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Abstract
Elementary siphons play an important role in designing deadlock prevention policies for flexible manufacturing systems
modeling by Petri nets. This article proposes a deadlock control algorithm with maximally reachable number to cope
with deadlock problems in ordinary Petri nets. First, we solve all elementary siphons and dependent siphons and then
add both a control place and a control transition to each elementary siphon so that an extended net system (N0,M0) is
obtained. Second, by constructing an integer programming problem of P-invariants of (N0,M0), the controllability test for
dependent siphons in N0 is performed via this integer programming problem. Accordingly, a few of control places and
control transitions are added for those dependent siphons that do not meet controllability as well. Therefore, a live con-
trolled system (N�,M�) with maximally reachable number rather than number of maximally permissive behavior can be
achieved. The correctness and efficiency of the proposed deadlock control algorithm is verified by a theoretical analysis
and several examples that belong to ordinary Petri nets. Unlike these deadlock prevention policies with number of maxi-
mally permissive behavior in the existing literature, the proposed deadlock control algorithm can generally obtain a live
controlled system (N�,M�) whose reachable number is the same as that of an original uncontrolled net (N0, M0), that is,
maximally reachable number is greater than number of maximally permissive behavior.
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Introduction

A flexible manufacturing system (FMS) is a highly
technical and synthetic system consisting of some intel-
ligent subsystems, including an overall and reasonable
configuration of some numerically controlled machines,
a number of working units for material handling and
products assembling, and a central computer worksta-
tion that can sample input information from sensors
and then send output control signals to actuators
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online. Because of the competition of shared manufac-
turing resources, a highly undesirable phenomena in a
highly automated FMS, namely, deadlocks1–6 occur
definitely when some processing steps or jobs are
trapped into an endless loop waiting for service which
occupied by other processing ones, and vice versa, lead-
ing to the global or local block for an FMS. Therefore,
it is necessary to consider the technical solutions to
deadlock problems when designing an FMS.7–13 In the
past two decades, the research of resolving deadlocks
has become the hot issues and many scholars and
researchers have achieved a lot of remarkable results in
theory and practical applications.6,14–26

Because of their own characteristics to easily and
concisely describe the concurrent execution of processes
and the reasonable distribution of shared resources in
an FMS,12,27 Petri nets have been widely used to model,
analyze, and simulate the static and dynamic behaviors
of an FMS, especially in deadlock problems. Using
Petri nets, three policies, called deadlock detection and
recovery (DDR),1,28 deadlock avoidance (DA),1,4 and
deadlock prevention (DP)6,10,23–25,28–32, respectively, are
developed to cope with deadlock problems in FMSs.
DDR can detect deadlocks and permit their occurrence
and then adopts the corresponding measures to recover
an FMS to a correct state. A DDR strategy is suitable
for such case in which deadlocks are infrequent and
their consequence is not serious. But it requires the time
cost for detection and recovery. As for a DA technique,
a shared resource is granted to a process only if the
resulting state in an FMS is not a deadlock, which is an
online computational mechanism to guarantee correct
system evolutions. However, DP is an offline method
that can consider and solve deadlocks in design and
planning stages for an FMS. That is to say, its execution
requires no run-time cost and guarantees the correct
evolutions of different processes or jobs in an FMS, so
a deadlock prevention policy (DPP) is widely used to
design a liveness-enforcing supervisors to eliminate
deadlocks in an FMS. Structural analysis and reachabil-
ity graph (RG) are two major methods that belong to
DPP.1 In addition, as structural objects of a Petri net,
siphons are closely related to its deadlock, deadlock-
free, and liveness. Thus, DPP are classified into two
categories: siphon-based method (SBM)25,29,30,33–35 and
reachability graph–based method (RGBM).6,10,32,36–38

Generally, behavioral permissiveness (BP), structural
complexity (SC), and computational complexity (CC)
are three major criteria to evaluate SBM or RGBM. By
means of explicit enumeration of all state nodes of an
RG of the given Petri net model (PNM), RGBM can
divide the corresponding RG into two parts: deadlock
zone (DZ) including deadlocks and critical bad states
that inevitably lead to deadlocks and a deadlock-free
zone (DFZ) representing the good states that definitely

keep the correct evolutions of PNM. As for a given
PNM, these DPPs using RGBM15,36,38 can generally
find an optimal liveness-enforcing supervisor that
ensures every state node within DFZ rather than DZ to
be reached. That is to say, for a resultant controlled net
system with liveness, its reachable states excluding dead-
locks and bad states are called maximally permissive
behavior (MPB), and the corresponding number of
reachable states for this live controlled Petri net system
is number of maximally permissive behavior (NMPB),
which usually means the full use of the system resources.
However, such RGBM usually suffers from a state
explosion problem of the corresponding RG for a large-
sized PNM with the large initial markings.38 In order to
cope with the state explosion problem, a few novel
methods are successively developed to design the
liveness-enforcing supervisors with MPB. Among them,
Chen and Li15 propose a non-iterative approach to
design a maximally permissive control place (CP) by a
place invariant (PI) that forbids one of the first-met bad
markings (FBMs) and none of legal markings is forbid-
den. However, the computation for such PI needs sol-
ving an integer linear programming problem (ILPP),
which may cause CC. Thus, in order to overcome the
complexity of this method, a vector covering approach
(VOA) is developed to reduce the sets of legal markings
and FBM to be small, which are considered in the
design of a liveness-enforcing supervisor. As a result, a
maximally permissive liveness-enforcing supervisor
within the class of supervisors where each CP is associ-
ated with a P-semiflow can be obtained if the ILPP has
a solution. Accordingly, Chen et al.13,36,37 also use a
VOA to first compute a minimal covering set of legal
markings and a minimal covered set of FBMs, and then
these two minimal sets are considered for an iterative
process of designing CPs that is different from Chen
and Li.15 Finally, a maximally permissive supervisor
with a small number of CPs can be obtained when all
FBMs that are forbidden by the PI are removed from
the minimal covered set of FBMs, which obviously
reduces the computational time compared with their
previous work. Uzam and Li6 adopt a set of mixed inte-
ger programming (MIP) formulations to perform an
iterative extraction for bad markings in an RG of the
uncontrolled PNM such that the explicit enumeration
of all nodes of the RG is avoided in contrast with the
iterative method of synthesizing liveness-enforcing
supervisors,38 leading to a controlled PNM with live-
ness, that is, MPB and has a relatively simple structure.
By a lexicographic multiobjective integer programming
problem, B Huang et al.39 design a MPB (optimal)
supervisor while forbidding all FBMs and permitting all
legal markings in a Petri net model. In the meantime, a
conversion method is proposed to convert the nonlinear
model that is associated with minimizing its structure
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into a linear one. Hence, a liveness-enforcing supervisor
with MPB and minimal structure is obtained. However,
the corresponding computational loads are not reduced
to a great degree, and a few reductant control places
(RCPs) may exist in the live controlled system (N�,M�),
that is, CC and SC for these novel RGBM are not
observably improved except for BP.

