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a b s t r a c t

A novel SEIS epidemic model with the impact of media is introduced. By analyzing the
characteristic equation of equilibrium, the basic reproduction number is obtained and the
stability of the steady states is proved. The occurrence of a forward, backward and Hopf
bifurcation is derived. Numerical simulations and sensitivity analysis are performed. Our
results manifest that media can regard as a good indicator in controlling the emergence
and spread of the epidemic disease.
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1. Introduction

Nowadays, media coverage is changing the way that we communicate with each other in our daily life and work, and the
media may be the most important source of healthy messages for the general public. Meanwhile, it also plays a significant
role in the spread and control of epidemic disease by providing some healthymessages because people usually express their
experiences of illness [1]. In the transmission process of epidemic disease, media coverage is a key factor. Media coverage
about an epidemic disease gives a sense about the risk level and encourages the people to take precautionary measures such
as wearing masks, avoiding public places and traveling when sick, frequent hand washing etc., to prevent the disease.

Massive news coverage and fast information flow can generate a profound psychological impact on public health.
Moreover, a research showed that three tabloids and two broadsheets sent a total of 1153messages about SARS in Britain [2],
while the New Zealand Herald sent a total of 261 messages [3] from March to July 2003 during the spread of SARS. As the
number of infected individuals increases, media coverage gives more reports about healthy messages of epidemic disease
and cuts down the opportunity and probability of contact transmission among the alerted susceptible individuals, which is
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Fig. 1. Flowchart of the SEIS epidemic model with the impact of media.

beneficial to the control and prevention of disease for further spreading. Therefore, public-health organizations increasingly
advocate for the use of all kinds of medias for their high-reach, low-cost messages dissemination potential of epidemic
diseases.

Mathematical modeling has become an important tool in analyzing the spread and control of epidemic disease and
is being used to indicate how the disease will spread over a period of time. Recently, many attempts have been made
for investigating the transmission dynamics of epidemic disease [4–17]. Tchuenche et al. [9] studied the impact of media
coverage on the spread and control of an influenza strain. Sun et al. [10] used non-linear contact rate to studymedia-induced
social distancing in a two patch setting. Cui et al. [11] proposed a general contact rate β(I) = c1 − c2f (I) to reflect some
intrinsic characters of media coverage. Liu et al. [12] proposed an EIH model to illustrate a possible mechanism for multiple
outbreaks or even sustained periodic oscillations of emerging infectious diseases due to the psychological impact of the
reported numbers of infectious and hospitalized individuals. K. Pawelek et al. [13] assumed that the disease transmission
β was reduced by a factor e−αT due to the behavior change of the public after reading tweets about influenza, where α
determined how effective the disease information could influence the transmission rate. Their results showed that twitter
might serve as a good indicator of seasonal influenza epidemics. Huo et al. [14] mainly studied the SEI model with the
influence of positive and negative information of twitter. Their results showed that the impact posed by the negative
information of twitter was not significant than the impact posed by the positive information of twitter on influenza.

Motivated by the documents [12–14], the goal of the present paper is to construct a more realistic SEIS epidemic model
with the impact of media, in which we assume that infected people are temporary immunity and consider the effect of the
natural and the disease-related death rates. The occurrence of a forward, backward and Hopf bifurcation is derived. Our
results manifest that media can regard as a good indicator in controlling the emergence and spread of the epidemic disease.

The remain part of this paper is organized in the following: In Section 2, we introduce a new SEIS epidemic model with
the impact of media. In Section 3, we calculate the basic reproductive number, and prove the stability of disease-free and
endemic equilibria. A forward, backward and Hopf bifurcation are also investigated in this section. In Section 4, we carry out
some numerical simulations. In Section 5, we perform sensitivity analysis on a few parameters. In the last section, we make
some discussions.

2. Mathematical model

2.1. System description

The total population is divided into three compartments: S(t), E(t), I(t). S(t) represents the number of susceptible
individuals; E(t) represents the number of individuals exposed to the infected but unable to infect others; I(t) represents the
number of infected individuals who can infect other people.M(t) represents the number of message that all of them provide
about epidemic disease at time t , respectively. Since we consider the disease outbreak in the long time, we do not neglect
the natural and the disease-related death rates. Further we assume that the susceptible individuals has a recruitment rate
A. The total number of population at time t is given by

N(t) = S(t) + E(t) + I(t).

The model structure is shown in Fig. 1.
The transfer diagram leads to the following system of ordinary differential equations:⎧⎪⎪⎨⎪⎪⎩

Ṡ = A + γ I − βSIe−αM
− α1S,

Ė = βSIe−αM
− ρE − α1E,

İ = ρE − γ I − (α1 + α2)I,
Ṁ = µ1S + µ2E + µ3I − τM,

(2.1)
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where α1 is the natural death rate; α2 is the disease-related death rate;We assume that all the peoplemay send themessage
about epidemic disease at the rates µ1, µ2, and µ3, respectively, during an epidemic season. β is the transmission rate
between the susceptible individuals and the infected individuals, but owing to the behavior change of the public after reading
messages about epidemic disease, the disease transmission rate β is reduced by a factor e−αM ; α determines how effective
the disease-relatedmessages can influence the transmission rate; ρ is transmission coefficient from the exposed individuals
to the infected individuals; γ is the transmission rate from the infected people to the susceptible people; τ is the rate that
messages become outdated.

2.2. Basic properties

To show that the model (2.1) is epidemiologically meaningful, we will prove that all variables of system (2.1) are non-
negative for all time t > 0. We thus have the following Lemmas.

2.2.1. Positivity of solutions

Lemma 2.2.1. If S(0) ≥ 0, E(0) ≥ 0, I(0) ≥ 0, and M(0) ≥ 0, the solutions S(t), E(t), I(t), and M(t) of system (2.1) with initial
conditions S(0) ≥ 0, E(0) ≥ 0, I(0) ≥ 0, M(0) ≥ 0 are positive for all t > 0.

Proof. If S(0) ≥ 0, according to the first equation of system (2.1), we have,

d
(
S(t)

)
dt

= A + γ I(t) − βS(t)I(t)e−αM(t)
− α1S(t).

