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Abstract
In this paper, we consider the inverse problem of identifying the unknown source for
the modified Helmholtz equation. We propose the Landweber iterative regularization
method to solve this problem and obtain the regularization solution. Under the a
priori and a posteriori regularization parameters choice rules, we all obtain the Hölder
type error estimates between the exact solution and the regularization solutions.
Several numerical examples are also provided to show that the Landweber iterative
method works well for solving this problem.
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1 Introduction
The modified Helmholtz equation or the Yukawa equation which is pointed out in [] ap-
pears in implicit matching schemes for the heat equation, in Debye-Huckel theory, and in
the linearization of the Poisson-Boltzmann equation. The underlying free-space Green’s
function is usually referred to as the Yukawa potential in nuclear physics. In physics, chem-
istry, and biology, when Coulomb forces are damped by screening effects, this Green’s
function is also known as the screened Coulomb potential. Especially in microstretch elas-
tic materials [] and in the thermoelastodynamics of microstretch bodies [, ], the modi-
fied Helmholtz equation has been applied widely. In recent years, there are much research
results on the inverse problem of the modified Helmholtz equation. The Cauchy problems
associated with the modified Helmholtz equation have been studied by using different nu-
merical methods, such as the Landweber method with boundary element method and the
conjugate gradient method [], the method of fundamental solutions (MFS) [], the it-
eration regularization method [], Tikhonov type regularization [], Quasi-reversibility
and truncation methods [–], Quasi-boundary regularization [, ], and so on. In-
verse source problems arise in many branches of science and engineering, for example,
heat conduction, crack identification, electromagnetic theory, geophysical prospecting,
and pollutant detection. For the heat source identification, there have been a large num-
ber of research results for different forms of heat sources [–], and so on. But to the
best of the authors’ knowledge, there were few papers for identifying the unknown source
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on the modified Helmholtz equation. In [, ], the authors used the quasi-reversibility
method to identify the unknown source of the modified Helmholtz equation on half strip
region and half infinite region. In [], the authors used the simplified Tikhonov regular-
ization method to identify the unknown source for the modified Helmholtz equation. In
[, ], the authors used the Tikhonov regularization method to identify the unknown
source for the modified Helmholtz equation. But in [–], the regularization parame-
ters are selected by the a priori rule. There is a defect for any a priori method, i.e., the a
priori choice of the regularization parameter depends on the a priori bound E of the un-
known solution. However, the a priori bound E cannot be known exactly in practice, and
using a wrong constant E may lead to a badly regularized solution.

In this paper, we use the Landweber iterative method to identify the unknown source
of the modified Helmholtz equation. The Landweber iterative method is a very popular
algorithm and regularization method in inverse problem research. In [], the authors
used the method of iterative method to solve linear inverse problems. Under the posterior
regularization parameter choice rule, the convergence order of the regularization solution
is obtained. In [], the authors used the iterative method to solve a nonlinear problems.
We not only give the a priori choice of the regularization parameter, but also give the a
posteriori choice of the regularization parameter which depends only on the measurable
data. Moreover, we compare the effectiveness between the a posteriori choice rule and the
a priori choice rule. To the best of the authors’ knowledge, there are few papers choosing
the regularization parameter by the a posteriori rule for this problem. We consider the
modified Helmholtz equation as follows:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

�u(x, y) – ku(x, y) = f (x),  < x ≤ π ,  < y < +∞,

u(, y) = u(π , y) = ,  ≤ y < +∞,

u(x, ) = , u(x, y)|y→∞ is bounded,  ≤ x ≤ π ,

u(x, ) = g(x),  ≤ x ≤ π ,

(.)

where g(x) is given function in L(,π ), and f (x) is an unknown source. The constant k is
the wave number. We use the additional condition u(x, ) = g(x) to determine the unknown
source f (x). Physically, g(x) can be measured, there will be measurement errors, and we
assume the function gδ(x) ∈ L(,π ) as the measurable data which satisfies

∥
∥g – gδ

∥
∥

L(,π ) ≤ δ, (.)

where the constant δ >  represents a bound on the measurement error, ‖ · ‖ is L(,π )
norm and δ is a noise level.

The remainder of the paper is organized as follows. In Section , we formulate some pre-
liminary results. In Section , we present the Landweber iterative regularization method.
The convergence estimates under an a priori and an a posteriori choice rules will be given
in Section . Numerical examples are given to show the effectiveness of our method in
Section . We give a brief conclusion in Section .