However, many scholars focus on structural analy-
sis, such as siphons7,9,20,25,29 and resource transition
circuits,10,35 and have developed a large number of
DPPs. Among these representative DPPs, E-policy29

adopts the complete siphon enumeration method
(CSEM) to solve all siphons causing deadlocks in an
S3PR (systems of simple sequential processes with
resources) and then adds a CP to each emptied siphon
to prevent itself from being emptied. Thus, E-policy is
first regarded as obtaining a live controlled Petri net
system by SBM, although its performance is not ideal
in terms of an overall evaluation of CC, SC, and BP. In
order to reduce the SC of a liveness-enforcing supervi-
sor, Li and Zhou22,23 pioneered the concept of elemen-
tary siphons (ESs) and dependent siphons (DSs). Li
and Zhou-policy only adds the CPs to all ESs and some
DSs that cannot meet the controllability and then
achieves a liveness-enforcing supervisor, whose SC is
enormously depressed compared with that of E-policy.
Subsequently, Li and Zhou9 and Chao and Chen14 and
Chao40 propose the further research results including
the novel methods to compute ESs, controllability of
DSs (or compound siphons), and the liveness condi-
tions associated with the controlled ESs and DSs for
S3PR and S3PGR (systems of simple sequential pro-
cesses with general resources requirement), which
enrich the theory of elementary siphon and its applica-
tions. But BP and CC are not ideal for the liveness-
enforcing supervisors synthesized from the controlled
ESs and DSs. In the meantime, by MIP3,8 or the
revised MIP7 (Li and Li 2012c), the partial siphon enu-
meration method (PSEM) is also used to solve those
siphons that definitely cause deadlocks so that the com-
putational loads for the related DPPs such as C-pol-
icy,7 H-policy,20,31 PR-policy,4 P-policy,25 and LL-
policy,28,32,33,41 obviously decrease. Moreover, several
novel methods of controlling siphons, for example,
max,max

0
, max

00
, and max�-controllability for siphons12

are successively proposed and employed for these
solved siphons in order to design the corresponding
DPPs; these methods gradually improve the behavioral
permissiveness of the finally live controlled Petri net
system to a great degree. In short, the liveness-
enforcing supervisors designed by PSEM can yield an
overall improvement in CC, BP, and SC than those
ones constructed by CSEM. Especially, it is the first
time that Chao40 add a CP and a control transition
(CT) to each solved siphon in an S3PR system with

deadlocks, resulting in a live controlled Petri net system
with maximally reachable number (MRN). That is to
say, reachable state number of the final controlled
PNM with liveness is the same as that of the uncon-
trolled one with deadlocks, that is, MRN . NMPB,
and its BP is improved to an ideal degree by such
method of adding both CPs and CTs to these siphons
causing deadlocks.40 However, the difference of con-
trollability for ESs and DSs is not considered in
Chao,40 which may lead to a live controlled PNM
(N �,M�) with a relatively complicated structure.

Partially enlightened by the advantages of using
ESs14,22,23 and the addition of CPs and CTs,40 the pur-
pose of this work is to design a deadlock control algo-
rithm (DCA) to obtain not only a liveness-enforcing
supervisor with MRN but also a relatively simple struc-
ture in order to eliminate deadlocks in the typical
classes of ordinary Petri nets (OPNs), namely, S3PR,29

linear S3PR (L� S3PR),31 and extended S3PR
(ES3PR)8,31 comparing with the method in Chao.40

The proposed DCA focuses on solving ESs and DSs,
executing controllability test for all DSs, and adding
CPs and CTs for all ESs and a few of DSs properly,
which is executed in two stages. At the first stage, all
ESs and DSs in an uncontrolled system that belong to
OPNs are solved and classified by the methods in Chao
and Chen14 and Li and Zhou.22 By adding a CP and
CT40 to each ESs, all ESs are controlled by the corre-
sponding CPs and CTs so that an extended net system
(N 0,M 0) is obtained. Second, by constructing an integer
programming problem (IPP) of P-invariants of
(N 0,M 0), a controllability test for all DSs in N 0 is per-
formed via this IPP. If all DSs meet the desired con-
trollability condition, then a live controlled system
(N �,M�) is achieved directly, implying that the extended
net system (N 0,M 0) is live. Conversely, the corresponding
CPs and CTs are added for those DSs that cannot meet
the controllability. Therefore, a live controlled system
(N 0,M 0) can be achieved as well. A theoretical analysis
and several examples belonging to S3PR, linear S3PR (L-
S3PR), and ES3PR in the existing literature are used to
illustrate the correctness and efficiency of the proposed
DCA. Unlike these DPPs with NMPB in the existing lit-
erature, the proposed DCA can generally obtain a live
controlled system (N 0,M 0) and its reachable state number
is the same as that of the original uncontrolled net
(N0,M0), that is, MRN is greater than NMPB. In addi-
tion, only adding the corresponding CPs and CTs for all
ESs and a few of DSs that cannot pass through the con-
trollability test under the proposed IPP implies that SC
of the final live controlled system (N�,M�) can be
reduced to some degree than that of the corresponding
(N �,M�) in the study of Chao.40

The remainder of this article is organized as follows.
The following section, ‘‘Preliminaries,’’ presents the
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necessary background on Petri nets and the definitions
of ES, deadlock states (DS), S3PR, and so on. The
method of adding CPs and CTs (resp. CP and CT)40 is
first reviewed in section ‘‘A two-stage deadlock control
policy.’’ Accordingly, an IPP to test the controllability
for all DSs in N 0 and a two-stage DCA with MRN are
developed in the same section. Section ‘‘Examples’’
illustrates efficiency of the proposed DCA through sev-
eral examples belonging to OPNs. The last section
‘‘Conclusion’’ concludes this article.

Preliminaries

Some relevant basic concepts of Petri nets

A Petri net is a four-tuple N =(P, T ,F,W ), where P
and T are finite and nonempty sets, respectively. P is a
set of places and T is a set of transitions with
P [ T 6¼ [ and P \ T =[. F � (P 3 T ) [ (T 3 P) is
called the flow relation or the set of directed arcs.
W : (P 3 T ) [ (T 3 P)! N is a mapping that assigns a
weight to an arc: W (x, y). 0 if (x, y) 2 F, and
W (x, y)= 0 otherwise, where x, y 2 P [ T and N denote
the set of non-negative integers. N =(P, T ,F,W ) is
called an ordinary net, denoted as N =(P, T ,F), if
8f 2 F,W (f )= 1. N =(P, T ,F,W ) is called a general-
ized net, if 9f 2 F,W (f ). 1. Given a node x 2 P [ T ,
�x= fy 2 P [ T j(y, x) 2 Fg is called the preset of x,
while x�= fy 2 P [ T j(x, y) 2 Fg is called the postset
of x. A marking is a mapping M : P! N. (N ,M0) is
called a marked Petri net or a net system. The set of
markings reachable from M in N is denoted as
R(N ,M). Incidence matrix ½N � of net N is a jPj3 jT j
integer matrix with ½N �(p, t)=W (t, p)�W (p, t), where
jPj and jT j denote the number of places and transitions
in N, respectively. Given a Petri net (N ,M0), t 2 T is
live under M0 if 8M 2 R(N ,M0), 9M 0 2 (N ,M),M 0½ti.
(N ,M0) is live if 8t 2 T , t is live under M0. (N ,M0) is
dead under M0 if 9= t 2 T ,M0½ti. (N ,M0) is deadlock-free
(weakly live) if 8M 2 R(N ,M0), 9t 2 T ,M ½ti.1

