. Djeundam et
al.[18] investigated deterministic and stochastic bifur-
cations in HR neuron model. Li et al. [19] discussed
the emergence of chaos in a two-dimensional discrete
HR model. Furthermore, Dong et al. [20] explored the
dynamical behaviors in a fractional-order HR model.
Based on the mentioned neuron models, networks are
designed to study the collective behaviors [22–33] and
pattern formation [34–36] of neurons. For example,
Djeundam et al. [22] investigated the stability of syn-
chronous network with different coupling types. Kak-
meni et al. [23] discussed the collective response of
HR neuronal network driven by local nonlinear excita-
tion. Baptista et al.[24] discerned the modulation effect
of chemical and electric synapses on synchronization
and information coding of neuronal network. Wu et al.
[25] suggested that impulsive control scheme could be
useful for realizing synchronization of neuronal net-
work. Wei et al. [26] argued that long-range connec-
tion in random can change the collective behaviors of
network. Jalili et al. [27] detected the synchronization
behavior in Newman–Watts network of Hindmarsh–
Rose neuron. Qin et al. [28] discovered the contribu-
tion of autapse driving to stable spatial patterns in neu-
ronal network with diversity in time delay. Wang et
al. [29] presented discussion about parameter estima-
tion in HR neuron model based on adaptive synchro-
nization and mixed synchronization. Yilmaz et al. [30]

confirmed that autapse driving can enhance stochastic
resonance in a scale-free network, and it was also found
that autapse driving can modulate the collective behav-
ior in small-world network as a pacemaker [31].Uzun
et al. [32] presented detailed comments on scale-free
connection in neuronal network. Furthermore,Qin et al.
[33] discussed the potential function of autapse driving
in the network and confirmed that autapse driving with
positive time-delayed feedback can enhance oscillat-
ing while negative feedback can calm down the excit-
ing neurons and even block the wave propagation in
the network [34]. The collective behaviors of network
could be regulated by pacemakers such as spiral wave
and target waves. However, breakup of spiral waves
in network can disturb the ordered spatial pattern and
cause breakdown of synchronization or ordered states
in network. For example, Ma and Song et al. [35,36]
suggested that time series analysis could be effective
to predict the occurrence of breakup of spiral wave and
breakdown in spatial order of network. In experimental
way, Wang et al. [37] suggested that multi-arm spiral
waves could be formed and developed by adjusting the
conductance of ion channels carefully.

The neurodynamics has been extensively investi-
gated by using the presented neuron models. Indeed,
the mode transition of electrical activities and emer-
gence of action potential in neuron are associated with
the energy encoding and energy metabolism [38,39].
It shows some difficulties to detect the energy con-
sumption and supply in exact way; therefore, some
researchers suggested that Hamilton energy [40,41]
could be estimated in neuron and oscillator models
by using Helmholtz theorem [42]. For example, Song
et al. [43] confirmed that bursting and chaotic states
in neuron can present lower Hamilton energy and it
could indicate that paroxysmal epilepsy can release
large energy before restoring normal activity. Further-
more, chaotic systems with multi-attractors can also
hold lower Hamilton energy and it could decrease the
requirements for electric devices [44]. In fact, neuronal
activities are much complex than the presented models
could produce in theoretical and numerical way. Gu et
al. [45] suggested an improved neuronal model, and
the parameter region is expanded to study the transi-
tion of multiple electric activities. Xu et al. [46] stud-
ied a neural network model of spontaneous up and
down transitions based on our former study of a single-
neuron model. Lv et al. [47,48] argued that the effect
of electromagnetic induction should be considered dur-
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Fig. 1 Time series for sampled membrane potential are calculated when neuron is driven by mixed signal at ϕ = 0, A = 0.2, B =
0.1, ω = 0.01, N = 0.1, for a Iext = 1.2, b Iext = 1.3, c Iext = 1.4, d Iext = 1.5, e Iext = 1.6, f Iext = 1.7, g Iext = 1.8, h Iext = 1.9
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Fig. 2 Time series for
sampled membrane
potential and energy
function are calculated
when neuron is driven by
mixed signal at
ϕ = 0, A = 0.2, B =
0.1, ω = 0.01, N = 0.1, for
(a1, b1, c1, d1) Iext= 1.5,
(a2, b2, c2, d2) Iext = 1.7

ing the occurrence of electric activities of neuron, so an
additive variable for magnetic flux [34] is introduced
into the HR neuron model, and the improved neuronal
model can presented multiple modes of electric activi-

ties. Asmentioned in Ref. [47], multiplemodes of elec-
trical activities could be reproduced by changing one
bifurcation parameter due to the effect of electromag-
netic induction. Realistic neurons can develop complex
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Fig. 3 Time series for sampled membrane potential are calculated when neuron is driven by mixed signal at ϕ = 0, A = 0.1, B =
0.2, ω = 0.01, Iext = 1.7. For a N = 0.1, b N = 1, c N = 10, d N = 100, e N = 500, f N = 1000

anatomical structure [49], and many biological, phys-
ical effect should be considered. For example, when
mixed signals are imposed on neurons synchronously,
how to encode and give appropriate response to these
stimulus in order?