It can be rewritten as:

d
(
S(t)

)
dt

exp
{∫ t

0

(
βI(τ )e−αM(τ )

+ α1

)
dτ
}

+ S(t)
(
βI(τ )e−αM(τ )

+ α1

)
exp

{∫ t

0

(
βI(τ )e−αM(τ )

+ α1

)
dτ
}

=
(
A + γ I(t)

)
exp

{∫ t

0

(
βI(τ )e−αM(τ )

+ α1

)
dτ
}
.

Thus,

d
dt

(
S(t)exp

{∫ t

0

(
βI(τ )e−αM(τ )

+ α1

)
dτ
})

=
(
A + γ I(t)

)
exp

{∫ t

0

(
βI(τ )e−αM(τ )

+ α1

)
dτ
}
.

And then,

S(t)exp
{∫ t

0

(
βI(τ )e−αM(τ )

+ α1

)
dτ
}

− S(0)

=

∫ t

0

((
A + γ I(τ )

)
exp

{∫ τ

0

(
βI(µ)e−αM(µ)

+ α1

)
dµ
})

dτ .

Hence,

S(t) = S(0)exp
{
−

∫ t

0

(
βI(τ )e−αM(τ )

+ α1

)
dτ
}

+ exp
{
−

∫ t

0

(
βI(τ )e−αM(τ )

+ α1

)
dτ
}

×

(∫ t

0

((
A + γ I(τ )

)
exp

{∫ τ

0

(
βI(µ)e−αM(µ)

+ α1

)
dµ
})

dτ
)

> 0.

Similarly, we can prove that E(t) > 0, I(t) > 0, M(t) > 0. So the solutions S(t), E(t), I(t), M(t) of system (2.1) with initial
conditions S(0) ≥ 0, E(0) ≥ 0, I(0) ≥ 0,M(0) ≥ 0 are positive for all t > 0. This completes the proof of Lemma 2.2.1. □
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2.2.2. Invariant region

Lemma 2.2.2. The attracting regionΩ defined by

Ω =

{
(S, E, I,M) ∈ R4

+
: 0 ≤ S, E, I ≤ N ≤

A
α1
, 0 ≤ M ≤

A(µ1 + µ2 + µ3)
τα1

}
,

with initial conditions S(0) ≥ 0, E(0) ≥ 0, I(0) ≥ 0, M(0) ≥ 0 and attracting all solutions initiating in the interior of the positive
orthant is positive invariant for system (2.1).

Proof. Primarily, adding the former third equations of system (2.1), we have,
dN
dt

= A − α1N − α2I ≤ A − α1N.

It follows that,

0 ≤ N ≤
A
α1

+ N(0)e−α1t ,

where N(0) represents the initial value of the total population. Therefore, lim supt→∞N ≤
A
α1

.
Next, according to the fourth equation of system (2.1), we get,

dM
dt

≤
(µ1 + µ2 + µ3)A

α1
− τM,

and then,

0 ≤ M ≤
(µ1 + µ2 + µ3)A

τα1
+ M(0)e−τ t ,

whereM(0) represents the initial value of the message of media. Thus, lim supt→∞M ≤
(µ1+µ2+µ3)A

τα1
. Throughout this paper,

we will consider dynamics of system (2.1) on the regionΩ . This completes the proof of Lemma 2.2.2. □

3. Analysis of the model

3.1. Disease-free equilibrium and the basic reproductive number

Let the right-hand sides of Eq. (2.1) equal zero, we have,⎧⎪⎨⎪⎩
A + γ I − βSIe−αM

− α1S = 0,
βSIe−αM

− ρE − α1E = 0,
ρE − γ I − (α1 + α2)I = 0,
µ1S + µ2E + µ3I − τM = 0.

(3.1)

Meanwhile, let E = I = 0 in Eq. (3.1), it is straightforward to see that the model has a disease-free equilibrium given by the
following:

P0 = (S0, 0, 0,M0) =

(
A
α1
, 0, 0,

µ1A
α1τ

)
. (3.2)

Next, we will obtain the basic reproductive numberR0 of the system (2.1) by using the next-generation method [18,19].
Here, we have the followingmatrix of new infectionF(x), and thematrix of transfer V(x). Let x = (S, E, I, M)T , then system
(2.1) can be rewritten as:

dx
dt

= F(x) − V(x),

where

F(x) =

⎛⎜⎝ 0
βSIe−αM

0
0

⎞⎟⎠ , V(x) =

⎛⎜⎝βSIe
−αM

+ α1S − A − γ I
ρE + α1E

γ I + (α1 + α2)I − ρE
τM − µ1S − µ2E − µ3I

⎞⎟⎠ .
The Jacobian matrices of F(x) and V(x) at the disease-free equilibrium P0 respectively are,

DF(P0) =

⎛⎜⎝0 0 0 0
0 0 βS0e−αM0 0
0 0 0 0
0 0 0 0

⎞⎟⎠ , DV(P0) =

⎛⎜⎝ α1 0 βS0e−αM0 − γ 0
0 α1 + ρ 0 0
0 −ρ γ + α1 + α2 0

−µ1 −µ2 −µ3 τ

⎞⎟⎠ ,
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DV(P0)−1

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
α1

−
ρ(βS0e−αM0 − γ )

α1(α1 + ρ)(γ + α1 + α2)
−
βS0e−αM0 − γ

α1(γ + α1 + α2)
0

0
1

α1 + ρ
0 0

0
ρ

(α1 + ρ)(γ + α1 + α2)
1

γ + α1 + α2
0

µ1

τα1

α1 (ρµ3 + µ2(γ + α1 + α2))− µ1ρ(βS0e−αM0 − γ )
τα1(α1 + ρ)(γ + α1 + α2)

α1µ3(α1 + ρ) − µ1(α1 + ρ)(βS0e−αM0 − γ )
τα1(α1 + ρ)(γ + α1 + α2)

1
τ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Therefore, the basic reproductive number R0 is

R0 = ρ

(
DF(P0)DV(P0)−1

)
= max

(
|λ|; λ ∈ σ

(
DF(P0)DV(P0)−1

))
, (3.3)

where ρ(·) and σ (·) denote the spectral radius and the set of eigenvalues of a matrix, respectively, because it can be verified
that system (2.1) satisfies hypotheses (A1)–(A5) of Theorem 2 of [18], then, the basic reproductive number denoted byR0 is
thus given by

R0 =
βρAe−

αµ1A
α1τ

α1(α1 + ρ)(γ + α1 + α2)
. (3.4)

Define

R01 =
AρΘ

(α1 + ρ)(α2 + γ + α1) − ργ
, (3.5)

Rp = R01e1−R01 , (3.6)

where

Θ =
−α

α1ρτ

(
µ1ργ − µ1 (α1 + ρ) (γ + α1 + α2)+ α1µ2(γ + α1 + α2) + α1µ3ρ

)
. (3.7)

Remark 3.1.1. It is clear to check that: R01 > 0 if and only if Θ > 0; R01 = 0 if and only if Θ = 0; R01 < 0 if and only if
Θ < 0.