2 Some auxiliary results
In this section, we give some auxiliary results, which are very useful for our main conclu-
sion.
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Lemma . For  ≤ h ≤  and n ≥ , the following inequalities hold:

( – h)nh ≤ 
n + 

,

 – ( – h)n

h
≤ n.

(.)

Proof Denote ρ(h) = ( – h)nh and β(h) =  – ( – h)n – nh, then

ρ ′(h) = –n( – h)n–h + ( – h)n,

ρ ′(h) = –n( – h)n–h + ( – h)n,

β ′(h) = n( – h)n– – n.

Setting ρ ′(h) = , we have

h =


n + 
.

Note that ρ() = ρ() = , ρ(h) has a unique maximal value at h = 
n+ . Therefore,

ρ(h) = ( – h)nh ≤ 
n + 

.

Because β ′(h) ≤  and β() = , we can easily obtain β(h) ≤ .
This ends the proof of the Lemma .. �

Lemma . For  < h ≤ ,  < α ≤  and n ≥ , Lemma . can be strengthened as the
following inequalities:

( – h)nhα ≤ (n + )–α ,

 – ( – h)n

hα
≤ nα .

Proof In fact, using the established results (.), we can get

( – h)nhα ≤ [
( – h)nh

]α ≤ (n + )–α ,

 – ( – h)n

hα
≤

[
 – ( – h)n

h

]α

≤ nα . �

Lemma . For t ≥ , we have


 – e–

√
t
≤ . (.)

Lemma . For t ≥ , we have


t

≤  – e–
√

t

t
≤ 

t
. (.)
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3 Landweber iterative regularization method
By the method of separation of variables, the solution of problem (.) is given by

u(x, y) = –
∞∑

n=

 – e–
√

n+ky

n + k fnXn,

where fn = (f , Xn) and Xn =
√


π

sin(nx) (n = , , . . .) is a set of standard orthogonal bases
on the space interval L(,π ).

Using u(x, ) = g(x), we obtain

g(x) = –
∞∑

n=

 – e–
√

n+k

n + k fnXn =
∞∑

n=

gnXn, (.)

where gn = (g, Xn).
Define operator K : f → g , then

g(x) = Kf (x) = –
∞∑

n=

 – e–
√

n+k

n + k fnXn. (.)

The operator K is a linear self adjoint compact operator, and its singular value is

μn = –
 – e–

√
n+k

n + k ; (.)

we have

gn = –fn
 – e–

√
n+k

n + k . (.)

Hence we obtain

fn = –gn
n + k

 – e–
√

n+k
(.)

and

f (x) =
∞∑

n=

fnXn = –
∞∑

n=

n + k

 – e–
√

n+k
gnXn =

∞∑

n=

μ–
n gnXn. (.)

When n → ∞, μ–
n = o(n), the exact data function g(x) must be at least two times lower,

but the gδ(x), which belongs to L(,π ), does not necessarily have the same negative power
drop of . So problem (.) is ill-posed. Assume for the unknown source f (x) there exists
an a priori bound as follows:

∥
∥f (·)∥∥p ≤ E, p > , (.)

where E >  is a constant and ‖f (·)‖p is defined as follows:

∥
∥f (·)∥∥p =

( ∞∑

n=

(
n + k)p∣∣(f , Xn)

∣
∣

) 


. (.)
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Theorem . If ‖f (·)‖p ≤ E, p > , then

∥
∥f (·)∥∥ ≤ CE


p+ ‖g‖ p

p+ , (.)

where C := 
p

p+ .

Proof From (.), (.), Lemma . and the Hölder inequality, we get

∥
∥f (·)∥∥ =

∥
∥
∥
∥
∥

∞∑

n=

fn

∥
∥
∥
∥
∥



=
∞∑

n=

g
n

(
n + k

 – e–
√

n+k

)

=
∞∑

n=

g


p+
n

(
n + k

 – e–
√

n+k

)

g
p

p+
n .

