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a b s t r a c t

Merlini and Sprugnoli (2017) give both an algebraic and a combinatorial proof for an
identity proposed by Louis Shapiro by using Riordan arrays and a particular model of
lattice paths. In this paper, we revisit the identity and emphasize the use of colored partial
Motzkin paths as appropriate tool. By using colored Motzkin paths with weight defined
according to theheight of its last point,we can generalize the identity in severalways. These
identities allow us tomove from Fibonacci polynomials, Lucas polynomials, and Chebyshev
polynomials, to the polynomials of the form (z + b)n.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

In [25], Shapiro introduced a triangle
(
Bn,k

)
n,k≥0, where Bn,k =

k+1
n+1

(2n+2
n−k

)
. Then the following identity related with this

matrix was obtained in Shapiro et al. [27]
n∑

k=0

Bn,k(k + 1) = 4n. (1.1)

The entries of thismatrix have the following combinatorial interpretation (see, for example, [25,36]). Consider a pair of paths
that start at the origin, consist of n + 1 unit steps either east E = (1, 0) or north N = (0, 1), finishing at the points (a, b)
and (c, d). It is assumed that the two paths do not meet after (0, 0). Then Bn,k counts the number of such pairs of paths for
which c − a = k + 1, i.e., which end a (horizontal) distance k + 1. Call these partial path pairs. By using this combinatorial
interpretation,Woan et al. [36] have given an elegant proof of the above identity. Someother combinatorial interpretations of
the identity were given in Callan [5], Cameron and Nkwanta [6], and Chen et al. [7]. Very recently, Merlini and Sprugnoli [18]
give both an algebraic and a combinatorial proof for this identity by using Riordan arrays [26] and a particularmodel of lattice
paths, and they also find several generalizations of this identity and obtain a general transformation from an arithmetic into
a geometric progression.

In this paper, we will give a combinatorial interpretation and many generalizations of identity (1.1) by using colored
partial Motzkin paths and Riordan arrays. A Motzkin path of length n is a lattice path from (0, 0) to (n, 0) consisting of up
stepsU = (1, 1), horizontal stepsH = (1, 0) and down stepsD = (1, −1) that never goes below the x-axis. A (u, h, d)-colored
Motzkin path is a Motzkin path such that the up steps, horizontal steps and down steps are labeled by u colors, h colors and
d colors, respectively. In the literatures, the (1, h, 1)-colored Motzkin paths are called the h-colored Motzkin paths, while
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the (1, h, d)-colored Motzkin paths are called the (h, d)-colored Motzkin paths [7,12,24,35]. It is well known that the set of

Motzkin paths of length n is enumerated by the Motzkin numbers Mn with generating function M(t) =
1−t−

√
1−2t−3t2

2t2
, and

the set of 2-colored Motzkin paths of length n is counted by the Catalan numbers Cn+1. A (u, h, d)-colored partial Motzkin
path, also called a (u, h, d)-colored Motzkin path ending an (n, k), is defined as an initial segment of a (u, h, d)-colored
Motzkin path with terminal point (n, k). Let Mn,k denote the set of all 2-colored Motzkin paths ending at (n, k), where
M0,0 = {ε} and ε is the empty path. Cameron and Nkwanta [6] showed that the (n, k)th entry of Shapiro’s matrix in identity
(1.1) is |Mn,k|, and they presented a combinatorial proof of this identity. Chen et al. [7] findmany extensions of identity (1.1)
by using colored Motzkin paths.

In the next section, by using the method of Merlini and Sprugnoli [19] and the 2-colored Motzkin paths, we obtain a
combinatorial proof of identity (1.1). In addition, we establish a bijectionφ between the setBn,k of partial path pairs of length
n + 1 and distance k + 1 and the set Mn,k of 2-colored Motzkin paths ending at (n, k). Then by considering (1, b, c)-colored
Motzkin paths, we are able to get identities involving the Fibonacci polynomials and the sequence (1, z + b, (z + b)2, . . .).
In Section 3, we consider three kinds of colored Motzkin paths with privileged steps on the x-axis, and we obtain further
identities involving the Lucas polynomials and Chebyshev polynomials.

At the end of this section, we briefly recall the notion of Riordan arrays [8,14,26,29]. An infinite lower triangular matrix
G = (gn,k)n,k∈N is called a Riordan array if its column k has generating function d(t)h(t)k, where d(t) =

∑
∞

n=0dnt
n and

h(t) =
∑

∞

n=1hntn are formal power series with d0 ̸= 0 and h1 ̸= 0. The Riordan array corresponding to the pair d(t) and h(t)
is denoted by (d(t), h(t)), and its generic entry is gn,k = [tn]d(t)h(t)k, where [tn] denotes the coefficient operator.