3.2. Stability of disease-free equilibrium

Theorem 3.2.1. Disease-free equilibrium P0 of the system (2.1) is globally asymptotically stable if R0 < 1, and is unstable if
R0 > 1.

Proof. The characteristic equation system (2.1) at the disease-free equilibrium P0 is⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐
λ+ α1 0

βA
α1

e−
αµ1A
α1τ − γ 0

0 λ+ (α1 + ρ) −
βA
α1

e−
αµ1A
α1τ 0

0 −ρ λ+ (γ + α1 + α2) 0
−µ1 −µ2 −µ3 λ+ τ

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐
= 0, (3.8)

then,

(λ+ α1) (λ+ τ)

((
λ+ (α1 + ρ)

)(
λ+ (γ + α1 + α2)

)
−
ρβA
α1

e−
αµ1A
α1τ

)
= 0. (3.9)

Thus, the two eigenvalues of Eq. (3.9) are λ1 = −µ, λ2 = −τ and the other are determined by(
λ+ (α1 + ρ)

)(
λ+ (γ + α1 + α2)

)
−
ρβA
α1

e−
αµ1A
α1τ = 0. (3.10)

Due to the expression of R0 (3.4), the above equation can be rewritten as:

λ2 + (γ + ρ + α2 + 2α1)λ+ (α1 + ρ)(α2 + γ + α1)(1 − R0) = 0. (3.11)
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Then, we have,

λ3 + λ4 = −(γ + ρ + α2 + 2α1) < 0,
λ3λ4 = (α1 + ρ)(α2 + γ + α1)(1 − R0).

Therefore, when R0 < 1, diseased-free equilibrium P0 is locally asymptotically stable; when R0 > 1, diseased-free
equilibrium P0 is unstable.

Next, we define a Lyapunov function

V (S, E, I,M) = e−
αµ1A
α1τ ρE(t) + (α1 + ρ)I(t).

It is obvious that V (S, E, I,M) ≥ 0 and the equality holds if and only if E(t) = I(t) = 0. Differentiating V (S, E, I,M) and
using the expression of R0 (3.4), we obtain,

dV (S, E, I,M)
dt

= e−
αµ1A
α1τ ρ

dE(t)
dt

+ (α1 + ρ)
dI(t)
dt

= e−
αµ1A
α1τ ρ

(
βSIe−αM

− ρE − α1E
)

+ (α1 + ρ)
(
ρE − γ I − (α1 + α2) I

)
= e−

αµ1A
α1τ ρβSIe−αM

− e−
αµ1A
α1τ ρ2E − e−

αµ1A
α1τ ρα1E + α1ρE − α1γ I − α2

1 I
−α1α2I + ρ2E − ργ I − ρα1I − ρα2I

≤
A
α1

e−
αµ1A
α1τ ρβIe−αM

− e−
αµ1A
α1τ ρ2E − e−

αµ1A
α1τ ρα1E + α1ρE − α1γ I − α2

1 I

−α1α2I + ρ2E − ργ I − ρα1I − ρα2I

≤
A
α1

e−
αµ1A
α1τ ρβI − e−

αµ1A
α1τ ρ2E − e−

αµ1A
α1τ ρα1E + α1ρE − α1γ I − α2

1 I

−α1α2I + ρ2E − ργ I − ρα1I − ρα2I

≤
A
α1

e−
αµ1A
α1τ ρβI − α1γ I − α2

1 I − α1α2I − ργ I − ρα1I − ρα2I

=
A
α1
ρβIe−

αµ1A
α1τ − (α1 + ρ)(γ + α1 + α2)I

= (α1 + ρ)(γ + α1 + α2)I

(
ρβAe−

αµ1A
α1τ

α1(α1 + ρ)(γ + α1 + α2)
− 1

)
= (α1 + ρ)(γ + α1 + α2)I(R0 − 1).

Thus, R0 ≤ 1 guarantees that dV (S,E,I,M)
dt ≤ 0 for all t ≥ 0, and it follows that V (S, E, I,M) is bounded and non-increasing.

Therefore, limt→∞V (S, E, I,M) exists. By LaSalle’s Invariance Principle [20], the disease-free equilibrium P0 is globally
asymptotic stability when R0 < 1. This completes the proof of Theorem 3.2.1. □

3.3. Existence of endemic equilibria

Theorem 3.3.1. The system (2.1) has:
(i) A unique positive endemic equilibrium P1∗, when R0 > max (1,R01);
(ii) A unique positive endemic equilibrium P2∗, when Rp = R0 < min (1,R01);
(iii) Two different positive endemic equilibria P3∗ and P4∗, when Rp < R0 < min (1,R01).

where R0, R01, Rp, andΘ are given by (3.4)–(3.7), and Pi∗ =
(
Si∗, Ei∗, Ii∗,Mi

∗
)
(i = 1, 2, 3, 4)meet (3.13)–(3.15).

Proof. We assume that P∗
= (S∗, E∗, I∗,M∗) is a solution of Eq. (3.1), that is,⎧⎪⎪⎨⎪⎪⎩

A + γ I∗ − βS∗I∗e−αM∗

− α1S∗
= 0,

βS∗I∗e−αM∗

− ρE∗
− α1E∗

= 0,
ρE∗

− γ I∗ − (α1 + α2)I∗ = 0,
µ1S∗

+ µ2E∗
+ µ3I∗ − τM∗

= 0.