≤
( ∞∑

n=

g
n

(
n + k

 – e–
√

n+k

)p+
) 

p+
( ∞∑

n=

gn

) p
p+

≤
( ∞∑

n=

f 
n
(
n + k)p

(


 – e–
√

n+k

)p
) 

p+
( ∞∑

n=

gn

) p
p+

≤ C
 E


p+ ‖g‖ p

p+ ,

where C := 
p

p+ .
We complete the proof of Theorem .. �

Now, we use the Landweber iterative method to obtain the regularization solution for
(.) and rewrite the equation Kf = g in the form f = (I – aK∗K)f + aK∗g for some a > .
Iterate this equation, i.e.,

f (x) := , f m(x) =
(
I – aK∗K

)
f m–(x) + aK∗g(x), m = , , , . . . , (.)

where m is iterative step number, and is selected regularization parameter. a is called re-
laxation factor, and satisfies  < a < 

‖K‖ . For K being a self adjoint operator, we obtain

f m,δ(x) = a
m–∑

k=

(
I – aK)kKgδ(x). (.)

Using (.), we get

f m,δ(x) = Rmgδ(x) =
∞∑

n=

 – ( – aμ
n)m

μn
gδ

nXn(x), (.)

where gδ
n = (gδ , Xn(x)).
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4 Error estimate under two parameters choice rules
In this section, we will give two convergence estimates under an a priori regularization
parameter choice rule and an a posteriori regularization parameter choice rule, respec-
tively.

4.1 An a priori regularization parameter choice rule
Theorem . Let f (x) given by (.) be the exact solution of problem (.). Let f m,δ(x) given
by (.) be the regularization Landweber iterative approximation solution. Choosing the
regularization parameter m = [z], where

z =
(

E
δ

) 
p+

, (.)

then we obtain the following error estimate:

∥
∥f m,δ(·) – f (·)∥∥ ≤ CE


p+ δ

p
p+ , (.)

where [z] denotes the largest integer less than or equal to z, and C =
√

a + ( p
a )

p
 is a con-

stant dependent on a, p.

Proof Due to the triangle inequality, we know

∥
∥f m,δ(·) – f (·)∥∥

=

∥
∥
∥
∥
∥

∞∑

n=

 – ( – aμ
n)m

μn
gδ

nXn(x) –
∞∑

n=

μ–
n gnXn(x)

∥
∥
∥
∥
∥

≤
∥
∥
∥
∥
∥

∞∑

n=

 – ( – aμ
n)m

μn
gδ

nXn(x) –
∞∑

n=

 – ( – aμ
n)m

μn
gnXn(x)

∥
∥
∥
∥
∥

+

∥
∥
∥
∥
∥

∞∑

n=

 – ( – aμ
n)m

μn
gnXn(x) –

∞∑

n=

μ–
n gnXn(x)

∥
∥
∥
∥
∥

=
∥
∥f m,δ(·) – f m(·)∥∥ +

∥
∥f m(·) – f (·)∥∥.

From condition (.) and (.), we have

∥
∥f m,δ(·) – f m(·)∥∥

=

∥
∥
∥
∥
∥

∞∑

n=

 – ( – aμ
n)m

μn
gδ

nXn(x) –
∞∑

n=

 – ( – aμ
n)m

μn
gnXn(x)

∥
∥
∥
∥
∥



=

∥
∥
∥
∥
∥

∞∑

n=

 – ( – aμ
n)m

μn

(
gδ

n – gn
)
Xn(x)

∥
∥
∥
∥
∥



≤ sup
n≥

H(n)δ,

where H(n) := –(–aμ
n)m

μn
.



Yang et al. Boundary Value Problems  (2017) 2017:91 Page 7 of 16

By Lemma ., we get

 – ( – aμ
n)m

μn
≤ √

am, (.)

i.e.,

H(n) ≤ √
am. (.)

So

∥
∥f m,δ(·) – f m(·)∥∥ ≤ √

amδ. (.)

On the other hand, using (.), we have

∥
∥f m(·) – f (·)∥∥ =

∥
∥
∥
∥
∥

∞∑

n=

 – ( – aμ
n)m

μn
gnXn(x) –

∞∑

n=

μ–
n gnXn(x)

∥
∥
∥
∥
∥



=

∥
∥
∥
∥
∥

∞∑

n=

( – aμ
n)m

μn
gnXn(x)

∥
∥
∥
∥
∥



=

∥
∥
∥
∥
∥

∞∑

n=

(
 – aμ

n
)m(

n + k)–p/(n + k)p/fnXn(x)

∥
∥
∥
∥
∥



≤ sup
n≥

Q(n)E,

where Q(n) := ( – a(– –e–
√

n+k

n+k ))m(n + k)– p
 .