The set of all proper Riordan arrays forms a group under ordinary row-by-columnproductwith themultiplication identity
(1, t). The product of two Riordan arrays is given by

(d(t), h(t))(g(t), f (t)) = (d(t)g(h(t)), f (h(t))), (1.2)

and the inverse of (d(t), h(t)) is the Riordan array

(d(t), h(t))−1
= (1/d(h̄(t)), h̄(t)), (1.3)

where h̄(t) is compositional inverse of h(t), i.e., h(h̄(t)) = h̄(h(t)) = t .
If (bn)b∈N is any sequence having b(t) =

∑
∞

n=0bnt
n as its generating function, then for every Riordan array (d(t), h(t)) =

(gn,k)n,k∈N
n∑

k=0

gn,kbk = [tn]d(t)b(h(t)). (1.4)

This is called the fundamental theorem of Riordan arrays and it can be rewritten as

(d(t), h(t))b(t) = d(t)b(h(t)). (1.5)

A Riordan array G = (d(t), h(t)) = (gn,k)n,k∈N can be characterized [14,16,23,29] by two sequences, the A-sequence,
A = (an)n∈N and, the Z-sequence, Z = (zn)n∈N such that

gn+1,0 = z0gn,0 + z1gn,1 + z2gn,2 + · · · + zngn,n,
gn+1,k+1 = a0gn,k + a1gn,k+1 + a2gn,k+2 + · · · + an−kgn,n,

for all n, k ≥ 0. If A(t) and Z(t) are the generating functions for the corresponding A- and Z-sequences, respectively, then it
follows that

d(t) =
1

1 − tZ(h(t))
, and h(t) = tA(h(t)). (1.6)

Furthermore, if the inverse of (d(t), h(t)) is (d(t), h(t))−1
= (g(t), f (t)), then we have

f (t) =
t

A(t)
, and g(t) = 1 −

tZ(t)
A(t)

. (1.7)

For example, the Shapiro’s array in identity (1.1) corresponds to the Riordan array B = (C(t)2, tC(t)2), where C(t) =
1−

√
1−4t
2t is the generating function for the Catalan numbers. By the properties of Riordan arrays, the identity (1.1) can be

rewritten as(
C(t)2, tC(t)2

) 1
(1 − t)2

=
1

1 − 4t
. (1.8)

By using Riordan arrays and a particular model of lattice paths, Merlini and Sprugnoli [19] have given both an algebraic and
a combinatorial proof of the following identity (see also [11])(

C(t), tC(t)2
) 1 + t
(1 − t)2

=
1

1 − 4t
. (1.9)

We will present a combinatorial interpretation of the matrix identity (1.8) by using the 2-colored Motzkin paths.
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Fig. 1. The inductive step.

2. Colored Motzkin paths

Throughout this paper, we will consider the classes of (u, h, d)-colored Motzkin paths described by the following points:

1. the path is composed of up steps U = (1, 1), horizontal steps H = (1, 0), and down steps D = (1, −1);
2. up steps occur in u colors, horizontal steps in h colors, and down steps in d colors;
3. paths start at the origin and remain in the first octant, that is, for every point (x, y) in the path, we have 0 ≤ y ≤ x;
4. each path is endowed with weight wk, where k is the vertical distance of its last point from the x-axis, i.e., a path

ending at point (n, k) has weight wk, where {wk}k≥0 is the weight sequence.

2.1. (1, 2, 1) -colored Motzkin paths

Theorem 2.1. Let Rn,k be the number of (1, 2, 1)-colored Motzkin paths ending at (n, k) and having weight wk = k + 1. Then
n∑

k=0

Rn,k(k + 1) = 4n, ∀n ∈ N, (2.1)

that is, the total weight of the paths of length n is 4n.

Proof. We prove the theorem by induction on n. For n = 0 the only existing path reduces to the origin; therefore its weight
is 1 = 40.

Assume that the equation is true for some n ≥ 1, and add a new step in all possible ways to all the paths of length n. These
paths terminate at a point (n, k). In the case k > 0, as we see in Fig. 1, for every path (O, P) of weight p = k + 1 we can:

• add an up step, producing a path of length n + 1 with weight p + 1;
• add a horizontal step, producing a path of length n+1 andweight p; this can be donewith a horizontal step in 2 colors;
• add a down step, producing a path of length n + 1 and weight p − 1.