In this paper, multiple channels-driving signals,
which different types of electrical stimulus are imposed
on the neuron synchronously and simultaneously, are
imposed onHR neuronmodel, the response of the elec-
trical activities is discussed, respectively. It is interest-
ing to find the response preferences to different external
forcing currents. It could be helpful to understand the
potential mechanism for signal processing of neurons
when several external forcing currents are imposed on
the neuron simultaneously.

2 Model and scheme

The dynamic equations for the Hindmarsh–Rose neu-
ron [10]-driven by external forcing current could be
described as follows

ẋ = y − ax3 + bx2 − z + Iext

ẏ = c − dx2 − y

ż = r [s(x + 1.6) − z] (1)

where the variable x, y, z, represents the membrane
potential, recovery variable for slow current and adap-
tion current, respectively. Iext is the external forcing
current and could be composed of the periodic and con-
stant signal, for example, it reads as follows
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Iext = I + Acosωt + Bcos(Nωt + ϕ) (2)

where I is a constant current, A, B represents the
amplitude and ω is the angular frequency of periodic
forcing current, respectively. That is to say, constant
and periodical forcing with frequency diversity are

imposed on the neuron synchronously and simultane-
ously. The parameters a, b, c, d, r, s are selected as the
same values in most of the previous works, for exam-
ple, a = 1, b = 3, c = 1, d = 5, s = 4, r = 0.006
and quiescent, spiking, bursting even chaotic state can
be induced by adjusting appropriate forcing current

Fig. 4 Time series for
sampled membrane
potential and energy
function are calculated
when neuron is driven by
mixed signal at
ϕ = 0, A = 0.1, B =
0.2, ω = 0.01, Iext = 1.7,
For (a1, b1, c1, d1)
N = 0.1, (a2, b2, c2, d2)
N = 1, (a3, b3, c3, d3)
N = 10, (a4, b4, c4, d4) N =
100
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Fig. 4 continued

carefully. ϕ is initial phase, and N is an integer that
can select a high-frequency signal. That is to say, a
mixed signal forcing composed of constant, periodic
signal with diversity in frequency will be imposed
on the neuron, and the transition of electric activi-
ties will be detected. The occurrence of action poten-
tial and transition of electric activities depend on the
energy release and supply; it is important to discern
the changes of energy associated with electric modes

by applying different mixed forcing currents. Based on
the Helmholtz theorem in Refs. [42,50], the dynamical
equations for neuron are regarded as a velocity vector
field, and further considered by a sum of two vector
fields f (∗) = fc(∗)+ fd(∗), where fc(∗) is conserva-
tive field containing the full rotation and fd(∗) is dis-
sipative containing the divergence. In the case of HR
neuron model, the two sub-vector fields are described
as follows
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fc(x, y, z) = J (x, y, z) ∇H =
⎛
⎝

y − z + Iext
c − dx2

rs (x + 1.6)

⎞
⎠

(3a)

fd(x, y, z) = R (x, y, z) ∇H =
⎛
⎝

−ax3 + bx2

−y
−r z

⎞
⎠

(3b)

where J (∗) is a skew-symmetric matrix that sat-
isfy satisfies Jacobi’s closure condition and H is the
Hamilton energy function which could be defined as
follows

∇HT fc(x, y, z) = 0 (4a)

∇HT fd(x, y, z) = dH/dt = Ḣ (4b)

Fig. 5 Time series for
sampled membrane
potential and energy
function are calculated
when neuron is driven by
mixed signal at
ϕ = 0, A = 0.1, B =
0.2, N = 1, Iext = 1.7, For
(a1, b1, c1, d1) ω = 0.01,
(a2, b2, c2, d2) ω = 0.1,
(a3, b3, c3, d3) ω = 1
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Fig. 5 continued

The Hamilton energy function H is approached by

H = 2

3
dx3 − 2cx + rs(x + 1.6)2

+ (y − z + I + A cosωt + B cos(Nωt + ϕ))2

(5)

And the change of Hamilton energy versus time is cal-
culated by

dH/dt = [2dx2 − 2c + 2rs(x + 1.6)](−ax3 + bx2)

+ 2[y − z + I + A cosωt

+ B cos(N cosωt + ϕ)](r z − y) (6)

In the following section, different external forcing cur-
rents are imposed on the neuron to investigate the
response and selection of neuronal activities.