A nonempty set S � P is a siphon (trap) if �S � S�

(S���S). A siphon is minimal if there is no siphon con-
tained in it as a proper subset. A minimal siphon is
called a strict minimal siphon (SMS) if it does not con-
tain a trap. P is used to denote the set of SMS in a Petri
net. A P(T)-vector is a column vector I(J ) : P(T )! Z

indexed by P(T ), where Z is the set of integers. I is a
P-invariant (called P-inv for short) if I 6¼ 0 and
IT ½N �= 0T . P-inv I is said to be a P-semiflow if every
element of I is non-negative. k I k = fp 2 PjI(p) 6¼ 0g is
called the support of I. k Ik+ = fpjI(p). 0g denotes the
positive support of I. k Ik�= fpjI(p)\0g denotes the
negative support of I. Siphon S is inv-controlled by P-
inv I under M0 if IT M0 . 0 and fp 2 PjI(p). 0g � S.
For economy of space,

P
p2P M(p)p,

P
p2kIk I(p)p, andP

t2kJk J (t)t denote a marking M, P-vector I, and

T-vector J, respectively.12 For example, M =(12000)T

is written as M = p1 + 2p2.

Elementary siphon and dependent siphon

Definition 1. Let S � P be a subset of places of Petri net
N =(P, T ,F,W ). P-vector lS is called the characteristic
P-vector of S if 8p 2 S, lS(p)= 1; otherwise
lS(p)= 0.22

Definition 2. Let S � P be a subset of places of Petri net
N =(P, T ,F,W ) and lS be the characteristic P-vector
of S.22 T-vector hS is called the characteristic T-vector
of S if hS = ½N �

T
lS , where ½N �T is the transpose of inci-

dence matrix ½N �.

Definition 3. Let N =(P, T ,F,W ) be a net with jPj=m,
jT j= n, and k siphons, S1, S2, . . . and Sk ,m, n,

k 2 N
+ = f1, 2, . . .g.22 Let lSi

(hSi
) be the characteristic

P(T)-vector of siphon Si, i 2 Nk = f1, 2, . . . , kg. We

define ½l�k 3m= ½lS1
jlS2
j � � � jlSk

�T and ½h�k 3n= ½l�k 3m 3

½N �m3n= ½hS1
jhS2
j � � � jhSk

�T . ½l� (½h�) is called the charac-

teristic P(T)-vector matrix of the siphons in N.

Definition 4. Let hSa
,hSb

, . . . and hSg
(fa,b, . . . , gg �

Nk) be a linearly independent maximal set of matrix
½h�. Then, PE = fSa, Sb, . . . , Sgg is called a set of ESs
in N.22

Definition 5. S 62 PE is called a strongly dependent
siphon if hS =SSi2PE

aihSi
, where ai � 0.22

Definition 6. S 62 PE is called a weakly dependent siphon
if 9A,B 	 PE such that A 6¼ [,B 6¼ [,A \ B=[ and
hS =SSi2AaihSi

� SSj2BbjhSj
, where ai, bj . 0.

The above method proposed by Li and Zhou needs
to find all SMS, and then ESs and DSs are determined
from Definitions 3–6. Although the number of SMS
grows exponentially with respect to the size of a given
PNM, all SMS in a PNM are conveniently found using
Integrated Net Analyzer (INA), a popular Petri net
analysis tool.42 An S3PR is used to model a large class
of FMS. Its definition is briefly given as follows29

Definition 7. An S3PR is defined as the union of a set of
nets Ni =(PAi

[ fp0
i g [ PRi

, Ti,Fi), i 2 f1, 2, . . . ,mg,
sharing common places, where the following statements
are true:

1. p0
i is called the process idle place of Ni. p 2 PAi

and r 2 PRi
are called operation and resource
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place, respectively, where PAi
is a set of opera-

tion places and PRi
is a set of resource places.

2. PRi
6¼[,PAi

6¼ [, p0
i 62 PAi

, (PAi
[fp0

i g)\ PRi
=[.

(a) 8p 2 PAi
, 8t2�p, 8t0 2 p�, 9rp 2 PRi

, �t \ PRi

= t
0�\ PRi

= frpg;
(b) 8r 2 PRi

, ��r \ PAi
= r�� \ PAi

6¼ [ and
8r 2 PR,

�r \ r�=[;
(c) ��(p0

i ) \ PRi
=(p0

i )
�� \ PRi

=[.
3. N 0i is a strongly connected machine, where

N 0i =(PAi
[ fp0

i g [ PRi
, Ti,Fi) is the resultant net

after the places in PRi
and related arcs are

removed from Ni.
4. Every circuit of N contains the place p0

i .
5. Any two nets N1 and N2 are composable,

denoted as N18N2, if they share a set of common
resource places. Every shared place must be
resource one.

6. Transitions in (p0
i )
� and �(p0

i ) are called the
source and sink transitions of an S3PR,
respectively.

Definition 8. Let S be a siphon in a marked S3PR with
S = SR [ SA, SR = S \ PRi

, and SA = SnSR, where SA and
SR are called the set of operation and resource places
for S, respectively. For r 2 PRi

, H(r)= ��r \ PAi
, the

operation places that use r is called the set of holders
of r. ½S�=([r2SR

H(r))nS is called the complementary
set of S.

Moreover, as for the standard definitions of
L� S3PR and ES3PR, the reader is referred to the
literature.8,22,31

For example, we can find three SMS in the net
shown in Figure 1 by INA42 where S1 = fp3, p6,
p9, p10g, S2 = fp4, p7, p10, p11g, and S3 = fp4, p6, p9,
p10, p11g. From Definitions 1 and 2,
lS1

=(0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0)T , lS2
=(0, 0, 0, 1, 0, 0,

1, 0, 0, 1, 1)T , lS3
=(0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1)T , hS1

=
(�1,1,0,0,0,1, �1,0)T , hS2

=(0, �1,1,0,0,0,1, �1)T ,
and hS3

=(�1,0,1,0,0,1,0, �1)T are obtained, respec-
tively. It can be seen that hS3

=hS1
+hS2

. Hence, S1

and S2 are two ESs, and S3 is a strongly DS due to
Definitions 3–5. In addition, ½S1�=fp2,p7g,
½S2�=fp3,p8g, and ½S3�=fp2,p3,p7,p8g are obtained
from Definition 8.

Theorem 1. An S3PR (N ,M0) is live iff
8M 2 R(N ,M0), 8S 2 P,M(S). 0.1,12

Theorem 2. An ES3PR (N ,M0) is live iff no siphon in it
can become empty.12,31

Theorem 3. Let L= fsjM0½s . M 0,M 0 2 R(N0,M0),
M 0(S). 0, 8S 2 Pg be the language of all firing
sequences in (N0,M0) with no siphons ever empty,

L�=fsjM�0 ½s.M 0�,M 0� 2R(N �,M�),M 0�(S).0,8S2Pg
be the language of all firing sequences in (N�,M�) with
no siphons ever empty, and RjN (N �,M�0 )=
fM�jN jM� 2R(N�,M�)g be the projection of R(N�,M�)
onto R(N0,M0), where M�jN is the projection of M� onto
M, that is, 8p2P,M�jN (p)=M�(p), and M�jN is a ||P||-
dimensional vector, and P is the set of places in N0.