The total balance is (p + 1) + 2 ∗ p + (p − 1) = 4p. For paths of length n and ending on the x-axis, we only can add an
up or a horizontal step with 2 colors. In the former case the weight grows to 2. In the latter case, adding a horizontal step
the weight does not change remaining at 1, but this can be done in 2 colors, so the total balance is 2 + 2, which is 4p, being
p = 1 the initial weight. In every case, the total weight grows by 4 times, which proves the induction step. □

Theorem 2.2. For n ≥ k ≥ 0, there is a bijection φ between the set Bn,k of partial path pairs of length n + 1 and distance k + 1
and the set Mn,k of (1, 2, 1)-colored Motzkin paths ending at (n, k).

Proof. For a partial path pair (P1, P2) in Bn,k, assume P1 = X0X1X2 · · · Xn and P2 = Y0Y1Y2 · · · Yn with Xi and Yi are N = (0, 1)
or E = (1, 0) for each i except that X0 = N and Y0 = E. We may write this partial path pair as a sequence of step pairs

(P1, P2) = (X0, Y0)(X1, Y1)(X2, Y2) · · · (Xn, Yn).

Define

φ(P1, P2) =

{
ε, if n = 0,
φ(X1, Y1)φ(X2, Y2) · · · φ(Xn, Yn), if n > 0,

where ε is the empty path and for each i > 0

φ(Xi, Yi) =

⎧⎪⎨⎪⎩
U, if (Xi, Yi) = (N, E),
D, if (Xi, Yi) = (E,N),
H1, if (Xi, Yi) = (E, E),
H2, if (Xi, Yi) = (N,N).

Then φ(B0,0) = {ε}, and φ(Bn,k) is the set of all (1, 2, 1)-Motzkin paths ending at (n, k) for n ≥ 1. Obviously, the map φ is a
bijection. □
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2.2. (1, b, c)−colored Motzkin paths

The concepts of Fibonacci polynomials and Lucas polynomials are very old and well known [9,32,33]. The Fibonacci

polynomials fn(z, c) =
∑⌊

n−1
2 ⌋

k=0

(n−k−1
k

)
zn−2k−1ck satisfy the recursion fn(z, c) = zfn−1(z, c) + cfn−2(z, c) for n ≥ 2 with

initial values f0(z, c) = 0 and f1(z, c) = 1. We will consider the special Fibonacci polynomials Fn(z, c) = fn+1(z, −c), their
generating function is

∑
∞

n=0Fn(z, c)t
n

=
1

1−zt+ct2
.

Theorem 2.3. Let Rn,k be the number of (1, b, c)-colored Motzkin paths ending at (n, k) and having weight Fk(z, c). Then
n∑

k=0

Rn,kFk(z, c) = (z + b)n, ∀n ∈ N, (2.2)

that is, the total weight of the paths of length n is (z + b)n.

Proof. Let p be the weight of a path ending at a node (n, k) with k > 0; now p = Fk(z, c), every up step changes the weight
to Fk+1(z, c); every horizontal step leaves the weight unchanged; finally, every down step changes the weight to Fk−1(z, c).
So, the total balance is Fk+1(z, c)+ bFk(z, c)+ cFk−1(z, c) = (zFk(z, c)− cFk−1(z, c))+ bFk(z, c)+ cFk−1(z, c) = (z + b)Fk(z, c),
i.e., the total weight (relative to internal nodes) has increased (z + b) times.

For what concerns the nodes on the x-axis, their weight is initially F0(z, c) = 1, then: the b horizontal steps do not change
this weight, so they contribute with b units to the total balance; one up step contributes with z to the total balance since
every up step changes the weight to F1(z, c) = z. Therefore, the total balance is z + b, it also increases (z + b) times. □

The matrix form of (2.2) is

(Ri,j)i,j≥0 ∗ (Fk(z, c))k = ((z + b)n)n.

Writing the first few rows of (Ri,j)i,j≥0 we obtain⎛⎜⎜⎜⎝
1 0 0 0 0
b 1 0 0 0

b2 + c 2b 1 0 0
b3 + 3bc 3b2 + 2c 3b 1 0

b4 + 6b2c + 2c2 4b3 + 8bc 6b2 + 3c 4b 1

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

1
F1(z, c)
F2(z, c)
F3(z, c)
F4(z, c)

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
1

z + b
(z + b)2

(z + b)3

(z + b)4

⎞⎟⎟⎟⎠ .

By specifying the values of b, c and z in the above matrix identity, we obtain many interesting relations.