3 Numerical results and discussion

The fourth Runge–Kutta algorithm is used to calcu-
late the time series from the HR neuron model at fixed
time step h = 0.01; the transient period is about 6000
time units. With increasing the external forcing cur-
rent I = Iext = 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9,
the electric activities of neuron can pass from spiking

to bursting states by applying weak periodic signals,
and these results are calculated in Fig. 1.

The previousworks confirmed that the electricmode
of output series will be invariant when the external
constant forcing current is fixed. Periodic forcing with
small intensity can adjust the electricmodes of neuronal
activities, and the transition of electric mode depends
on the properties of periodical signal. The competi-
tion between the low-frequency and high-frequency
signals determinates the rhythm of electric activities.
As a result, different modes of electrical activities can
be selected by applying appropriate periodic and con-
stant signals. Furthermore, the energy dependence on
electric modes is calculated according to Eq. (5), and
the results are shown in Fig. 2.

The results in Figs. 1 and 2 confirmed that the energy
is much dependent on the electric mode controlled by
the external forcing current. It is found that smaller
energy is approached under bursting states while spik-
ing states make neuron hold higher energy. Indeed,
the diversity in frequency of mixed forcing signal also
changes the electric modes of electric activities, as a
result, low frequency and high frequency with differ-
ent ratios are calculated under different N , and results
are calculated in Fig. 3.

It is found in Fig. 3 that the electric activities of neu-
ron show multiple modes, and the spiking and burst-
ing states occur alternatively; furthermore, the rhythm
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of the electric activities depends on the competition
between the high and low frequency of external forc-
ing currents. To discern the energy transition with the
change of electric modes, the Hamilton energy is also
calculated, and the detailed results are presented in
Fig. 4.

The outputs for sampled membrane potentials are
much dependent on the external periodical forcing,

and the discharge rhythm of electric activities of neu-
ron could be adjusted by the high-frequency section
of the mixed forcing signal. The discharge rhythm is
increased with increasing the high frequency of the
mixed forcing signal. The energy is dependent on the
electric mode instead of the external forcing though the
electric mode can be changed by the external forcing
current. Furthermore, the angular frequency has been

Fig. 6 Time series for
sampled membrane
potential and energy
function are calculated
when neuron is driven by
mixed signal at
ϕ = 0, A = 0.1, N =
1, ω = 0.01, Iext = 1.7, For
(a1, b1, c1, d1) B = 0.2,
(a2, b2, c2, d2) B = 0.5,
(a3, b3, c3, d3) B = 0.8,
(a4, b4, c4, d4) B = 1.0
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Fig. 6 continued

increased to study the mode transition and changes of
energy by applyingmixed signal on the neuron, and the
results are shown in Fig. 5.

The results in Fig. 5 confirmed that the selection of
angular frequency in the mixed signal still can affect
the mode of electric activities, the discharge frequency
and even energy transition though the periodic forcing
is under low amplitude. Interestingly, multiple modes
of electric activities occur alternatively with chang-

ing the external mixed forcing current instead of sole
mode of electric activities. Furthermore, the ampli-
tude of periodic forcing current in the mixed signal
is adjusted to detect the transition of mode and energy
during the driving by external signals. For example,
the same frequency is used in the periodic forcing at
A = 0.1, ω = 0.01, Iext = 1.7, ϕ = 0; the amplitude
B is increased from 0.2 to 1.0; it is found that the out-
puts for membrane potentials show multiple modes in

123



1978 Y. Wang et al.

the electric activities that spiking discharge is accom-
panied by bursting state. Similar results are confirmed
under fixed amplitude B by increasing the amplitude
A in the periodic signal. For detailed description and
estimation, the energy is calculated in Figs. 6 and 7.