40

Then, L=L� and RjN (N�,M�0 )=R(N0,M0) (i.e. the con-
trolled model reaches the same number of states as the
uncontrolled model).

A two-stage deadlock control policy

The method of adding CP and transition

As stated in Introduction, Chao40 proposes a novel idea
to add a CP and CT but not a CP to each solved SMS
in an S3PR system with deadlocks, resulting in a live
controlled Petri net system with MRN. For each Si 2 P

and the corresponding ½Si�, the method of adding corre-
sponding CP (denoted as VSi

) with M0(VSi
)= 0 and CT

(denoted as tSi
) for Si is briefly described as follows:

1. Connection between t and VSi
. (a) For each

t2�½Si�n½Si��, there exists an arc (t,VSi
) with

W (t,VSi
)= 1 from t to VSi

; (b) for each
t 2 ½Si��n�½Si�, there exists an arc (VSi

, t) with
W (VSi

, t)= 1 from VSi
to t.

2. For VSi
and tSi

, there exists an arc (tSi
,VSi

) with
W (tSi

,VSi
)=M0(Si)�1 from tSi

to VSi
and an arc

(VSi
, tSi

) with W (VSi
, tSi

)=M0(Si) from VSi
to tSi

,
respectively.

3. Connection between tSi
and the related places in

the production routes PRj, where j represents
the sequence number for PR, j= 1, 2, . . . ,m. (a)
For each pSi

2�(VSi

�) \ PRj, there exists an arc
(pSi

, tSi
) with W (pSi

, tSi
)= 1 from pSi

to tSi
; (b) for

each rSi
2 PRi

and pSi
2 H(rSi

), there exists an
arc (tSi

, rSi
) with W (tSi

, rSi
)= 1 from tSi

to rSi
; (c)

Figure 1. A non-live marked S3PR.
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for each p0
j 2 PR0

j , there exists an arc (tSi
, p0

j )
with W (tSi

, p0
j )= 1 from tSi

to p0
j . In essence, PRj

is the same as Ni in Definition 7.
4. For each other Sk 2 P and Sk 6¼ Si, there exists

an arc (VSk
, tSi

) with W (VSk
, tSi

)= 1 from VSk
to

tSi
when pSi

2 ½Sk � and pSi
2�(VSi

�) \ PRj.

Note that as for an Si, its corresponding pSi
(rSi

) is
generally not unique due to different PRj, that is,
jpSi
j(jrSi
j) � 2. For example, there are two production

routes PR1 and PR2 in the net shown in Figure 1. For
S1, corresponding to PR1 and PR2, we have pS1

= fp2g
(rS1

= fp9g, p0
j = fp1g) and pS1

= fp7g (rS1
= fp10g, p0

j

= fp5g) in terms of the third rule mentioned above,
respectively. Similarity, for S2, corresponding to PR1

and PR2, pS2
= fp3g (rS2

= fp10g, p0
j = fp1g) and

pS2
= fp8g (rS2

= fp11g, p0
j = fp5g) are obtained,

respectively. Also, for S3, corresponding to PR1 and
PR2, pS3

= fp3g (rS3
= fp10g, p0

j = fp1g) and pS3
= fp7g

(rS3
= fp10g, p0

j = fp5g), respectively. But how to select
the corresponding pSi

(rSi
) for an Si is not clear in the

study of Chao.40

Since the number of PRj is obviously less than that
of the solved SMS, this article adopts a simple method,
called circulating sequence number (CSN) of the pro-
duction routes PRj, to assign the corresponding PRj to
an Si (j= 1, 2, . . . ,m, i= 1, 2, . . . , n,m\n) in turn.
That is to say, PR1, PR2, . . . , PRm, PR1, . . . and PRl

corresponds S1, S2, . . . , Sm, Sm+ 1, . . ., and PRn, respec-
tively, where m+ l= n. Reconsidering an example
depicted in Figure 1, PR1, PR2, and PR1 are assigned
to the corresponding S1, S2, and S3 by CSN.
Accordingly, pS1

= fp2g (rS1
= fp9g, p0

j = fp1g) for S1,
pS2

= fp8g (rS2
= fp11g, p0

j = fp5g) for S2, and
pS3

= fp3g (rS3
= fp10g, p0

j = fp1g) for S3 are determi-
nated clearly. As a result, by means of the above meth-
ods of adding CPs and CTs and CSN, a controlled
Petri net system is obtained, which is shown in
Figure 2.

The controlled Petri net system shown in Figure 2 is
verified to be live by INA.42 Its MRN is 47*, the same
as the reachable number of original marked S3PR
with deadlocks and is greater than the corresponding
NMPB (42).

An IPP to test controllability of dependent siphons

From the above mentioned, adding a CP and CT to
each solved SMS40 can obtain a live controlled Petri net
system (N �,M�) with MRN. On the basis of Definitions
1–6, SMSs are classified into ESs and DSs. From the
existing literature, we know that those policies to make
ESs explicitly controlled and DSs implicitly controlled,
respectively, can reduce the SC of finally live controlled
Petri net systems to some degree. However, this method
of adding a CP and CT to each solved SMS40 without

considering different controllability between ESs and
DSs may result in a relatively complex structural
(N �,M�) with MRN.

Partially motivated by the advantages of ESs to
design deadlock control policies,14,22–24 an IPP of
P-invariants of an extended net system (N 0,M 0) is con-
structed to test controllability of all DSs in (N 0,M 0)
formed by all ESs which are controlled by the addition
of CPs and CTs. By this IPP test, a few CPs and CTs
are added to those0 DSs that cannot meet controllabil-
ity, and the remaining DSs meeting controllability are
implicitly controlled. In other words, the implicitly con-
trolled DSs do not need the addition of CPs and CTs.
Thus, the SC of a finally live controlled Petri net system
(N �,M�) can be reduced to some degree.

Assume that PES = fES1,ES2, . . . ,ESkg and PDS =
fDS1,DS2, . . . ,DSmg are a set of ESs and a set of DSs
in an original S3PR (N0,M0), respectively. After all ESs
are controlled by the addition of CPs and CTs, an
extended net system (N 0,M 0) and its P-invariants
Ii(i= 1, 2, . . . , l) can be obtained. As for each DSj, we
propose its controllability test in this article, which
focuses on

P
p2DSj

M 0(p).
P

p2½DSj�M
0(p),M 0 2 R(N0,

M0), where
P

p2DSj
M 0(p) is the number of tokens held

by DSj at M 0, and
P

p2½DSj�M
0(p) is the number of tokens

required by ½DSj� at the same reachable marking. Since
the places in ½DSj� compete for tokens with the opera-
tion places in DSj, the total number of tokens held by
DSj and ½DSj� keeps constant for any reachable mark-
ing. It is inferred that DSj is marked at M 0 2 R(N0,M0)
if
P

p2DSj
M 0(p).

P
p2½DSj�M

0(p), where
P

p2DSj
M 0(p)

Figure 2. A controlled Petri net system.