Example 2.1. (i) For b = 2, c = 1, we obtain:⎛⎜⎜⎜⎜⎜⎝
1 0 0 0 0 0
2 1 0 0 0 0
5 4 1 0 0 0
14 14 6 1 0 0
42 48 27 8 1 0
132 165 110 44 10 1

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝
1

F1(z, 1)
F2(z, 1)
F3(z, 1)
F4(z, 1)
F5(z, 1)

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
1

z + 2
(z + 2)2

(z + 2)3

(z + 2)4

(z + 2)5

⎞⎟⎟⎟⎟⎟⎠ ,

this is a direct generalization of (1.1).
(ii) For b = 0, c = 1, we obtain:⎛⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0
0 1 0 0 0 0 0
1 0 1 0 0 0 0
0 2 0 1 0 0 0
2 0 3 0 1 0 0
0 5 0 4 0 1 0
5 0 9 0 5 0 1

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝

1
F1(z, 1)
F2(z, 1)
F3(z, 1)
F4(z, 1)
F5(z, 1)
F6(z, 1)

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1
z
z2

z3

z4

z5

z6

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

where the matrix is the aerated Catalan triangle [3,34], and Fn(z, 1) are the special Fibonacci polynomials [9].
(iii) For b = 3, c = 2, z = 3, we obtain the identity (1.3) in Chen [7]:⎛⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
3 1 0 0 0 0
11 6 1 0 0 0
45 31 9 1 0 0
197 156 60 12 1 0
903 785 360 98 15 1

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝
1
3
7
15
31
63

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
1
6
62

63

64

65

⎞⎟⎟⎟⎟⎟⎠ ,

where the first column is the sequence of little Schröder numbers.
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(iv) For c = 1, z = 3, we obtain the identity:⎛⎜⎜⎜⎝
1 0 0 0 0
b 1 0 0 0

b2 + 1 2b 1 0 0
b3 + 3b 3b2 + 2 3b 1 0

b4 + 6b2 + 2 4b3 + 8b 6b2 + 3 4b 1

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

1
3
8
21
55

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
1

b + 3
(b + 3)2

(b + 3)3

(b + 3)4

⎞⎟⎟⎟⎠ .

where the sequence (1, 3, 8, 21, 55, . . .) consists of Fibonacci numbers of even index. A special form of this matrix identity
for b = 2 is obtained in [1].

(v) For c = t, z = t + 1 and b = k − t − 1, we obtain the identity found in [7]:

(Ri,j)i,j≥0

⎛⎜⎜⎜⎜⎝
1

1 + t
1 + t + t2

1 + t + t2 + t3
...

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
1
k
k2

k3
...

⎞⎟⎟⎟⎟⎠ ,

where Ri,j is the number of (1, k − t − 1, t)-colored Motzkin paths ending at (n, k) and having weight Fk(t + 1, t) =

1 + t + · · · + tk.

3. Colored Motzkin paths with privileged steps

In this section, we will consider the classes of (u, h, d)-colored Motzkin paths satisfying the following additional
conditions:

5. each horizontal step on the x-axis in h0 colors;
6. each down step ended on the x-axis in d0 colors;

These paths are said to have privileged steps to the x-axis [17]. In the sequel, these paths will be called (u, h+h0, d+d0)-
colored Motzkin paths, and we will prove our results by an algebraic approach.

3.1. (1, b, c + 2c) -colored Motzkin paths

The Lucas polynomials ln(z, c) =
∑⌊

n
2 ⌋

k=0
n

n−k

(n−k
k

)
zn−2kck satisfy the recursion ln(z, c) = z ln−1(z, c) + c ln−2(z, c) for n ≥ 2

with initial values l0(z, c) = 2 and l1(z, c) = z. We will consider the normalized Lucas polynomials Ln(z, c) = ln(z, −c) for
n ≥ 1 and L0(z, c) = 1, their generating function is

∑
∞

n=0Ln(z, c)t
n

=
1−ct2

1−zt+ct2
.

Theorem 3.1. Let Rn,k be the number of (1, b, c + 2c)-colored Motzkin paths ending at (n, k) and having weight Lk(z, c) for
k ≥ 0, then

n∑
k=1

Rn,kLk(z, c) = (z + b)n, ∀n ∈ N, (3.1)

that is, the total weight of the paths of length n is (z + b)n.

Proof. Analogously the numbers Rn,k satisfy the following recurrence relations,

Rn+1,0 = bRn,0 + 2cRn,1,

Rn+1,k+1 = Rn,k + bRn,k+1 + cRn,k+2.

This implies that the infinite triangle R = (Rn,k)n,k∈N is a Riordan array and the generating functions for the A- and Z-
sequences are A(t) = 1 + bt + ct2 and Z(t) = b + 2ct , respectively. Applying (1.3) and (1.7), we get

R−1
=

(
1 − ct2

1 + bt + ct2
,

t
1 + bt + ct2

)
,

R =

(
1√

(1 − bt)2 − 4ct2
,
1 − bt −

√
(1 − bt)2 − 4ct2

2ct

)
.