(3.12)

Next, we suppose that S∗, E∗,M∗ are the linear function in regard to I∗ respectively. We obtain,

S∗
=

A
α1

+

(
γ

α1
−
(α1 + ρ) (α2 + γ + α1)

α1ρ

)
I∗, (3.13)

E∗
=

(γ + α1 + α2)I∗

ρ
, (3.14)
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M∗
=
µ1A
α1τ

+
I∗

α1ρτ

(
µ1ργ − µ1 (α1 + ρ) (γ + α1 + α2)

+ α1µ2 (γ + α1 + α2)+ α1µ3ρ
)
. (3.15)

Adding the (3.13)–(3.15) to the first equation of Eq. (3.12), we have,(
1 −

(
(α1 + ρ) (α2 + γ + α1)

Aρ
−
γ

A

)
I∗
)
R0 = e−ΘI∗ . (3.16)

By (3.5) and (3.16), we have,

R0 −
R0

R01
ΘI∗ − e−ΘI∗

= 0. (3.17)

We denote,

H(I) = R0 −
R0

R01
ΘI − e−ΘI . (3.18)

By (3.18), we can get,

H(0) = R0 − 1,H(∞) = −∞,H ′(I) = −
R0

R01
Θ +Θe−ΘI ,

H ′(0) = −
R0

R01
Θ +Θ,H ′′(I) = −Θ2e−ΘI .

(i) When R0 > 1, H(0) = R0 − 1 > 0. Meanwhile, H(∞) < 0. IfΘ ̸= 0

H ′′(I) = −Θ2e−ΘI < 0,

we have H ′(I) < H ′(0), namely,Θe−ΘI < Θ , then

H ′(I) = −
R0

R01
Θ +Θe−ΘI < Θ(1 −

R0

R01
).

When R0 > R01, then H(I) = 0 has a unique positive solution.
IfΘ = 0, according to Eq. (3.16), we have

I =
Aρ

(α1 + ρ)(α2 + γ + α1) − γ ρ
(1 −

1
R0

). (3.19)

Similarly, when R0 > 1, I > 0. Thus, the endemic equilibrium P1∗
= (S1∗, E1∗, I1∗,M1

∗) can be obtained.
(ii) When R0 < 1, H(0) = R0 − 1 < 0, and H(∞) < 0. We suppose that H ′(I) = 0, then I =

1
Θ

ln R01
R0

. When
R0 < R01, I is positive. Further, I also is a positive solution H(I) = 0 if and only if R0 = Rp. Thus, the endemic equilibrium
P2∗

= (S2∗, E2∗, I2∗,M2
∗) can be obtained.

(iii) Based on (ii), when R0 > Rp, H(I) > 0, then H(I) = 0 has two different positive solutions. Thus, the endemic
equilibria Pi∗ = (Si∗, Ei∗, Ii∗,Mi

∗)(i = 3, 4) can be obtained.
This completes the proof of Theorem 3.3.1. □

3.4. Stability of the endemic equilibria

Theorem 3.4.1. The endemic equilibria Pi∗(i = 1, 2, 3, 4) of the system (2.1) have:
(i) The endemic equilibrium P1∗ is locally asymptotically stable, when R0 > max (1,R01), and a1(I1∗)a2(I1∗) − a3(I1∗) > 0,

a1(I1∗)
(
a2(I1∗)a3(I1∗) − a1(I1∗)a4(I1∗)

)
−
(
a1(I3∗)

)2
> 0, a4(I1∗) > 0;

(ii) The endemic equilibrium P2∗ is a saddle node point, when Rp = R0 < min (1,R01);
(iii) The endemic equilibrium P3∗ is an unstable saddle point, when Rp < R0 < min (1,R01);
(iv) The endemic equilibrium P4∗ is an stable node point, when Rp < R0 < min (1,R01).

Proof. The characteristic equation of system (2.1) at the endemic equilibria Pi∗(i = 1, 2, 3, 4) is⏐⏐⏐⏐⏐⏐⏐⏐
λ+ (α1 + βIi∗e−αMi

∗

) 0 βSi∗e−αMi
∗

− γ −αβIi∗Si∗e−αMi
∗

−βIi∗e−αMi
∗

λ+ (α1 + ρ) −βSi∗e−αMi
∗

αβIi∗Si∗e−αMi
∗

0 −ρ λ+ (γ + α1 + α2) 0
−µ1 −µ2 −µ3 λ+ τ

⏐⏐⏐⏐⏐⏐⏐⏐ = 0. (3.20)

We setΦ = βe−αMi
∗

, then the characteristic equation can be rewritten as:

G(λ) = λ4 + a1(Ii∗)λ3 + a2(Ii∗)λ2 + a3(Ii∗)λ+ a4(Ii∗) = 0, (3.21)
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where

a1(Ii∗) = 3α1 + ρ + γ + α2 + τ +ΦIi∗, (3.22)

a2(Ii∗) = (3α1 + ρ + γ + α2 +ΦIi∗)τ + (ΦIi∗ + α1)(α2 + 2α1 + ρ + γ )

−

(
AΘ
R01

+ γ

)
αIi∗(µ1 − µ2), (3.23)

a3(Ii∗) = (2α1 + ρ + γ + α2)(α1τ +ΦIi∗) +ΦIi∗(α1 + ρ)(α2 + γ + α1)

−

(
AΘ
R01

+ γ

)
Ii∗α

(
(α2 + γ + 2α1) (µ1 − µ2)+ ρ (µ1 − µ3)

)
, (3.24)

a4(Ii∗) = τ (α1 + ρ)(α2 + γ + α1)
((
α1 +ΦIi∗

)
− α1

(
1 +ΘIi∗

))
. (3.25)

(i) According to (3.22)–(3.25), we have,

a1(I1∗) = 3α1 + ρ + γ + α2 + τ +ΦI1∗, (3.26)

a2(I1∗) = (3α1 + ρ + γ + α2 +ΦI1∗)τ + (ΦI1∗
+ α1)(α2 + 2α1 + ρ + γ )

−

(
AΘ
R01

+ γ

)
αI1∗(µ1 − µ2), (3.27)

a3(I1∗) = (2α1 + ρ + γ + α2)(α1τ +ΦI1∗) +ΦI1∗(α1 + ρ)(α2 + γ + α1)

−

(
AΘ
R01

+ γ

)
I1∗α

(
(α2 + γ + 2α1) (µ1 − µ2)+ ρ (µ1 − µ3)

)
, (3.28)

a4(I1∗) = τ (α1 + ρ)(α2 + γ + α1)
((
α1 +ΦI1∗

)
− α1

(
1 +ΘI1∗

))
. (3.29)