6 Advances in Mechanical Engineering



(denoted as M 0(DSj)) and
P

p2½DSj�M
0(p) (denoted as

M 0(½DSj�)) are solved by the following integer
programming

max
X

p2DSj

M 0(p)+
X

p2½DSj�
M 0(p)

0
@

1
A ð1Þ

subject to

Ii
T �M 0= Ii

T �M0, i= 1, 2, . . . , l ð2Þ

M 0=M0 + ½N �Y ,M
0 � 0, Y � 0 ð3Þ

Ii is the minimal P-invariants of N 0. MaximizingP
p2½DSj�M

0(p) shows the maximum ability of ½DSj� to
occupy tokens from resource places of DSj. Similarly,
Maximizing

P
p2DSj

M 0(p) implies that DSj can prevent
tokens to flow into ½DSj� to the most degree. Equation
(2) shows that any one of P-invariants of N 0 corre-
sponds to a set of places whose weighted token count is
a constant for any reachable marking. The interrelation
between the marking’s changes and transition occur-
rences follows from equation (3), the state equation of
a Petri net (N ,M).

Proposition 1. Let (N0,M0) be an uncontrollable marked
S3PR, ES1,ES2, . . . ,ESk be the ESs of N0, and
DS1,DS2, . . . ,DSm be the dependent siphons of N0. An
extended net system (N 0,M 0) is obtained by adding k
CPs and CTs for k ESs, where Y= fIiji= 1, 2, . . . , lg
is the set of minimal P-invariants of N 0. If M 0(DSj)
. M 0(½DSj�),M 0 2 R(N0,M0), j= 1, 2, . . . ,m, then DSj

can be implicitly controlled in N 0.

Proof. Since the set of SMS P in an original S3PR
(N0,M0) can be computed by means of INA;42 accord-
ing to Definitions 1–6, PES = fES1,ES2, . . . ,ESkg and
PDS = fDS1,DS2, . . . ,DSmg can be obtained from P.
By the method stated in the subsection ‘‘The method of
adding CP and transition,’’ the addition of k CPs and
CTs makes k ESs explicitly controlled and leads to an
extended net system (N 0,M 0). For each DSj of N0, DSj is
also a dependent siphon of N 0 and keeps the same com-
plementary set ½DSj�. Although the places in ½DSj� com-
pete for tokens with the operation places in DSj, the
total number of tokens held by DSj and ½DSj� keeps
constant at any reachable marking M. A controllability
test for PDS is performed on the basis of equations
(1)–(3). When M 0(DSj). M 0(½DSj�),M 0 2 R(N0,M0), it is
obvious that the number of tokens held by DSj at M 0 is
greater than the required number of tokens for ½DSj� at
M 0, indicating that DSj can never be emptied at
M 0 2 R(N0,M0), that is, M 0(DSj). 0. As a result, such
DSs cannot affect the liveness of an extended net sys-
tem (N 0,M 0) due to Theorems 1 and 2, implying that

such DSs can be implicitly controlled in (N 0) without
addition of CPs and CTs.

Although this IPP to test controllability of depen-
dent siphons is time-consuming in theory, it is an estab-
lished method and is performed offline. In addition,
even for the large-sized models of OPNs, this IPP to
test controllability of DSs is conveniently executed by
LinGo43 in less time.

A DCA using the directly controlled ESs and the
identified and controlled DSs

On the basis of the above discussion and results, in
order to eliminate deadlocks in an S3PR, L� S3PR,
and ES3PR that are typical representatives of OPNs
and achieve a live controlled Petri net (N�,M�) with
MRN, a DCA using the directly controlled ESs and
the identified and controlled DSs is developed in this
section and described below.

Algorithm 1. A DCA using the directly controlled ESs
and the identified and controlled DSs.

Input: an uncontrollable marked S3PR (N0,M0),
N0 =(PA [ PR [ P0, T ,F,W ).
Output: a live controlled Petri net (N�,M�) with
MRN.
Step 1: By INA, compute all SMS S in an original
S3PR (N0,M0) and obtain P= fS1, S2, . . . , Sng.
Step 2: According to Definitions 1–6, find
PES = fES1,ES2, . . . ,ESkg and PDS = fDS1,DS2,
. . . ,DSmg, where k +m= n.
Step 3: Solve P½ES�= f½ES1�, ½ES2�, . . . , ½ESk �g and
P½DS�= f½DS1�, ½DS2�, . . . , ½DSm�g in terms of
Definition 8.
Step 4: As stated in Subsection ‘‘The method of add-
ing CP and transition,’’ add a CP and CT to each ES
and an extended net system (N 0,M 0) is achieved.
Step 5: i :¼ 1.
Step 6: while i
 jDSj do =�jDSj denotes the number
of DSs �=
Step 7: Based on Proposition 1 and LinGo, an IPP
related to M 0(DSi). M 0(½DSj�),M 0 2 R(N0,M0) is per-
formed among DSs.
Step 8: i :¼ i+ 1.
Step 9: end while
Step 10: if M 0(DS). M 0(½DSj�) for each DS then

Step 11: N� :¼ N 0, M� :¼ M 0 and go to Step 15.
Step 12: else
Step 13: As for those DSj(j= 1, 2, . . . , q, q\jDSj)
with M 0(DSj)\M 0(½DSj�), M 0 2 R(N0,M0), by the
above method of addition of CPs and CTs, add the
corresponding CPs and CTs to them in (N 0,M 0).
Step 14: end if

Step 15: Output (N�,M�).
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Algorithm 1 is performed in two stages and can be
briefly explained as follows. At the first stage, all SMS
causing deadlocks in an original S3PR (N0,M0) are
computed by INA and then P= fS1, S2, . . . , Sng is
obtained. PES = fES1,ES2, . . . ,ESkg and
PDS = fDS1,DS2, . . . ,DSmg are solved, respectively, on
the basis of Definitions 1–6. Also, from Definition 8,
P½ES�= f½ES1�, ½ES2�, . . . , ½ESk �g and P½DS�= f½DS1�,
½DS2�, . . . , ½DSm�g are obtained. Accordingly, an
extended net system (N 0,M 0) is achieved by adding a
CP and CT to each ES. At the second stage, an IPP is
performed to test whether each DS meet
M 0(DS). M 0(½DSj�),M 0 2 R(N0,M0). If all DSs meet
such controllability, then all DSs are implicitly con-
trolled without addition of CPs and CTs, implying that
an extended net system (N 0,M 0) is live. In a word,
(N 0,M 0) is (N�,M�) and Algorithm 1 terminates the exe-
cution. Otherwise, the corresponding CPs and CTs are
added to those DSs that cannot meet such controllabil-
ity so that an extended net system (N 0,M 0) is further
transformed into a live controlled net system (N �,M�).

Proposition 2. Let (N0,M0) be a marked S3PR with dead-
locks. Algorithm 1 is applied to it, which can output a
live controlled net system (N �,M�) with MRN.