Thus, the identity (3.1) can now be written as R ∗ (Lk)k = ((z + b)n)n, which is equivalent to R−1
∗
(
(z + b)k

)
k = (Ln)n,

where L0 = 1, L1 = z, L2 = z2 −2c , and Ln = zLn−1 − cLn−2 for n ≥ 3. This is easier to prove:
(

1−ct2

1+bt+ct2
, t

1+bt+ct2

)
∗

1
1−(z+b)t =

1−ct2

1+bt+ct2
·

1+bt+ct2

1+bt+ct2−(z+b)t
=

1−ct2

1−zt+ct2
, and 1−ct2

1−zt+ct2
=
∑

∞

n=0Ln(z, c)t
n. □
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Example 3.1. For b = 2, c = 1, we obtain the identity:⎛⎜⎜⎜⎜⎜⎝
1 0 0 0 0 0
2 1 0 0 0 0
6 4 1 0 0 0
20 15 6 1 0 0
70 56 28 8 1 0
252 210 120 45 10 1

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝
1

L1(z, 1)
L2(z, 1)
L3(z, 1)
L4(z, 1)
L5(z, 1)

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
1

z + 2
(z + 2)2

(z + 2)3

(z + 2)4

(z + 2)5

⎞⎟⎟⎟⎟⎟⎠ .

The abovematrix is the central binomial triangle [4,15,20]whose first column is the sequence of central binomial coefficients.

Theorem 3.2. Let Rn,k be the number of (1, b, c+2c)-colored Motzkin paths ending at (n, k) and having weight ck +1 for k ≥ 1
and 1 for k = 0, then

Rn,0 +

n∑
k=1

Rn,k(ck + 1) = (b + c + 1)n, ∀n ∈ N, (3.2)

that is, the total weight of the paths of length n is (b + c + 1)n.

Proof. Since 1−ct2

1−(c+1)t+ct2
= 1 +

t
1−t +

ct
1−ct is the generating function of the sequence 1, c + 1, c2 + 1, . . .. Hence, setting

z = c + 1 in Theorem 2.3 we obtain the result. □

Example 3.2. (i) For b = 0, c = 1, we obtain the identity:⎛⎜⎜⎜⎜⎜⎝
1 0 0 0 0 0
0 1 0 0 0 0
2 0 1 0 0 0
0 3 0 1 0 0
6 0 4 0 1 0
0 10 0 5 0 1

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝
1
2
2
2
2
2

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
1
2
22

23

24

25

⎞⎟⎟⎟⎟⎟⎠ .

The above matrix is the aeration of right half of binomial triangle [9,37] whose first column is the aeration of sequence of
central binomial coefficients.

(ii) For b = 1, c = 1, we obtain the identity:⎛⎜⎜⎜⎜⎜⎝
1 0 0 0 0 0
1 1 0 0 0 0
3 2 1 0 0 0
7 6 3 1 0 0
19 16 10 4 1 0
51 45 30 15 5 1

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝
1
2
2
2
2
2

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
1
3
32

33

34

35

⎞⎟⎟⎟⎟⎟⎠ .

The above matrix is the right half of trinomial triangle [18,21] whose first column is the sequence of central trinomial
coefficients.

(iii) For b = 3, c = 2, we obtain the identity:⎛⎜⎜⎜⎜⎜⎝
1 0 0 0 0 0
3 1 0 0 0 0
13 6 1 0 0 0
63 33 9 1 0 0
321 180 62 12 1 0
1683 985 390 100 15 1

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝
1
3
5
9
17
33

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
1
6
62

63

64

65

⎞⎟⎟⎟⎟⎟⎠ .

The above matrix is included in Peart and Shapiro [21], where the first column is the sequence of central Delannoy
numbers [31].

Theorem 3.3. Let Rn,k be the number of (1, b, e2 + 2e2)-colored Motzkin paths ending at (n, k) and having weight 2ek for k ≥ 1
and 1 for k = 0, then

Rn,0 +

n∑
k=1

Rn,k(2ek) = (b + 2e)n, ∀n ∈ N, (3.3)

that is, the total weight of the paths of length n is (b + 2e)n.
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Proof. Since 1−e2t2

1−2et+e2t2
=

1+et
1−et is the generating function of the sequence 1, 2e, 2e2, . . .. Hence, substituting c = e2 and

z = 2e in Theorem 2.3 yields the result. □

Example 3.3. (i) For b = 4, e = 2, we obtain the identity:⎛⎜⎜⎜⎜⎜⎝
1 0 0 0 0 0
4 1 0 0 0 0
24 8 1 0 0 0
160 60 12 1 0 0
1120 448 112 16 1 0
8064 3360 960 180 20 1

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝
1
4
8
16
32
64

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
1
8
82

83

84

85

⎞⎟⎟⎟⎟⎟⎠ .