It is clear that a1(I1∗) > 0, according to Routh–Hurwitz criteria [21], the proof (i) of Theorem 3.4.1 is obtained.
(ii) Due to the proof of (ii) of Theorem 3.3.1, we have I2∗

=
1
Θ

ln R01
R0

andΦI2∗
= α1ΘI2∗. Therefore, by (3.22), we have,

a1(I2∗) = 3α1 + ρ + γ + α2 + τ +ΦI2∗ > 0,

by (3.25) and I2∗
=

1
Θ

ln R01
R0

, we know that,

a4(I2∗) = τα1(α1 + ρ)(α2 + γ + α1)
(
(1 +ΘI2∗) − (1 +ΘI2∗)

)
= 0,

from (3.24), we obtain,

a3(I2∗) = (2α1 + ρ + γ + α2)(α1τ +ΦI2∗) +ΦI2∗(α1 + ρ)(α2 + γ + α1)

−

(
AΘ
R01

+ γ

)
I2∗α

(
(α2 + γ + 2α1) (µ1 − µ2)+ ρ (µ1 − µ3)

)
.

It is easy to know that a3(I2∗) < 0. Therefore we know that Eq. (3.30) has negative, positive and zero eigenvalues.

G(λ) = λ4 + a1(I2∗)λ3 + a2(I2∗)λ2 + a3(I2∗)λ+ a4(I2∗) = 0. (3.30)

So the endemic equilibrium P2∗ of the system (2.1) is a saddle node point.
(iii) By the proof of (iii) of Theorem 3.3.1, we have I3∗ < I2∗

=
1
Θ

ln R01
R0

. Then ΦI3∗ < α1ΘI2∗. Therefore, by (3.22), we
can get,

a1(I3∗) = 3α1 + ρ + γ + α2 + τ +ΦI3∗ > 0,

substituting I3∗ < 1
Θ

ln R01
R0

to (3.25), we have,

a4(I3∗) < τα1(α1 + ρ)(α2 + γ + α1)
(
(1 +ΘI3∗) − (1 +ΘI3∗)

)
= 0.

Let ψj(I3∗)(j = 1, 2, 3, 4) be the solutions of Eq. (3.31)

G(λ) = λ4 + a1(I3∗)λ3 + a2(I3∗)λ2 + a3(I3∗)λ+ a4(I3∗) = 0. (3.31)

So we can obtain ψj(I3∗)(j = 1, 2, 3, 4) has properties:

ψ1(I3∗) + ψ2(I3∗) + ψ3(I3∗) + ψ4(I3∗) = −a1(I3∗) < 0,
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and

ψ1(I3∗)ψ2(I3∗)ψ3(I3∗)ψ4(I3∗) = a4(I3∗) < 0.

Therefore, we know that Eq. (3.31) has negative and positive eigenvalues. Then the endemic equilibrium P3∗ of the system
(2.1) is an unstable saddle point.

(iv) By the proof (iii) of Theorem 3.3.1, we have I4∗ > I2∗
=

1
Θ

ln R01
R0

, then ΦI4∗ > µΘI4∗. Further, by (3.22), we can
yield,

a1(I4∗) = 3α1 + ρ + γ + α2 + τ +ΦI4∗ > 0,

next, from (3.25), we can get,

a4(I4∗) > τα1(α1 + ρ)(α2 + γ + α1)
(
(1 +ΘI4∗) − (1 +ΘI3∗)

)
= 0.

Let ψj(I4∗)(j = 1, 2, 3, 4) be the solutions of Eq. (3.32) with real parts satisfying Re
(
ψ1(I4∗)

)
≤ Re

(
ψ2(I4∗)

)
≤ Re

(
ψ3(I4∗)

)
≤

Re
(
ψ4(I4∗)

)
, where Re denotes the real part of a complex number.

G(λ) = λ4 + a1(I4∗)λ3 + a2(I4∗)λ2 + a3(I4∗)λ+ a4(I4∗) = 0. (3.32)

We know that Eq. (3.32) has properties:

ψ1(I4∗) + ψ2(I4∗) + ψ3(I4∗) + ψ4(I4∗) = −a1(I4∗) < 0, (3.33)

and

ψ1(I4∗)ψ2(I4∗)ψ3(I4∗)ψ4(I4∗) = a4(I4∗) > 0. (3.34)

Therefore, we can readily yield ψj(I4∗) < 0(j = 1, 2, 3, 4). If we may take the suppose Re
(
ψ1(I4∗)

)
≤ Re

(
ψ2(I4∗)

)
< 0 <

Re
(
ψ3(I4∗)

)
≤ Re

(
ψ4(I4∗)

)
, it leads to a contradiction with (3.33). Therefore the endemic equilibrium P4∗ of the system (2.1)

is a stable node point.
This completes the proof of Theorem 3.4.1. □

3.5. Analysis of the bifurcation

3.5.1. A forward and backward bifurcation

Theorem 3.5.1. (i) If R01 < 1, system (2.1) exhibits a forward bifurcation when R0 = 1;
(ii) If R01 > 1, system (2.1) exhibits a backward bifurcation when R0 = 1.

Proof. We make use of the center manifold approach as described in [22] and introduce x1 = S, x2 = E, x3 = I, x4 = M ,
system (2.1) becomes⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx1
dt

= A + γ x3 − α1x1 − βx3x1e−αx4 := f1,

dx2
dt

= βx3x1e−αx4 − (α1 + ρ)x2 := f2,

dx3
dt

= ρx2 − (γ + α1 + α2)x3 := f3,

dx4
dt

= µ1x1 + µ2x2 + µ3x3 − τx4 := f4.