The results in Figs. 6 and 7 confirmed that elec-
trical activities of neuron can switch from different
modes and distinct transition between modes occur

with increasing the amplitude of periodic forcing cur-
rent in the mixed signals. The Hamilton energy also
changes with fluctuation when the mode of electrical
activities is switched alternatively. The potential mech-
anism could be that combination of different periodic
forcing signals injects mixed signal via multiple chan-
nels, and thus, the modes of electrical activities are
adjusted synchronously; as a result, the modes of elec-

Fig. 7 Time series for
sampled membrane
potential and energy
function are calculated
when neuron is driven by
mixed signal at
ϕ = 0, B = 0.1, N =
1, ω = 0.01, Iext = 1.7, For
(a1, b1, c1, d1) A = 0.2,
(a2, b2, c2, d2) A = 0.4,
(a3, b3, c3, d3) A = 0.8,
(a4, b4, c4, d4) A = 1.0
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Fig. 7 continued

tric activities show variety and periodicity. It is inter-
esting to find that transition of energy shows certain
delay with changing the amplitude of external forcing
current, but the energy mainly depends on the modes
selection of electrical activities because neuron can
encode the energy by itself. In fact, the previous inves-
tigation discussed the case for frequencymultiplication

that periodical forcing of the mixed signal is changed
without additive phase diversity (ϕ = 0). In the follow-
ing, it is interesting to investigate the case for ϕ �= 0.

The results in Fig. 8 found that multiple modes of
electrical activities could also be observed in the time
series for membrane potentials. The electrical mode
is also dependent on the frequency ratio N between
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the high frequency and low frequency in the mixed
signal, and the energy function also changed with the
mode transition of electrical activities. Furthermore,
the initial phase diversity is set as ϕ = π , and results
are calculated in Figs. 9 and 10.

It is found in Fig. 9 that the modes of electri-
cal activities can also be adjusted and switched when
the intensity of forcing current with low frequency is
increased, and the electrical activities can alter between
spiking and bursting, bursting and spiking states as

Fig. 8 Time series for
sampled membrane
potential and energy
function are calculated
when neuron is driven by
mixed signal at
ϕ = π/2, A = 0.1, B =
0.2, ω = 0.01, Iext = 1.6,
For (a1, b1, c1, d1)
N = 0.1, (a2, b2, c2, d2)
N = 1, (a3, b3, c3, d3)
N = 10, (a4, b4, c4, d4)
N = 100
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Fig. 8 continued

well. Furthermore, the intensity of high-frequency sig-
nal A is increased, and the results are calculated in
Fig. 10.

It is found that the electrical activities can switch
between spiking and bursting states during the period
of increasing in the intensity of external forcing cur-
rents, while the electrical activities decrease to qui-
escent states or weak oscillation during the period of

decreasing the intensity of external forcing currents.
The change of Hamilton energy follows the variation
of electrical activities and also the changes of external
forcing currents but with certain delay. From the phys-
ical view, external forcing current just inputs energy
into the system; however, the Hamilton energy cannot
follow up the changes of external forcing current syn-
chronously. The mechanism could be that neuron can
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Fig. 9 Time series for
sampled membrane
potential and energy
function are calculated
when neuron is driven by
mixed signal at
ϕ = π, N = 0.1, B =
0.1, ω = 0.1, Iext = 1.6,
For (a1, b1, c1, d1) A = 0.2,
(a2, b2, c2, d2) A = 0.3,
(a3, b3, c3, d3) A = 0.4,
(a4, b4, c4, d4) A = 0.5
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Fig. 9 continued
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Fig. 10 Time series for
sampled membrane
potential and energy
function are calculated
when neuron is driven by
mixed signal at
ϕ = π, N = 0.1, A =
0.1, ω = 0.1, Iext = 1.6,
For (a1, b1, c1, d1) B = 0.4,
(a2, b2, c2, d2) B = 0.6,
(a3, b3, c3, d3) B = 0.8,
(a4, b4, c4, d4) B = 1.0
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Fig. 10 continued
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encode the energy; thus, the Hamilton energy mainly
depends on the electrical activities instead of the exter-
nal forcing directly.

4 Conclusions

Mixed forcing currents are imposed on HR neuronal
model, and the response of electrical activities is inves-
tigated in presence of multi-channels stimuli syn-
chronously. Constant signal, low-frequency and high-
frequency signals are imposed on the neuron simulta-
neously, and multiple modes of electrical activities are
observed in the time series for membrane potentials.
It is found that mode transition of electrical activities
depends on the amplitude and angular frequency of
periodical signals. Particularly, the ratio between high
frequency and low frequency can determinate themode
transition of electrical activities. The changes ofHamil-
ton energy depend on the mode transition of electri-
cal activities and the external forcing currents. During
the transition from spiking to bursting state, Hamilton
energy is decreased greatly, while Hamilton energy is
increased when electrical activities are switched from
bursting to spiking states. The occurrence of multiple
modes in electrical activities could be associated with
multi-channel inputting when the effect of electromag-
netic induction is left out.
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