The above matrix is A128417 in [28].
(ii) For b = 1, e = 2, we obtain the identity:⎛⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
1 1 0 0 0 0
9 2 1 0 0 0
25 15 3 1 0 0
145 52 22 4 1 0
561 285 90 30 5 1

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝
1
4
8
16
32
64

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
1
5
52

53

54

55

⎞⎟⎟⎟⎟⎟⎠ .

The first column of the above matrix is A084605 in [28].

3.2. (1, b + (b + e), c)-colored Motzkin paths

The Chebyshev polynomials havemany beautiful properties and countless applications [10,13]. The Chebyshev polynomi-
als of the first kind are defined by T0(z) = 1, T1(z) = z, and for n ≥ 2, Tn(z) = 2zTn−1(z)−Tn−2(z). Their generating function is∑

∞

n=0Tn(z)t
n

=
1−zt

1−2zt+t2
. The Chebyshev polynomials of the second kind differ only in the initial conditions. They are defined

by U0(z) = 1, U1(z) = 2z, and for n ≥ 2, Un(z) = 2zUn−1(z) − Un−2(z). Their generating function is
∑

∞

n=0Un(z)tn =
1

1−2zt+t2
.

The third and fourth kinds of Chebyshev polynomials are defined by generating functions
∑

∞

n=0Vn(z)tn =
1−t

1−2zt+t2
, and∑

∞

n=0Wn(z)tn =
1+t

1−2zt+t2
, respectively (see [2]).

Now, we define the generalized Chebyshev polynomials by generating function
∞∑
n=0

gn(z, c, e)tn =
1 − et

1 − zt + ct2
.

Then they satisfy the recursion gn(z, c, e) = zgn−1(z, c, e) − cgn−2(z, c, e) with initial conditions g0(z, c, e) = 1 and
g1(z, c, e) = z − e.

Theorem 3.4. Let Rn,k be the number of (1, b+ (b+ e), c)-colored Motzkin paths ending at (n, k) and having weight gk(z, c, e).
Then

n∑
k=0

Rn,kgk(z, c, e) = (z + b)n, ∀n ∈ N, (3.4)

that is, the total weight of the paths of length n is (z + b)n.

Proof. The numbers Rn,k satisfy the following recurrence relations,

Rn+1,0 = (b + e)Rn,0 + cRn,1,

Rn+1,k+1 = Rn,k + bRn,k+1 + cRn,k+2.

Hence the infinite triangle R = (Rn,k)n,k∈N is a Riordan array and the generating functions for the A- and Z-sequences are
A(t) = 1 + bt + ct2 and Z(t) = b + e + ct , respectively. Using (1.3) and (1.7), we obtain

R−1
=

(
1 − et

1 + bt + ct2
,

t
1 + bt + ct2

)
,

R =

(
2

1 − (2e + b)t +

√
(1 − bt)2 − 4ct2

,
1 − bt −

√
(1 − bt)2 − 4ct2

2ct

)
.

Thus, the identity (3.3) can now be written as R ∗ (gk(z, c, e))k = ((b + z)n)n, which is equivalent to R−1
∗
(
(b + z)k

)
k =

(gn(z, c, e))n. This is easier to prove:
(

1−et
1+bt+ct2

, t
1+bt+ct2

)
∗

1
1−(b+z)t =

1−et
1+bt+ct2

·
1+bt+ct2

1+bt+ct2−(b+z)t
=

1−et
1−zt+ct2

. □
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Example 3.4. (i) For b = 2, c = 1, e = 1, and z = 2x, we obtain the identity:⎛⎜⎜⎜⎜⎜⎝
1 0 0 0 0 0
3 1 0 0 0 0
10 5 1 0 0 0
35 21 7 1 0 0
126 84 36 9 1 0
462 330 156 55 11 1

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝
1

V1(x)
V2(x)
V3(x)
V4(x)
V5(x)

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
1

2x + 2
(2x + 2)2

(2x + 2)3

(2x + 2)4

(2x + 2)5

⎞⎟⎟⎟⎟⎟⎠ ,

where Vn(x) are the modified Chebyshev polynomials of the third kind. The above matrix is mentioned in [4,20].
(ii) For b = 3, c = 2, e = −2, z = 3, we obtain the identity:⎛⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
1 1 0 0 0 0
3 4 1 0 0 0
11 17 7 1 0 0
45 76 40 10 1 0
197 353 216 72 13 1

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝
1
5
13
29
61
125

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
1
6
62

63

64

65

⎞⎟⎟⎟⎟⎟⎠ ,

where g0 = 1, g1 = 5, gk = 3gk−1 − 2gk−2 for k ≥ 2. The above matrix is mentioned in [9], and its first column is the
sequence of little Schröder numbers [30].