Using Lemma . and Lemma ., we have

Q(n) ≤
(

 –
a

(n + k)

)m(
n + k)– p

 . (.)

Let t := n + k,

F(t) :=
(

 –
a

(t)

)m

t– p
 . (.)

Let t satisfy F ′(t) = , and we easily get

t =
(

a(m + p)
p

) 


. (.)

Thus

F(t) =
(

 –
p

m + p

)m(
a(m + p)

p

)– p


≤
(

p
a(m + )

) p


, (.)
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i.e.,

F(t) ≤
(

p
a

) p


(m + )– p
 . (.)

Thus we obtain

Q(n) ≤
(

p
a

) p


(m + )– p
 . (.)

Hence

∥
∥f m(·) – f (·)∥∥ ≤

(
p
a

) p


(m + )– p
 E. (.)

Combining (.) and (.), we choose m = [z], and get

∥
∥f m,δ(·) – f (·)∥∥ ≤ CE


p+ δ

p
p+ , (.)

where C :=
√

a + ( p
a )

p
 .

We complete the proof of Theorem .. �

4.2 An a posteriori regularization parameter choice rule
We consider the a posteriori regularization parameter choice in the Morozov discrepancy,
and construct regularization solution sequences f m,δ(x) by Landweber iterative method.
Assume τ >  is a given fixed constant. Stop the algorithm at the first occurrence of m =
m(δ) ∈N with

∥
∥Kf m,δ(·) – gδ(·)∥∥ ≤ τδ, (.)

where ‖gδ‖ ≥ τδ.

Lemma . Let γ (m) = ‖Kf m,δ(·) – gδ(·)‖, then we have the following conclusions:
(a) γ (m) is a continuous function;
(b) limm→ γ (m) = ‖gδ‖;
(c) limm→+∞ γ (m) = ;
(d) γ (m) is a strictly decreasing function, for any m ∈ (, +∞).

Lemma . For fixed τ > , and Landweber’s iteration method with stopping rule (.),
we can see that the regularization parameter m = m(δ, gδ) ∈N satisfies

m ≤
(

(p + )
a

)(
E

(τ – )δ

) 
p+

. (.)

Proof From (.), we have the representation

Rmg =
∞∑

n=

 – ( – aμ
n)m

μn
gnXn(x) (.)
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for every g ∈ H(	) and thus

‖KRmg – g‖ =

∥
∥
∥
∥
∥

∞∑

n=

(
 –

(
 – aμ

n
)m)

gnXn(x) –
∞∑

n=

gnXn(x)

∥
∥
∥
∥
∥



=

∥
∥
∥
∥
∥

∞∑

n=

–
(
 – aμ

n
)mgnXn(x)

∥
∥
∥
∥
∥



=
∞∑

n=

(
 – aμ

n
)mg

n .

From | – aμ
n| < , we conclude that ‖KRm– – I‖ ≤ .

We know that m is the minimum value that satisfies ‖KRmgδ – gδ‖ = ‖Kf m,δ – gδ‖ ≤ τδ.
Hence

‖KRm–g – g‖ ≥ ∥
∥KRm–gδ – gδ

∥
∥ –

∥
∥(KRm– – I)

(
g – gδ

)∥
∥

≥ τδ – ‖KRm– – I‖δ
≥ (τ – )δ.

On the other hand, using (.), we obtain

‖KRm–g – g‖ =

∥
∥
∥
∥
∥

∞∑

n=

(
 –

(
 – aμ

n
)m–)gnXn(x) –

∞∑

n=

gnXn(x)

∥
∥
∥
∥
∥

=

∥
∥
∥
∥
∥

∞∑

n=

–
(
 – aμ

n
)m–(g, Xn)

∥
∥
∥
∥
∥

=

∥
∥
∥
∥
∥

∞∑

n=

(
 – aμ

n
)m–

μn
(
n + k)– p

 fn
(
n + k)

p
 Xn(x)

∥
∥
∥
∥
∥

≤ sup
n≥

∣
∣
(
 – aμ

n
)m–

μn
(
n + k)– p


∣
∣E.

Let

S(n) :=
(
 – aμ

n
)m–

μn
(
n + k)– p

 , (.)

so

(τ – )δ ≤ S(n)E. (.)