Proof. First, SMSs causing deadlocks can be found by
INA42 and then PES = fES1,ES2, . . . ,ESkg, PDS =
fDS1,DS2, . . . ,DSmg, P½ES�= f½ES1�, ½ES2�, . . . , ½ESk �g,
and P½DS�= f½DS1�, ½DS2�, . . . , ½DSm�g are obtained,

respectively, in terms of Definitions 1–6 and 8. By the
above method of addition of CPs and CTs, each ES is
explicitly controlled by adding a CP and CT, so
Algorithm 1 outputs an extended net system (N 0,M 0).
Second, an IPP to test controllability of DSs is exe-
cuted by LinGo.43 For those DSs that cannot meet
M 0(DS). M 0(½DSj�),M 0 2 R(N0,M0), the corresponding

CPs and CTs are added to them due to Proposition 1
and then (N 0,M 0) is further transformed into a con-
trolled net system (N�,M�). Because of the addition of
CPs and CTs to all ESs and those DSs that cannot
meet controllability, there is no emptied siphons in
(N �,M�). That is to say, all solved ESs and DSs are suf-
ficiently marked at M� 2 R(N0,M0) via two stages of
the addition of CPs and CTs. Finally, a controlled net
system (N �,M�) is live due to Theorems 1 and 2. In
addition, from Theorem 3, L and L� are the language
of all firing sequences in (N0,M0) and (N �,M�) with no

siphons ever empty, respectively, RjN (N �,M�0 )=

fM�jN jM� 2 R(N�,M�)g is the projection of R(N�,M�)
onto R(N0,M0). Algorithm 1 is performed in two stages
of the addition of CPs and CTs, which leads to a fact
that no emptied siphons exist in (N�,M�) and all

reachable states for (N�,M�) can appear in

RjN (N�,M�). So L= L� and RjN (N �,M�0 )=R(N0,M0)

can be obtained due to Theorem 3. In another word,
the reachable number of the live controlled system
(N �,M�) is the same as that of an original uncontrolled
net (N0,M0), implying that the truth of Proposition 2.

Since the number of SMSs in a net grows quickly
and in the worst case grows exponentially with the size
of the net1,12,22 and the first stage of Algorithm 1
mainly concerns on solution and classification of
SMSs, the complexity of Algorithm 1 is nondeterminis-
tic polynomial time (NP)-complete in theory. However,
the related IPP to test controllability of DSs is conveni-
ently solved by LinGo43 during its second stage, and
Algorithm 1 is totally performed offline. Therefore, on
the basis of an overall analysis in theory and the practi-
cal application, Algorithm 1 is potential to design a
DCA with MRN and a relatively simple structure; its
efficiency can be shown via examples in the following
section.

Examples

This section introduces some examples that belong to
S3PR and ES3PR in the existing literature20,22,25,29,41 to
further exemplify Algorithm 1. Its control performance
comparison with the existing approaches presented in
the study of Ezpeleta et al.29 (denoted as ECM),18

(denoted as HHJ+),3,44 (denoted as HJX+),22,23

(denoted as LZ),38 (denoted as UZ),25 (denoted as
PCF),7 (denoted as C1),40 (denoted as C2) and Li
et al.41 (denoted as LAW+) is also carried out via some
tables, where �, J, R, DS, and DFS denote maximally
reachable state, MPB, the ratio of the number of reach-
able states of the live controlled system (N �,M�) to
MRN, deadlock states, and deadlock-free states of the
corresponding Petri net system, respectively.

Let us reconsider an original S3PR with deadlocks
shown in Figure 1. Algorithm 1 is applied to it.
Tables 1–6 show solution of ESs, DSs, and their com-
plementary sets, the addition of CPs and CTs to ESs,
controllability test to DSs, the supplemental addition
of CPs and CTs to ESs and the addition of CPs and
CTs to DSs, a two-stage deadlock control process using
Algorithm 1, and its control performance comparison
with the existing approaches, respectively.

Figure 3 shows a non-live marked ES3PR, where
P0=fp1, p8g, PA=fp2, p3, p4, p5, p6, p7, p9, p10, p11g, PR

= fp12, p13, p14, p15, p16g.31,41 We have jPj= jP0j+
jPAj+ jPRj= 16, jT j= 12, and two production routes
PRm (m= 1, 2), respectively.

Algorithm 1 is also applied to it. Tables 7–11 show
solution of ESs, DSs, and their complementary sets,
the addition of CPs and CTs to ESs, controllability test
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to DSs, a two-stage deadlock control process using
Algorithm 1, and its control performance comparison
with the existing approaches, respectively.

Note that this dependent siphon meets the controll-
ability condition from Table 9, so it is not needed to

add a CP and CT to DS1 due to Proposition 1.
Algorithm 1 outputs a live controlled system (N �,M�),
that is, (N �,M�) is the same as (N 0,M 0).

Table 1. Two elementary siphons and one dependent siphon, their complementary sets, and presets and postsets of the
complementary sets.

i ESi ½ESi� �½ESi� ½ESi��
j DSj ½DSj� �½DSj� ½DSj��
1 fp3, p6, p9, p10g fp2, p7g ft1, t7g ft2, t6g
2 fp4, p7, p10, p11g fp3, p8g ft2, t8g ft3, t7g
1 fp4, p6, p9, p10, p11g fp2, p3, p7, p8g ft1, t8g ft3, t6g

Table 2. The addition of CPs and CTs to two elementary siphons.

ESi pESi
2�(VESi

�) \ PRm p0
1, p0

2 rESi
�tESi

tESi
� �VESi

VESi

�

ES1 fp2g=, fp7g PR1=, PR2 fp1g=, fp5g fp9g=, fp10g f3VES1
, p2g f2VES1

, p1, p9g ft1, t7, 2tES1
g ft2, t6, 3tES1

g
ES2 fp3g, fp8g= PR1, PR2= fp1g, fp5g= fp10g, fp11g= f3VES2

, p8g f2VES2
, p5, p11g ft2, t8, 2tES2

g ft3, t7, 3tES2
g

CP: control place; CT: control transition.

= denotes the selected production routes PRm(m= 1, 2), the corresponding idle, operation, and resource places, respectively;

M0(VES1
)=M0(VES2

)= 0.

Table 3. Controllability test to one dependent siphon.

j DSj M0(DSj) M0(½DSj�) Controllability

1 DS1 2 2 No

Table 4. The supplemental addition of CPs and CTs to two elementary siphons and the addition of CP and CT to one dependent
siphon.

ESi pESi
2�(VESi

�) \ PRm p0
1, p

0
2

rESi

�tESi
tESi

� �VESi
VESi

�

DSi pDSi
2�(VDSi

�) \ PRm p0
1, p0

2
rDSi

�tDSi
tDSi
� �VDSi

VDSi

�

ES1 fp2g=, fp7g PR1=, PR2 fp1g=, fp5g fp9g=, fp10g f3VES1
, p2, VDS1

g f2VES1
, p1, p9g ft1, t7, 2tES1

g ft2, t6, 3tES1
g

ES2 fp3g, fp8g= PR1, PR2= fp1g, fp5g= fp10g, fp11g= f3VES2
, p8, VDS1

g f2VES2
, p5, p11g ft2, t8, 2tES2

g ft3, t7, 3tES2
, tDS1
g

DS1 fp3g=, fp7g PR1=, PR2 fp1g=, fp5g fp10g=, fp10g f4VDS1
, p3, VES2

g f3VDS1
, p1, p10g ft1, t8, 3tDS1

g ft3, t6, 4tDS1
, tES1

, tES2
g

CP: control place; CT: control transition.

= denotes the selected production routes PRm(m= 1, 2), the corresponding idle, operation, and resource places, respectively; M0(VDS1
)= 0.

Table 5. A two-stage deadlock control process using
Algorithm 1 for a marked S3PR shown in Figure 1.

The state of Petri net system No. of DS No. of DFS

An original system, (N0,M0) 5 42J

An extended system, (N0,M0) 1 46
A live controlled system, (N�,M�) 0 47*

DS: deadlock states; DFS: deadlock-free states.

