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a b s t r a c t

This paper is concerned with the asymptotic spreading of a predator–prey system,
which formulates that the predator invades the habitat of the prey. By constructing
auxiliary equation, we obtain the speed of asymptotic spreading of the predator.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

In population dynamics, one important case is to model the recolonization by lupins of Mount St Helens’
north slope (see Fagan and Bishop [1], Owen and Lewis [2]), which is often formulated by a predator–prey
system. In the literature, one basic topic is to investigate the invasion process of the predator when the prey
is the aboriginal while the predator is the invader. In the past three decades, much attention has been paid
to the description of the process by traveling wave solutions.

To formulate the invasion process when the initial habitat size of the invader is finite, asymptotic spreading
is another very useful index [3]. Of course, the asymptotic spreading and traveling wave solutions have
relevance, e.g., in some systems, it has been proved that the speed of asymptotic spreading equals to the
minimal wave speed of traveling wave solutions [3–7]. But in some reducible and nonmonotone systems,
different species may have different speeds of asymptotic spreading while the minimal wave speed of a kind
of traveling wave solutions is unique, e.g., the classical Lotka–Volterra competition system [8,9].

When the asymptotic spreading of predator–prey systems is concerned, Lin [10] and Pan [11] investigated
the following predator–prey system,⎧⎪⎨⎪⎩

∂u1(x, t)
∂t

= ∆u1(x, t) + u1(x, t) [1 − u1(x, t) − bu2(x, t)] ,

∂u2(x, t)
∂t

= d∆u2(x, t) + ru2(x, t) [1 + fu1(x, t) − u2(x, t)] ,

(1.1)
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in which x ∈ R, t > 0 and all the parameters are positive. They estimated the invasion speeds of u1, u2
when both u1, u2 are invaders, which may be different. It should be noted that the intrinsic growth rate
of u2 is also positive, and such an assumption is not precise in some biological processes. Moreover, Wang
et al. [12] studied the spreading phenomena of (1.1) with free boundary and obtained a spreading–vanishing
dichotomy.

In this paper, we investigate the following predator–prey system:⎧⎪⎨⎪⎩
∂u1(x, t)

∂t
= ∆u1(x, t) + u1(x, t) [1 − u1(x, t) − bu2(x, t)] ,

∂u2(x, t)
∂t

= d∆u2(x, t) + ru2(x, t) [−1 + fu1(x, t) − u2(x, t)] ,

(1.2)

where x ∈ R, t > 0 and all the parameters are positive. In Lin [13], the minimal wave speed of traveling
wave solution is obtained, here a traveling wave solution formulates the predator invades the habitat of the
prey and they coexist eventually, in which 2

√
dr(f − 1) is the minimal wave speed. In what follows, we shall

consider the similar biological process by the speed of asymptotic spreading.
From the viewpoint of monotone dynamical systems, the predator–prey system does not generate

monotone semiflows. Therefore, some classical conclusions mentioned above cannot be applied. Furthermore,
in [10,11], the positivity of the intrinsic growth rate plays an important role in constructing some auxiliary
equations which admit comparison principle. In this paper, the negative intrinsic growth rate of the predator
leads to the difficulty in constructing auxiliary equations similar to those in [10,11]. Therefore, some new
techniques are necessary.

2. Main results

To estimate the invasion speed of u2 in (1.2), we consider (1.2) with the following initial value condition:

u1(x, 0) = 1, u2(x, 0) = u(x), x ∈ R, (2.1)

where u(x) is a continuous function admitting nonempty compact support and satisfying

0 ≤ u(x) ≤ f − 1, x ∈ R.

Clearly, the above initial value condition implies that u1 is the aboriginal while u2 is the invader with finite
size of initial habitat. The following is our main result.