(iii) For b = 3, c = 2, e = −1, z = 3, we obtain the identity:⎛⎜⎜⎜⎝
1 0 0 0 0
2 1 0 0 0
6 5 1 0 0
22 23 8 1 0
90 107 49 11 1

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

1
5
13
29
61

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
1
7
72

73

74

⎞⎟⎟⎟⎠ ,

where g0 = 1, g1 = 5, gk = 4gk−1 −2gk−2 for k ≥ 2. The abovematrix is A133367 in [28], and its first column is the sequence
of large Schröder numbers [30]. A triple factorization of this matrix was found in [22].

(iv) For c = 1, e = 1, z = 3, we obtain the identity:⎛⎜⎝
1 0 0 0

b + 1 1 0 0
b2 + 2b + 2 2b + 1 1 0

b3 + 3b2 + 6b + 3 3b2 + 3b + 3 3b + 1 1

⎞⎟⎠
⎛⎜⎝ 1

2
5
13

⎞⎟⎠ =

⎛⎜⎝
1

b + 3
(b + 3)2

(b + 3)3

⎞⎟⎠ .

where g0 = 1, g1 = 2, gk = 3gk−1 − gk−2 for k ≥ 2, are Fibonacci numbers of odd index.

Corollary 3.5. Let Rn,k be the number of (1, b + (b + d), r2)-colored Motzkin paths ending at (n, k) and having weight
(k + 1)rk − kdrk−1, then

n∑
k=0

Rn,k((k + 1)rk − kdrk−1) = (b + 2r)n, ∀n ∈ N, (3.5)

that is, the total weight of the paths of length n is (b + 2r)n.

Proof. By writing
∞∑
k=0

gk(2r, r2, d)tk =
1 − dt

1 − 2rt + r2t2
=

1 − dt
(1 − rt)2

,

we see that gk(2r, r2, d) = (k + 1)rk − kdrk−1. Thus, setting c = r2 and z = 2r in Theorem 3.4 gives us the result. □

For example, in the case b = 4, d = r = 2, we obtain the identity:⎛⎜⎜⎜⎜⎜⎝
1 0 0 0 0 0
6 1 0 0 0 0
40 10 1 0 0 0
280 84 14 1 0 0
2016 672 144 18 1 0
14784 5280 1320 220 22 1

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝
1
2
4
8
16
32

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
1
8
82

83

84

85

⎞⎟⎟⎟⎟⎟⎠ .

The first column of the above matrix is A069720 in [28].
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3.3. (a, b + (b + as), a) -colored Motzkin paths

The special generalized Chebyshev polynomials are defined as Gk(z, s) = gk(2z, 1, s), and the generating function is∑
∞

n=0Gn(z, s)tn =
1−st

1−2zt+t2
.

Theorem 3.6. Let Rn,k be the number of (a, b + (b + as), a)-colored Motzkin paths ending at (n, k) and having weight Gk(z, s).
Then

n∑
k=0

Rn,kGk(z, s) = (2az + b)n, ∀n ∈ N, (3.6)

that is, the total weight of the paths of length n is (2az + b)n.

Proof. The last step of any path is one of step set {U,H,D}. Therefore, the numbers Rn,k satisfy the following recurrence
relations,

Rn+1,0 = (b + as)Rn,0 + aRn,1,

Rn+1,k+1 = aRn,k + bRn,k+1 + aRn,k+2.

This implies that the infinite triangle R = (Rn,k)n,k∈N is a Riordan array and the generating functions for the A- and Z-
sequences are A(t) = a + bt + at2 and Z(t) = b + as + at , respectively. Using (1.3) and (1.7), we obtain

R−1
=

(
a − ast

a + bt + at2
,

t
a + bt + at2

)
,

R =

(
2

1 − (2as + b)t +

√
(1 − bt)2 − 4a2t2

,
1 − bt −

√
(1 − bt)2 − 4a2t2

2at

)
.

Thus, the identity (3.1) can now be written as R∗ (Gk(z, s))k = ((b + 2az)n)n, which is equivalent to R−1
∗
(
(b + 2az)k

)
k =

(Gn(z, s))n. This is easier to prove:
(

a−ast
a+bt+at2

, t
a+bt+at2

)
∗

1
1−(b+2az)t =

a−ast
a+bt+at2

·
a+bt+at2

a+bt+at2−(b+2az)t
=

1−st
1−2zt+t2

. □

For s = 1 − r and z = 1, we obtain Theorem 5.1 of Merlini and Sprugnoli [19]. For s = 1 −
r
q and z = 1, we obtain

Theorem 5.4 of Merlini and Sprugnoli [19].
For a = 1, b = 2, s = −1, we obtain Theorem 4.2 of [19]⎛⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
1 1 0 0 0 0
2 3 1 0 0 0
5 9 5 1 0 0
14 28 20 7 1 0
42 90 75 35 9 1

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝
1

W1(z)
W2(z)
W3(z)
W4(z)
W5(z)

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
1

2z + 2
(2z + 2)2

(2z + 2)3

(2z + 2)4

(2z + 2)5

⎞⎟⎟⎟⎟⎟⎠ ,

where (Wn(x))n is the sequence of modified Chebyshev polynomials of the fourth kind.