Table 6. Comparison of the proposed DCP with those DCPs
in the literature.22,25,29

Criteria Algorithm 1 ECM PCF LZ

No. of added CPs 3 3 3 2
No. of added CTs 3 0 0 0
No. of reachable
states

47� 36 42J 36

R 100% 76.6% 89.4% 76.6%

CP: control place; CT: control transition; DCP: deadlock control policy.
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Finally, Figure 4 shows a well-known S3R model
with deadlocks,18,22,23,25,29,31,38,45 where P0 = fp1, p5,
p14g, PA = fp2 � p4, �p6 � p13, p15, �p19g, PR =
fp20 � p26g. We have jPj= jP0j+ jPAj+ jPRj= 26,

jT j= 20, and three production routes PRm(m= 1, 2, 3),
respectively.

Tables 12–17 show solution of ESs, DSs, and their
complementary sets, the addition of CPs and CTs to
ESs, controllability test to DSs, the supplemental addi-
tion of CPs and CTs to ESs and the addition of CPs
and CTs to DSs, a two-stage deadlock control process
using Algorithm 1, and its control performance com-
parison with the existing approaches, respectively.

From Table 17, it is seen that C2 adds seven CPs and
CTs to an S3R example depicted in Figure 4 so that a
live controlled Petri net system with MRN (26,750) is
achieved as well, which is the same as Algorithm 1.
However, it is unclear for C2 to select 7 siphons from

Figure 3. A non-live marked ES3PR.

Table 7. Two elementary siphons and one dependent siphon, their complementary sets, and presets and postsets of the
complementary sets.

i ESi ½ESi� �½ESi� ½ESi��
j DSj ½DSj� �½DSj� ½DSj��
1 fp5, p6, p11, p14, p15g fp4, p10g ft6, t11g ft7, t10g
2 fp7, p10, p15, p16g fp5, p6, p9g ft3, t7, t12g ft4, t8, t11g
1 fp7, p11, p14, p15, p16g fp4, p5, p6, p9, p10g ft3, t6, t12g ft4, t8, t10g

Table 8. The addition of CPs and CTs to two elementary siphons.

ESi pESi
2�(VESi

�) \ PRm p0
1,p0

2 rESi
�tESi

tESi
� �VESi

VESi

�

ES1 fp4g=, fp10g PR1 =PR2 fp1g=, fp8g fp14g=, fp15g f3VES1
, p4g f2VES1

, p1, p14g ft6, t11, 2tES1
g ft7, t10, 3tES1

g
ES2 fp5, p6g, fp9g= PR1, PR2= fp1g, fp8g= fp15g, fp16g= f2VES2

, p9g fVES2
, p8, p16g ft3, t7, t12, tES2

g ft4, t8, t11, 2tES2
g

CP: control place; CT: control transition.

= denotes the selected production routes PRm(m= 1, 2), the corresponding idle, operation, and resource places, respectively;

M0(VES1
)=M0(VES2

)= 0.

Table 9. Controllability test to one dependent siphon.

j DSj M0(DSj) M0(½DSj�) Controllability

1 DS1 3 1 Yes

Table 10. A two-stage deadlock control process using
Algorithm 1 for a marked ES3PR shown in Figure 3.

The state of Petri net system No. of DS No. of DFS

An original system, (N0,M0) 56 194J

An extended system, (N0,M0) 0 250*
A live controlled system, (N�,M�) 0 250*

DS: deadlock states; DFS: deadlock-free states.
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18 siphons; in other words, the relevant rule on how to
select those siphons that are needed the addition of CPs

and CTs from all solved siphons is not given in the
study of Chao.40 On the contrary, after dividing 18
siphons into 6 ESs and 12 DSs and finishing the con-
trollability test for all DSs, Algorithm 1 decisively adds
6 CPs and CTs for 6 ESs and 1 CP and CT for 1 DS
that does not meet controllability, which is performed
in two stages. As stated above, Algorithm 1 can make
all ESs and a few of DSs explicitly controlled by the
addition of CPs and CTs while the remaining DSs that
meet controllability are implicitly controlled. Therefore,
Algorithm 1 may reduce the SC of the finally live con-
trolled system (N �,M�) with MRN to some degree com-
pared with the corresponding (N�,M�) with MRN
obtained by the study of Chao.40

Conclusion

It is a challenge to design the effective deadlock control
policy (DCPs) by means of the relevant theories and
applications of Petri nets. Motivated by the advantages
of ESs14,22,23 and CPs and CTs,40 a two-stage DCA is
proposed in this article. Unlike these DPPs with NMPB
in the existing literature, it can obtain a live controlled
system (N�,M�) with MRN. In addition, by

Table 11. Comparison of the proposed DCP with those DCPs in the literature.25,29,31,41

Criteria Algorithm 1 ECM HJX+ PCF LAW+

No. of added CPs 2 3 4 3 3
No. of added CTs 2 0 0 0 0
No. of reachable states 250� 49 156 194J 194J

R 100% 19.6% 62.4% 77.6% 77.6%

CP: control place; CT: control transition; DCP: deadlock control policy.

Table 12. Six elementary siphons and 12 dependent siphons, their complementary sets, and presets and postsets of the
complementary sets.

i ESi ½ESi� �½ESi� ½ESi��
j DSj ½DSj� �½DSj� ½DSj��
1 fp4, p9, p12, p17, p21, p24g fp2, p3, p8g ft3, t11g ft4, t13g
2 fp4, p10, p17, p21, p22, p24, p26g fp2, p3, p8, p9, p12, p13, p18, p19g ft3, t8, t11, t15g ft5, t10, t13, t17g
3 fp2, p4, p8, p12, p16, p21, p25g fp11, p17g ft7, t17g ft8, t18g
4 fp2, p4, p8, p13, p17, p21, p26g fp12, p18g ft8, t16g ft9, t17g
5 fp2, p4, p8, p12, p15, p20, p21, p23, p25g fp6, p7, p11, p16, p17g ft1, t17g ft3, t8, t19g
6 fp10, p18, p22, p26g fp13, p19g ft9, t15g ft10, t16g
1 fp4, p10, p15, p20 � p26g fp2, p3, p6 � p8, p11 � p13, p16 � p19g ft1, t7, t11, t15g ft4, t10, t13, t19g
2 fp4, p10, p16, p21, p22, p24 � p26g fp2, p3, p8, p9, p11 � p13, p17 � p19g ft3, t7, t11, t15g ft5, t10, t13, t18g
3 fp4, p9, p13, p15, p20, p21, p23 � p26g fp2, p3, p6 � p8, p11, p12, p16 � p18g ft1, t7, t11, t16g ft4, t9, t13, t19g
4 fp4, p9, p13, p16, p21, p24 � p26g fp2, p3, p8, p11, p12, p17, p18g ft3, t7, t11, t16g ft4, t9, t13, t18g
5 fp4, p9, p13, p17, p21, p24, p26g fp2, p3, p6, p12, p18g ft1, t8, t11, t16g ft2, t7, t9, t13, t18g
6 fp4, p9, p12, p15, p20, p21, p23 � p25g fp2, p3, p6 � p8, p11, p16, p17g ft1, t7, t11, t18g ft4, t8, t13, t19g
7 fp4, p9, p12, p16, p21, p24, p25g fp2, p3, p8, p11, p17g ft3, t7, t11, t17g ft4, t8, t13, t18g
8 fp2, p4, p8, p10, p15, p20 � p23, p25, p26g fp6, p7, p11, p13, p16 � p19g ft1, t7, t9, t15g ft3, t8, t10, t19g
9 fp2, p4, p8, p13, p15, p20, p21, p23, p25, p26g fp6, p7, p11, p12, p16 � p18g ft1, t7, t16g ft3, t9, t19g
10 fp2, p4, p8, p10, p16, p21, p22, p25, p26g fp11 � p13, p17 � p19g ft7, t15g ft10, t18g
11 fp2, p4, p8, p13, p16, p21, p25, p26g fp11, p12, p17, p18g ft7, t16g ft9, t18g
12 fp2, p4, p8, p10, p17, p21, p22, p26g fp12, p13, p18, p19g ft8, t15g ft10, t17g

Figure 4. A large-sized marked S3R with deadlocks.