Using Lemma ., we have

S(n) ≤
(

 – a
(


t

))m–

t– p
 –. (.)

Let

G(t) =
(

 – a
(


t

))m–

t– p
 –, (.)
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suppose t∗ satisfy G′(t∗) = , we easily get

t∗ =
(

a(m + p – )
(p + )

) 


, (.)

so

G(t∗) =
(

 –
(p + )

m + p – 

)m–(a(m + p – )
(p + )

)– p+


≤
(

(p + )
ma

) p+


.

Combining (.) with (.), we obtain (.). �

Theorem . Let f (x) given by (.) be the exact solution of problem (.). Let f m,δ(x) given
by (.) be the Landweber iterative regularization approximation solution. The regular-
ization parameter is given by (.), then we have the following error estimate:

∥
∥f m,δ(·) – f (·)∥∥ ≤ (

C(τ + )


p+ + C
)
E


p+ δ

p
p+ , (.)

where C = ((p + ))( 
τ– )


p+ is a constant.

Proof Using triangle inequality, we obtain

∥
∥f m,δ(·) – f m(·)∥∥ ≤ ∥

∥f m,δ(·) – f m(·)∥∥ +
∥
∥f m(·) – f (·)∥∥. (.)

By (.) and Lemma ., we get

∥
∥f m,δ(·) – f m(·)∥∥ ≤ √

amδ

≤ CE


p+ δ
p

p+ , (.)

where C = ((p + )) 
 ( 

τ– )


p+ .
For the second part of the right side of (.), we have

K
(
f m(·) – f (·))

=
∞∑

n=

–
(
 – aμ

n
)mgnXn(x)

=
∞∑

n=

–
(
 – aμ

n
)m(

gn – gδ
n
)
Xn(x) +

∞∑

n=

–
(
 – aμ

n
)mgδ

nXn(x).

Using (.) and (.), we have

∥
∥K

(
f m(·) – f (·))∥∥ ≤ (τ + )δ. (.)
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Due to

∥
∥f m(·) – f (·)∥∥Hp =

( ∞∑

n=

–
(
 – aμ

n
)mf 

n
(
n + k)p

) 


≤
( ∞∑

n=

f 
n
(
n + k)p

) 


≤ E,

and using Theorem ., we have

∥
∥f m(·) – f (·)∥∥ ≤ C(τ + )

p
p+ E


p+ δ

p
p+ . (.)

Therefore,

∥
∥f m,δ(·) – f (·)∥∥ ≤ (

C(τ + )
p

p+ + C
)
E


p+ δ

p
p+ . (.)

This completes the proof of Theorem .. �

5 Numerical implementation and numerical examples
In this section, we present numerical results for examples cases to show the effectiveness
of our proposed method.

By (.), we have

K
(
f (x)

)
= –

∞∑

n=

 – e–
√

n+k

n + k (f , Xn)Xn

= –
∞∑

n=

 – e–
√

n+k

n + k

∫ π


f (s)

√

π

sin(ns) ds
√


π

sin(nx)

= –
∫ π




π

∞∑

n=

 – e–
√

n+k

n + k f (s) sin(ns) sin(nx) ds

= g(x). (.)

We use the former N sum to approximate the infinite sum as follows:

–
∞∑

n=

 – e–
√

n+k

n + k f (s) sin(ns) sin(nx) ≈ –
N∑

n=

 – e–
√

n+k

n + k f (s) sin(ns) sin(nx). (.)

Let xi = (i–)π
M , i = , , . . . , M + . The integral is discretized by the Simpson formula, then

(.) can be divided into

Kf (xj) = –

π

M+∑

i=

N∑

n=

 – e–
√

n+k

n + k f (xi) sin(nxi) sin(nxj)ωiπ . (.)
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So

–
M+∑

i=

N∑

n=

 – e–
√

n+k

n + k f (xi) sin(nxi) sin(nxj)ωi = g(xj), (.)

where

wi =

⎧
⎪⎪⎨

⎪⎪⎩


M , i = , M + ,


M , i = , , . . . , M,


M , i = , , . . . , M – .

(.)

The matrix form of (.) is as follows:

Bf = g, (.)

where

Bij = –
N∑

n=

 – e–
√

n+k

n + k sin(nxi) sin(nxj)ωi,

fj =
[
f (x), f (x), . . . , f (xi), . . . , f (xM+)

]T ,

gj =
[
g(x), g(x), . . . , g(xi), . . . , g(xM+)

]T .