Corollary 3.7. Let Rn,k be the number of (a, b + (b + az), a)-colored Motzkin paths ending at (n, k) and having weight Tk(z),
where {Tk(z)}k≥0 is the sequence of Chebyshev polynomials of the first kind with the generating function 1−zt

1−2zt+t2
. Then

n∑
k=0

Rn,kTk(z) = (2az + b)n, ∀n ∈ N, (3.7)

that is, the total weight of the paths of length n is (2az + b)n.

Proof. The result follows by setting s = z in Theorem 3.6. □

Corollary 3.8. Let Rn,k be the number of (a, b, a)-colored Motzkin paths ending at (n, k) and having weight Uk(z). Then
n∑

k=0

Rn,kUk(z) = (2az + b)n, ∀n ∈ N, (3.8)

that is, the total weight of the paths of length n is (2az + b)n.

Proof. The result follows by setting s = 0 in Theorem 3.6. □
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Although we know that the identity (3.8) is true, it would be nice to be able to write it explicitly. Fortunately, this

can be achieved by first producing a closed formula for Rn,k. Since R =

(
1−bt−

√
(1−bt)2−4a2t2

2a2t2
,

1−bt−
√

(1−bt)2−4a2t2

2at

)
and

R−1
=

(
a

a+bt+at2
, t

a+bt+at2

)
, by the Lagrange Inversion formula, we have

Rn,k = [tn]
1 − bt −

√
(1 − bt)2 − 4a2t2

2a2t2

(
1 − bt −

√
(1 − bt)2 − 4a2t2

2at

)k

=
1
a
[tn+1

]

(
1 − bt −

√
(1 − bt)2 − 4a2t2

2at

)k+1

=
1
a
[tn−k

]
k + 1
n + 1

(a + bt + at2)n+1

= [tn−k
]
k + 1
n + 1

2n+2∑
m=0

⌊
m
2 ⌋∑

j=0

(
n + 1

j

)(
j

m − j

)
an+m−2jb2j−mtm

=
k + 1
n + 1

⌊
n−k
2 ⌋∑

j=0

(
n + 1

j

)(
j

n − k − j

)
a2n−k−2jb2j−n+k.

Thus, we obtain the following explicit form of the identity:

n∑
k=0

⌊
n−k
2 ⌋∑

j=0

k + 1
n + 1

(
n + 1

j

)(
j

n − k − j

)
a2n−k−2jb2j−n+kUk(z) = (2az + b)n. (3.9)

In terms of matrices, we have

(Ri,j)i,j≥0 ∗ (Uk(z))k = ((2az + b)n)n.

Writing the first few rows of (Ri,j)i,j≥0, we obtain⎛⎜⎜⎜⎝
1 0 0 0 0
b a 0 0 0

a2 + b2 2ab a2 0 0
b3 + 3a2b 3ab2 + 2a3 3a2b a3 0

b4 + 6a2b2 + 2a4 4ab3 + 8a2b 6a2b2 + 3a4 4a3b a4

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

1
U1(z)
U2(z)
U3(z)
U4(z)

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
1

2az + b
(2az + b)2

(2az + b)3

(2az + b)4

⎞⎟⎟⎟⎠ .

If z = 1, we obtain⎛⎜⎜⎜⎝
1 0 0 0 0
b a 0 0 0

a2 + b2 2ab a2 0 0
b3 + 3a2b 3ab2 + 2a3 3a2b a3 0

b4 + 6a2b2 + 2a4 4ab3 + 8a2b 6a2b2 + 3a4 4a3b a4

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝
1
2
3
4
5

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
1

2a + b
(2a + b)2

(2a + b)3

(2a + b)4

⎞⎟⎟⎟⎠ .

If a = b = z = 1, then we obtain the identities (1.5) of Chen et al. [7],⎛⎜⎜⎜⎜⎜⎝
1 0 0 0 0 0
1 1 0 0 0 0
2 2 1 0 0 0
4 5 3 1 0 0
9 12 9 4 1 0
21 30 25 14 5 1

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝
1
2
3
4
5
6

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
1
3
32

33

34

35

⎞⎟⎟⎟⎟⎟⎠ ,

where the first column is the sequence of Motzkin numbers.
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