(3.35)

When R0 = 1, β = β∗
=

α1(α1+ρ)(γ+α1+α2)
ρA e

αµ1A
α1τ , and the disease-free equilibrium P0 = x0 = (x10, x20, x30, x40) =(

A
α1
, 0, 0, µ1A

α1τ

)
. The linearization matrix of system (3.35) around the disease-free equilibrium x0 when β = β∗ is

Dxf =

⎛⎜⎜⎜⎜⎜⎝
−α1 0 γ −

β∗A
α1

e−
αµ1A
α1τ 0

0 −(α1 + ρ)
β∗A
α1

e−
αµ1A
α1τ 0

0 ρ −(γ + α1 + α2) 0
µ1 µ2 µ3 −τ

⎞⎟⎟⎟⎟⎟⎠ . (3.36)
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Therefore, the characteristic equation of system (3.35) at the disease-free equilibrium x0 when β = β∗ is⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐

λ+ α1 0
β∗A
α1

e−
αµ1A
α1τ

−γ 0

0 λ+ (α1 + ρ) −
β∗A
α1

e−
αµ1A
α1τ 0

0 −ρ λ+ (γ + α1 + α2) 0

−µ1 −µ2 −µ3 λ+ τ

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐
= 0, (3.37)

then,

(λ+ α1) (λ+ τ)

((
λ+ (α1 + ρ)

)(
λ+ (γ + α1 + α2)

)
−
ρβ∗A
α1

e−
αµ1A
α1τ

)
= 0. (3.38)

Substitute β = β∗
=

α1(α1+ρ)(γ+α1+α2)
ρA e

αµ1A
α1τ into Eq. (3.38), we obtain,

λ(λ+ α1)(λ+ τ )
(
λ+ (2α1 + ρ + α2 + γ )

)
= 0. (3.39)

It is clear that 0 is a simple solution of Eq. (3.39), and then 0 is a simple eigenvalue of the linearization matrix Dxf of system
(3.35) around the disease-free equilibrium x0 when β = β∗. A right eigenvector corresponding to the 0 eigenvalue is

R = (r1, r2, r3, r4)T ,

where

r1 = −τ
(
ργ − (α1 + ρ)(γ + α1 + α1)

)
, r2 = τα1(γ + α1 + α2), r3 = τα1ρ,

r4 = µ1ργ − µ1(α1 + ρ)(γ + α1 + α2) + α1µ2(γ + α1 + α2) + α1µ3ρ.

And the left eigenvector L corresponding to the 0 eigenvalue satisfying the equalities LJ = 0 and LR = 1 is

L = (l1, l2, l3, l4),

where

l1 = 0, l2 =
1

α1τ (γ + ρ + α2 + 2α1)
, l3 =

α1 + ρ

α1ρτ (γ + ρ + α2 + 2α1)
, l4 = 0.

Algebraic calculations show that

A =

4∑
k,i=1

lkri
∂2fk(P0)
∂xi∂β

= l2r3
∂2f2
∂x3∂β

=
Aρ

α1(γ + α2 + 3α1)
e−

αµ1A
α1τ > 0,

and

B =

4∑
k,i,j=1

lkrirj
∂2fk(P0)
∂xi∂xj

= l2

(
r1r3

∂2f2(P0)
∂x1∂x3

+ r3r1
∂2f2(P0)
∂x3∂x1

+ r3r4
∂2f2(P0)
∂x3∂x4

+ r4r3
∂2f2(P0)
∂x4∂x3

)

= 2l2

(
r1r3βe

−
αµ1A
α1τ + r3r4(−

αβA
α1

e−
αµ1A
α1τ )

)
=

2
α1(γ + ρ + α2 + 2α1)

βe−
αµ1A
α1τ

(
τα1ρ

(
(α1 + ρ)(γ + α1 + α2) − ργ

)
−αρA

(
µ1ργ − µ1(α1 + ρ)(γ + ρ + α2) + α1µ2(γ + α1 + α2) + α1ρµ3

))
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=
2α1τ (α1 + ρ)(α2 + γ + α1)

A(α2 + γ + ρ + 2α1)
(α1 + ρ)(α2 + γ + α1)

(
AρΘ

(α1 + ρ)(α2 + γ + α1)
− 1

)
=

2α1τ (α1 + ρ)2(α2 + γ + α1)2(R01 − 1)
A(α2 + γ + ρ + 2α1)

.

According to Theorem 4.1 of [22], note that the coefficient A is always positive. If R01 < 1, the coefficient B is negative.
In this case, the direction of the bifurcation of the system (2.1) at R0 = 1 is forward (supercritical), as shown in the Fig. 4. If
R01 > 1, the coefficient B is positive. Under this circumstance, the direction of the bifurcation of the system (2.1) atR0 = 1
is backward (subcritical), as shown in the Fig. 5. This completes the proof of Theorem 3.5.1. □

3.5.2. A Hopf bifurcation

Theorem 3.5.2. A Hopf bifurcation occurs around the endemic equilibrium P1∗, when β increases and the β∗∗ is crossed.

Proof. We presume that characteristic equation (3.21) of system (2.1) around the endemic equilibrium P1∗ has two real
roots λ1 , λ2, and a couple of complex roots a ± bi, where λ1 < 0, λ2 < 0 and a, b ∈ R. Therefore, we have,

G(λ) = (λ− λ1)(λ− λ2)
(
λ− (a + bi)

)(
λ− (a − bi)

)
= λ4 − (λ1 + λ2 + 2a)λ3 +

(
λ1λ2 + 2a(λ1 + λ2) +

(
a2 + b2

))
λ2

−

((
a2 + b2

)
(λ1 + λ2) + 2aλ1λ2

)
λ+

(
a2 + b2

)
λ1λ2.

Comparing with Eq. (3.21), we get,

a1(I1∗) = −(λ1 + λ2 + 2a), a2(I1∗) =

(
λ1λ2 + 2a(λ1 + λ2) +

(
a2 + b2

))
,

a3(I1∗) = −

((
a2 + b2

)
(λ1 + λ2) + 2aλ1λ2

)
, a4(I1∗) =

(
a2 + b2

)
λ1λ2.

Therefore, we consider the case when the characteristic equation G(λ) = 0 has two real roots λ1 , λ2 and a pair of purely
imaginary roots ±bi; i.e., a = 0, where λ1 < 0, λ2 < 0 and b ∈ R. Thus, we yield,

a1(I1∗) = −(λ1 + λ2), a2(I1∗) = b2 + λ1λ2, a3(I1∗) = −b2(λ1 + λ2), a4(I1∗) = b2λ1λ2.

Then,

a3(I1∗)(a1(I1∗)a2(I1∗) − a3)(I1∗) −
(
a1(I1∗)

)2a4(I1∗) = 0,

which leads to β = β∗∗, as shown in the proof of Theorem 3.4.1. As a result, the occurrence of a pair of purely imaginary
roots corresponds to the threshold curve β = β∗∗.