Theorem 2.1. Assume that b(f − 1) > 0 holds. Let c∗ = 2
√

dr(f − 1). If (u1(x, t), u2(x, t)) is defined by
(1.2) with (2.1), then

lim
t→∞,|x|<(c∗−θ)t

u2(x, t) = f − 1
bf + 1 , lim

t→∞,|x|>(c∗+θ)t
u2(x, t) = 0 (2.2)

for any θ ∈ (0, c∗).

Remark 2.2. This implies that c∗ is the rough speed in which the predator invades the habitat of the
prey. Moreover, if b(f − 1) > 0, then (1.2) admits a spatially homogeneous positive steady state which is
asymptotic stable.

Proof. By the basic theory of reaction–diffusion systems, we see

u1(x, t) ∈ (0, 1), u2(x, t) ∈ (0, f − 1), u1(x, t) ∈ (a, 1), x ∈ R, t > 0,
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where a = 1 − b(f − 1). Let w1 = 1 − u1, w2 = u2, then⎧⎪⎨⎪⎩
∂w1(x, t)

∂t
= ∆w1(x, t) + [1 − w1(x, t)] [bw2(x, t) − w1(x, t)] ,

∂w2(x, t)
∂t

= d∆w2(x, t) + rw2(x, t)[f − 1 − w2(x, t) − fw1(x, t)],

and

w2(x, t) ∈ (0, f − 1), w1(x, t) ∈ (0, b(f − 1)), 1 − w1(x, t) ∈ (a, 1), x ∈ R, t > 0.

Moreover, by the classical theory of parabolic systems,

∂w1(x, t)
∂t

,
∂w1(x, t)

∂x
,

∂w2(x, t)
∂t

,
∂w2(x, t)

∂x

are uniformly bounded if t > 1, and we only consider t > 1 since the asymptotic spreading involves long
time behavior.

For any given bounded and continuous function v(x), we define

(T (t)v)(x) = e−at

√
4πt

∫
R

e
−y2

4t v(x − y)dy, t > 0

then T (t), t > 0 is an analytic semigroup.
From the positivity of w1(x, t), w2(x, t),,

∂w1(x, t)
∂t

= ∆w1(x, t) + bw2(x, t) − bw2(x, t)w1(x, t) − w1(x, t)[1 − w1(x, t)]

≤ ∆w1(x, t) + bw2(x, t) − aw1(x, t).

Utilizing the theory of semigroup, we have

w1(x, t) ≤ T (t)w1(x, 0) + b

∫ t

0
(T (t − s)w2(s, ·))ds(x)

= b

∫ t

0
(T (t − s)w2(·, s))ds(x)

since w1(x, 0) ≡ 0, x ∈ R.

With the estimation, w2(x, t) satisfies

∂w2(x, t)
∂t

= d∆w2(x, t) + rw2(x, t) [f − 1 − fw1(x, t) − w2(x, t)]

≥ d∆w2(x, t) + rw2(x, t) [f − 1 − A(x, t) − w2(x, t)] ,

where

A(x, t) = fb

∫ t

0
(T (t − s)w2(·, s))ds(x)

and ∫ t

0
(T (t − s)w2(·, s))ds(x) =

∫ t

0
e−a(t−s)

[
1√

4π(t − s)

∫
R

e
−y2

4(t−s) w2(x − y, s)dy

]
ds.

Note that 1√
4πt

∫
R e

−y2
4t dy = 1 for any t > 0 and w2 is bounded and

∫ ∞
0 e−asds = 1/a, then for any ϵ > 0

small enough, there exists T = T (ϵ) > 0 such that

A(x, t) <
ϵ

4 + bf

∫ t

t−T

(T (t − s)w2(·, s))ds(x)
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for any t > T + 1, x ∈ R. Further applying the uniform convergence, we see that

A(x, t) <
ϵ

2 + bf

∫ t

t−T

e−a(t−s)

[
1√

4π(t − s)

∫ R

−R

e
−y2

4(t−s) w2(x − y, s)dy

]
ds

for some R > 0 large enough (clearly, R is uniform in t > T + 1, x ∈ R). With these estimations, w2(x, t)
satisfies

∂w2(x, t)
∂t

≥ d∆w2(x, t) + rw2(x, t)

×

[
f − 1 − ϵ

2 − bf

∫ t

t−T

e−a(t−s)

[
1√

4π(t − s)

∫ R

−R

e
−y2

4(t−s) w2(x − y, s)dy

]
ds − w2(x, t)

]
for any t > T + 1, x ∈ R. Unfortunately, the above equation does not admit a comparison principle. To
estimate the property of w2(x, t), we need further analysis.