Li et al. 11



constructing an IPP of P-invariants of (N 0,M 0) to per-
form the controllability test for all DSs in N 0, it can also
simplify the structure of (N�,M�) to some degree com-
paring with the deadlock control policy.40 A theoretical
analysis and several examples that belong to S3PR and
ES3PR in the existing literature are used to illustrate
efficiency of the proposed DCA. In essence, this two-
stage DCA belongs to the combination of DPP and
deadlock detection and recovery policy (DDRP) and
possesses some features with both of them. The focus of
our future research is to extend this DCA to more gen-
eral classes of Petri nets such as S4R and G-system1 by
modifying the weight values of control arcs of CTs link-
ing to corresponding idle places, resource places, opera-
tion places, and CPs.

Table 13. The addition of CPs and CTs to six elementary siphons.

ESi pESi
2�(VESi

�) \ PRm p0
1, p

0
2

rESi
�tESi

tESi
� �VESi

VESi

�

ES1 fp3g=, fp8g PR1=,

PR2, PR3

fp1g=, fp5g, fp14g fp24g=, fp21g f3VES1
, p3, VES2

g f2VES1
, p1, p24g ft3, t11, 2tES1

g ft4, t13, 3tES1
g

ES2 fp3g, fp9g=, fp13g,
fp18g PR1, PR2=,

PR3

fp1g, fp5g=, fp14g fp24g=, fp26g f6VES2
, p9g f5VES2

, p5, p24g ft3, t8, t11, t15, 5tES2
g ft5, t10, t13, t17, 6tES2

,

tES1
, tES4

, tES6
g

ES3 fp11g, fp17g= PR1,

PR2, PR3=

fp1g, fp5g, fp14g= fp25g, fp21g= f3VES3
, p17, VES5

g f2VES3
, p14, p21g ft7, t17, 2tES3

g ft8, t18, 3tES3
g

ES4 fp12g=, fp18g PR1,

PR2=, PR3

fp1g, fp5g=, fp14g fp21g=, fp26g f3VES4
, p12, VES2

g f2VES4
, p5, p21g ft8, t16, 2tES4

g ft9, t17, 3tES4
g

ES5 fp7g, fp11g, fp16g=
PR1, PR2, PR3=

fp1g, fp5g, fp14g= fp23g, fp25g= f6VES5
, p16g f5VES5

, p14, p25g ft1, t17, 5tES5
g ft3, t8, t19, 6tES5

, tES3
g

ES6 fp13g=, fp19g PR1,

PR2=, PR3

fp1g, fp5g=, fp14g fp26g=, fp22g f3VES6
, p13, VES2

g f2VES6
, p5, p26g ft9, t15, 2tES6

g ft10, t16, 3tES6
g

CP: control place; CT: control transition.

= denotes the selected production routes PRm(m= 1, 2, 3), the corresponding idle, operation, and resource places, respectively;

M0(VES1
)=M0(VES2

)= � � � =M0(VES6
)= 0.

Table 14. Controllability test to 12 dependent siphons.

j DSj M0(DSj) M0(½DSj�) Controllability

1 DS1 8 3 Yes
2 DS2 6 2 Yes
3 DS3 6 4 Yes
4 DS4 6 1 Yes
5 DS5 4 1 Yes
6 DS6 5 3 Yes
7 DS7 5 0 Yes
8 DS8 8 1 Yes
9 DS9 5 3 Yes
10 DS10 4 2 Yes
11 DS11 4 1 Yes
12 DS12 1 3 No

Table 15. The supplemental addition of CPs and CTs to six elementary siphons and the addition of CP and CT to one dependent
siphon.

ESi pESi
2�(VESi

�) \ PRm p0
1, p

0
2

rESi
�tESi

tESi
� �VESi

VESi

�

DSi pDSi
2�(VDSi

�) \ PRm p0
1, p

0
2

rDSi
�tDSi

tDSi
� �VDSi

VDSi

�

ES1 fp3g=, fp8g PR1=,

PR2, PR3

fp1g=, fp5g,
fp14g

fp24g=, fp21g f3VES1
, p3, VES2

g f2VES1
, p1, p24g ft3, t11, 2tES1

g ft4, t13, 3tES1
g

ES2 fp3g, fp9g=, fp13g,
fp18g PR1, PR2=,

PR3

fp1g, fp5g=,

fp14g
fp24g=, fp26g f6VES2

, p9g f5VES2
, p5, p24g ft3, t8, t11,

t15, 5tES2
g

ft5, t10, t13, t17,

6tES2
, tES1

, tES4
,

tES6
, tDS1
g

ES3 fp11g, fp17g= PR1,

PR2, PR3=

fp1g, fp5g,
fp14g=

fp25g, fp21g= f3VES3
, p17, VES5

g f2VES3
, p14, p21g ft7, t17, 2tES3

g ft8, t18, 3tES3
g

ES4 fp12g=, fp18g PR1,

PR2=, PR3

fp1g, fp5g=,

fp14g
fp21g=, fp26g f3VES4

, p12, VES2
, VDS1

g f2VES4
, p5, p21g ft8, t16, 2tES4

g ft9, t17, 3tES4
g

ES5 fp7g, fp11g, fp16g=
PR1, PR2, PR3=

fp1g, fp5g,
fp14g=

fp23g, fp25g= f6VES5
, p16g f5VES5

, p14, p25g ft1, t17, 5tES5
g ft3, t8, t19,

6tES5
, tES3
g

ES6 fp13g=, fp19g PR1,

PR2=, PR3

fp1g, fp5g=,

fp14g
fp26g=, fp22g f3VES6

, p13, VES2
, VDS1

g f2VES6
, p5, p26g ft9, t15, 2tES6

g ft10, t16, 3tES6
, tDS1
g

DS1 fp13g=, fp18g PR1,

PR2=, PR3

fp1g fp5g=, fp14g fp26g=, fp26g f4VDS1
, p13, VES2

, VES6
g f3VDS1

, p5, p26g ft8, t15, 3tDS1
g ft10, t17, 4tDS1

,

tES4
, tES6
g

CP: control place; CT: control transition.

= denotes the selected production routes PRm(m= 1, 2, 3), the corresponding idle, operation, and resource places, respectively; M0(VDS1
)= 0.
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