In order to see how the real parts of the others eigenvalues a ± bi change their signs, we examine the transversality
condition of the Hopf bifurcation. Substituting a + bi into the characteristic equation (3.21), we obtain G(a + bi) = 0.
Accordingly, Re

(
G(a+ bi)

)
= 0, where Remeans the real part of a complex number. Computing Re

(
G(a+ bi)

)
= 0, we yield,

∆ = Re
(
(a + bi)4 + a1(I1∗)(a + bi)3 + a2(I1∗)(a + bi)2 + a3(I1∗)(a + bi) + a4(I1∗)

)
= a4 − 6a2b2 + b4 + a1(I1∗)

(
a3 − 3ab2

)
+ a2(I1∗)

(
a2 − b2

)
+ a3(I1∗)a + a4(I1∗)

= 0.

From (3.26)–(3.29), we know that a1(I1∗), a2(I1∗), a3(I1∗), and a4(I1∗) depend upon β owing to Φ contains β . Thus, ∆ is a
function with regard to a and β . Consequently,∆(a, β) = 0 defines an implicit function a(β) with the independent variable
β .

Differentiating∆with respect to β , we obtain ∂∆
∂β

= 0, which leads to ∂∆
∂a

∂a
∂β

+
∂∆
∂β

= 0. Hence, ∂a
∂β

= −
∂∆
∂β
/ ∂∆
∂a .

Next, we determine the sign of ∂a
∂β

along the curve β = β∗∗. Since a1(I1∗), a2(I1∗), a3(I1∗) and a4(I1∗) count on β , and that
a = 0 and a2(I1∗) = b2 + λ1λ2 on the curve β = β∗∗, we have,

∂∆

∂β
|β=β∗∗ =

((
a3 − 3ab2

)∂a1(I1∗)
∂β

+

(
a2 − b2

)∂a2(I1∗)
∂β

+ a
∂a3(I1∗)
∂β

+
∂a4(I1∗)
∂β

)
|β=β∗∗

=

(
−b2

∂a2(I1∗)
∂β

+
∂a4(I1∗)
∂β

)
|β=β∗∗

=
(
−b2(α2 + γ + 2α1 + ρ + τ )

)
I1∗e−αM1

∗

+
(
τ (α1 + ρ)(α2 + γ + α1)

)
I1∗e−αM1

∗

=
(
−b2(α2 + γ + 2α1 + ρ + τ ) + τ (α1 + ρ)(α2 + γ + α1)

)
I1∗e−αM1

∗

,
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and
∂∆

∂a
|β=β∗∗ =

(
4a3 − 12ab2 + 3a1(I1∗)(a2 − b2) + 2aa2(I1∗) + a3(I1∗)

)
|β=β∗∗

= −3b2a1(I1∗) + a3(I1∗)
= 3b2(λ1 + λ2) − b2(λ1 + λ2)
= 2b2(λ1 + λ2).

Since λ1 < 0 and λ2 < 0, then λ1 +λ2 < 0, combining b2 > 0, we have ∂∆
∂a |β=β∗∗ < 0. In order to ensure the sign of ∂∆

∂β
|β=β∗∗

according to (3.11), we yield,

λ3,4 =
−(γ + ρ + α2 + 2α1) ±

√
(γ + ρ + α2 + 2α1)2 − 4(α1 + ρ)(α2 + γ + α1)(1 − R0)

2
.

We change the form of above equality so as to obtain b, namely,

λ3,4 =
−(γ + ρ + α2 + 2α1) ±

√
4(α1 + ρ)(α2 + γ + α1)(1 − R0) − (γ + ρ + α2 + 2α1)2i

2
.

Consequently, we obtain,

b =

√
(α1 + ρ)(α2 + γ + α1)(1 − R0) −

(α2 + γ + ρ + 2α1)2

4
.

Substituting the expression of b into the expression of ∂∆
∂β

|β=β∗∗ , we get,

∂∆

∂β
|β=β∗∗ =

(
−b2(α2 + γ + 2α1 + ρ + τ ) + τ (α1 + ρ)(α2 + γ + α1)

)
I1∗e−αM1

∗

=

(
τ (α1 + ρ)(α2 + γ + α1) − (α1 + ρ)(α2 + γ + α1)(1 − R0) × (α2 + γ + 2α1

+ ρ + τ ) +
(α2 + γ + ρ + 2α1)2(α2 + γ + 2α1 + ρ + τ )

4

)
I1∗e−αM1

∗

.

Since R0 > 1, thus, ∂∆
∂β

|β=β∗∗ > 0. In a word, we have,

∂a
∂β

|β=β∗∗ = −
∂∆

∂β
/
∂∆

∂a
|β=β∗∗ > 0.

This demonstrates that when β crosses the curve β = β∗∗, a Hopf bifurcation occurs. The proof of Theorem 3.5.2 is
completed. □

4. Numerical simulation

In this section, we present some numerical results of system (2.1) that support and extend our theoretical results. We
choose some parameters based on the Table 1.

We choose a set of the following parameters:

A = 0.8 day−1, α1 = 0.6 day−1, β = 0.8 person−1 day−1, α = 0.08 message−1, µ1 = 0.99 day−1,

µ2 = 0.4 day−1, µ3 = 0.8 day−1, τ = 0.6 day−1, α2 = 0.02 day−1, γ = 0.7 day−1, ρ = 0.09 day−1.

Thus, we get the following system:⎧⎪⎪⎨⎪⎪⎩
Ṡ = 0.8 + 0.7I − 0.8SIe−0.08M

− 0.6S,
Ė = 0.8SIe−0.08M

− 0.09E − 0.6E,
İ = 0.09E − 0.7I − (0.6 + 0.02)I,

Ṁ = 0.99S + 0.4E + 0.8I − 0.6M.

(4.1)

It is easy to verify that R0 = 0.0884 < 1. Further, we have the unique disease-free equilibrium P0 = (1.3333, 0, 0, 2.2)
of system (2.1). Then, from Theorem 3.2.1, the disease-free equilibrium P0 = (1.3333, 0, 0, 2.2) of system (2.1) is globally
asymptotically stable when R0 = 0.0884 < 1 (Fig. 2).

Next, we select a set of the following parameters:

A = 0.8day−1, α1 = 0.2day−1, β = 0.8person−1day−1, α = 0.091message−1, µ1 = 0.2day−1,

µ2 = 0.8day−1, µ3 = 0.8day−1, τ = 0.6day−1, α2 = 0.02day−1, γ = 0.006day−1, ρ = 0.4day−1.
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Table 1
The parameters description of the epidemic model.