If

bf

∫ t

t−T

e−a(t−s)

[
1√

4π(t − s)

∫ R

−R

e
−y2

4(t−s) w2(x − y, s)dy

]
ds ≤ ϵ

2 ,

then w2(x, t) satisfies

∂w2(x, t)
∂t

≥ d∆w2(x, t) + rw2(x, t) [f − 1 − ϵ − w2(x, t)] .

Otherwise, let s′ = s′(ϵ) > 0 such that

bf(f − 1)
∫ t

t−s′
e−a(t−s)

[
1√

4π(t − s)

∫ R

−R

e
−y2

4(t−s) dy

]
ds = ϵ

4 .

Then,

bf

∫ t−s′

t−T

e−a(t−s)

[
1√

4π(t − s)

∫ R

−R

e
−y2

4(t−s) w2(x − y, s)dy

]
ds >

ϵ

4 ,

and the uniform continuity of w2(x, t) implies that there exist a constant ε = ε(ϵ) > 0 and

y ∈ [x − R, x + R], s ∈ [t − T, t − s′], t > T + 1

such that

w2(y, s) > 2ε.

Again, by the uniform continuity of w2(x, t), there exists δ ∈ (0, 1] such that

w2(z, s) > ε, −δ < z − y < δ.

Consider the following initial value problem:⎧⎨⎩
∂w(x, t)

∂t
= d∆w(x, t) + rw(x, t) [−1 − w(x, t)] ,

w(x, 0) = w(x),

where w(x) is a continuous function satisfying
(w1) w(x) = ε, |x| ≤ δ

2 ,

(w2) w(x) = 0, |x| ≥ δ,

(w3) if x ∈ [ δ
2 , δ], then w(x) is decreasing, if x ∈ [−δ, − δ

2 ], then w(x) is increasing.
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Then, w(x, t) > 0 for any x ∈ R, t > 0. Let

η = min
t∈[s′,T ],|x|<R+1

w(x, t),

then η > 0. What we have done implies that if

bf

∫ t

t−T

e−a(t−s)

[
1√

4π(t − s)

∫ R

−R

e
−y2

4(t−s) w2(x − y, s)dy

]
ds >

ϵ

2 ,

then w2(x, t) ≥ η such that

A(x, t) ≤ f ≤ f

η
w2(x, t),

and so
∂w2(x, t)

∂t
≥ d∆w2(x, t) + rw2(x, t) [f − 1 − ϵ − (1 + f/η)w2(x, t)]

for all x ∈ R, t > T + 1.

By the conclusion in [3], we obtain

lim inf
t→∞

inf
|x|<ct

w2(x, t) > 0

where c < 2
√

dr(f − 1 − ϵ). By the arbitrary of ϵ > 0 and u2 = w2, we see that

lim inf
t→∞

inf
|x|<(c∗−θ)t

u2(x, t) > 0

for any given θ ∈ (0, c∗), which further indicates that

lim
t→∞,|x|<(c∗−θ)t

u2(x, t) = f − 1
bf + 1

by the stability of the positive steady state.
Moreover, since

∂w2(x, t)
∂t

≤ d∆w2(x, t) + w2(x, t)[f − 1 − w2(x, t)]

for x ∈ R, t > 0. Then, [3] implies that

lim
t→∞,|x|>(c∗+θ)t

u2(x, t) = 0

for any given θ > 0. The proof is complete. □
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