Because K is the adjoint operator, B∗ = B. The corresponding Landweber iterative equa-
tion is

f m,δ(x) = a
m∑

k=

(
I – aB)k–Bgδ(x). (.)

In the computational procedure, we take p = . In discrete format, we take M = , N = 
to compute the direct problem for the forward problem and choose M = , N =  to
solve the inverse problem.

Example  Through calculating, we know that the function u(x, y) = ( – e–
√

ky) sin(kx)
and the function f (x) = –k sin(kx) are satisfied with the problem (.) with exact data
g(x) = ( – e–

√
k) sin(kx), and the a priori bound is

E =
∥
∥f (·)∥∥p =

( N∑

n=

(
n + k)p∣∣(f , Xn)

∣
∣

) 


. (.)

Noise data is generated by adding a random perturbation, that is,

gδ = g + ε
(
rand

(
size(g)

))
,

where ε is relative error level. The total error level g is given by the following:

δ =
∥
∥gδ – g

∥
∥ =

√
√
√
√ 

M + 

M+∑

i=

(
gδ(xi) – g(xi)

).
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Figure 1 The comparison of numerical effects between the exact solution and its regularization
solution for Example 1, k = 2: (a) ε = 0.001, (b) ε = 0.01.

Figure 2 The comparison of numerical effects between the exact solution and its regularization
solution for Example 1, ε = 0.001: (a) k = 4, (b) k = 5.

Figure  shows the numerical results of k = , ε = ., ε = ., respectively. In Figure ,
when ε = ., we take k = ,  to solve this problem.

It can be seen from Figures - that the Landweber iterative regularization method is
very effective for solving the inverse problem of the unknown source identification of the
modified Helmholtz equation. On the one hand, when the random disturbance increases,
the result becomes worse. On the other hand, with the increase of k, the results are slightly
worse, which is also consistent with our error estimates.

Example  Consider the following discontinuous function:

f (x) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

,  ≤ x ≤ π
 ,


π

x – , π
 < x ≤ π

 ,

– 
π

x + , π
 < x ≤ 

π ,

, 
π < x ≤ π .

(.)

Figure  shows the numerical results of k = , ε = ., ε = ., respectively. In Fig-
ure , when the error is ε = ., we take k = ,  to solve this problem. Figures - show
the comparisons of the numerical effects between the exact solution and the regulariza-
tion solution for the a priori and a posteriori regularization parameter choice rule with
Example .
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Figure 3 The comparison of numerical effects between the exact solution and its regularization
solution for Example 2, k = 1: (a) ε = 0.001, (b) ε = 0.005.

Figure 4 The comparison of numerical effects between the exact solution and its regularization
solution for Example 2, ε = 0.01: (a) k = 2, (b) k = 4.

Example  Consider the following discontinuous function:

f (x) =

⎧
⎪⎪⎨

⎪⎪⎩

,  ≤ x ≤ π
 ,

, π
 < x ≤ 

π ,

, 
π < x ≤ π .

(.)

Figure  shows the numerical results of k = , ε = ., ε = ., respectively. In Fig-
ure , when the error is ε = ., we take k = ,  to solve this problem. Figures - show
the comparisons of the numerical effects between the exact solution and the regulariza-
tion solution for the a priori and a posteriori regularization parameter choice rule with
Example .

From Figures -, we can find that the smaller ε, the better the computed approximation
is. Moreover, we can also easily find that the a posteriori parameter choice rule works bet-
ter than the a priori parameter choice rule. This is consistent with our theoretical analysis.

6 Conclusion
In this paper, we investigated the inverse source problem for the modified Helmholtz equa-
tion. The conditional stability was given. The Landweber iterative method is proposed to
obtain a regularization solution. The error estimates were obtained under an a priori reg-
ularization parameter choice rule and an a posteriori regularization parameter choice rule,
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Figure 5 The comparison of numerical effects between the exact solution and its regularization
solution for Example 3, k = 1: (a) ε = 0.01, (b) ε = 0.05.

Figure 6 The comparison of numerical effects between the exact solution and its regularization
solution for Example 3, ε = 0.001: (a) k = 2, (b) k = 4.

respectively. Meanwhile, numerical examples verifies that the Landweber iterative method
has efficiency and accuracy.
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