Parameter Description Estimated value Source

A The constant recruitment rate of the population 0.8day−1 [16]
β The disease transmission coefficient 0.0099–0.8 person−1 [14]
α The coefficient that determines how effective the disease day−1

information can influence the transmission rate 0.00091–0.8 day−1 [14]
ρ Transmission coefficient from the exposed individuals

compartment to the infected individuals compartment 0.04–0.99 day−1 [14]
µ1 The rate that susceptible individuals may send

message about influenza during an epidemic season 0–0.99 day−1 [13]
µ2 The rate that exposed individuals may send

message about influenza during an epidemic season 0.008–0.8 day−1 [13]
µ3 The rate that infectious individuals may send

message about influenza during an epidemic season 0.6–0.8day−1 [13]
α1 The natural death rate of the population 0.009–0.6 year−1 Estimate
α2 The death rate due to the disease 0.02–0.5 day−1 Estimate
γ The state transmission rate from the infected to

the susceptible one 0.006–0.99 day−1 Estimate
τ The rate that message become outdated. 0.03–0.6 year−1 [13]

Fig. 2. Disease-free equilibrium P0 = (1.3333, 0, 0, 2.2) of system (2.1) is globally asymptotically stable when R0 = 0.0884 < 1.

Therefore, we get the following system:⎧⎪⎪⎨⎪⎪⎩
Ṡ = 0.8 + 0.006I − 0.8SIe−0.091M

− 0.2S,
Ė = 0.8SIe−0.091M

− 0.4E − 0.2E,
İ = 0.04E − 0.006I − (0.2 + 0.02)I,

Ṁ = 0.2S + 0.8E + 0.8I − 0.6M.

(4.2)

It is ready to verify that R0 = 2.4882 > 1. Then, from Theorem 3.4.1, the endemic equilibrium P1∗ of system (2.1) is locally
asymptotically stable when R0 > max(1,R01), where R01 = 1.6833 (Fig. 3).

Since

R0 =
βρAe−

αµ1A
α1τ

α1(α1 + ρ)(γ + α1 + α2)
.

So we can see R0 is an aggregate of parameters in the model. According to [23], a bifurcation parameter β in R0 is allowed
to vary, and hence R0 itself varies. Thus we choose a set of parameters in R0:

A = 0.8day−1, α1 = 0.6day−1, α = 0.08message−1, µ1 = 0.99day−1, τ = 0.6day−1,

α2 = 0.02day−1, γ = 0.7day−1, ρ = 0.09day−1, β ∈ {0.035, 0.275}person−1day−1,

Therefore, R0 ∈ {0.90, 1.25}.
Fig. 4 suggests a forward bifurcation happens when R0 crosses unity from below for system (2.1). A small positive

asymptotically stable equilibrium appears and the disease-free equilibrium losses its stability. The x − axis shows R0, the
average number of new infectious produced by an infectious individual near the disease-free equilibrium. In system (2.1),
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Fig. 3. The endemic equilibrium P1∗ of system (2.1) is locally asymptotically stable when R0 > max(1,R01), where R01 = 1.6833.

Fig. 4. A forward bifurcation. The curve shows the non-trivial bifurcating equilibrium. The arrows show the direction of flow for the model disease system,
after the system reaches the manifold on which slow dynamics occur; When R0 < 1, the disease-free equilibrium is globally asymptotically stable; When
R0 > 1, the disease-free equilibrium is unstable and there is a stable endemic equilibrium.

if everyone is susceptible at the disease-free equilibrium, R0 would be βe−αM

ρ
. For a given set of parameters, R0 remains

fixed, and the change in the number of infectives is shown by the diagram. When R0 < 1, the number of infectives reduces
to zero, while when R0 > 1, the number of infectives will increase or decrease to the curved line that marks the endemic
equilibrium. At the same time, the absence of positive equilibrium near the disease-free when R0 < 1, in other words, the
disease-free equilibrium is often the only equilibrium for R0 < 1, and a low level of endemicity when R0 is slightly above
1. Fig. 5 implies a backward bifurcation happens when R0 is less than unity. A small positive unstable equilibrium appears
while the disease-free equilibrium and a larger positive equilibrium are locally asymptotically stable. Epidemiologically, a
backward bifurcation shows that it is not enough to only reduce the basic reproductive number to less than one to eliminate
a disease and that when R0 crosses unity, hysteresis takes place.

Then, we elect a set of the following parameters:

A = 0.8day−1, α1 = 0.009day−1, β = 0.0099person−1day−1, α = 0.00091message−1, µ2 = 0.8day−1,

µ1 = 0.008day−1, µ3 = 0.8day−1, τ = 0.03day−1, α2 = 0.5day−1, γ = 0.08day−1, ρ = 0.99day−1.

Therefore, we get the following system:⎧⎪⎪⎨⎪⎪⎩
Ṡ = 0.8 + 0.08I − 0.0099SIe−0.00091M

− 0.009S,
Ė = 0.0099SIe−0.00091M

− 0.99E − 0.009E,
İ = 0.99E − 0.08I − (0.009 + 0.5)I,

Ṁ = 0.008S + 0.8E + 0.8I − 0.03M.

(4.3)
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Fig. 5. A backward bifurcation. When R0 < Rp , the disease-free equilibrium is globally asymptotically stable. However, when Rp < R0 < 1, there are
two endemic equilibrium. The upper one is stable and the lower one is unstable and when R0 > 1, the disease-free equilibrium is unstable.

The endemic equilibrium P1∗ of the system (2.1) is locally asymptotically stable when R0 > max(1,R01) and β < β∗

(Fig. 6).
Finally, we choose a set of the following parameters:

A = 0.8day−1, α1 = 0.009day−1, β = 0.0099person−1day−1, α = 0.007massage−1, µ2 = 0.8day−1,

µ1 = 0.008day−1, µ3 = 0.8day−1, τ = 0.03day−1, α2 = 0.5day−1, γ = 0.99day−1, ρ = 0.99day−1.

Therefore, we get the following system (2.1):⎧⎪⎪⎨⎪⎪⎩
Ṡ = 0.8 + 0.99I − 0.0099SIe−0.007M

− 0.009S,
Ė = 0.0099SIe−0.007M

− 0.99E − 0.009E,
İ = 0.99E − 0.99I − (0.009 + 0.5)I,

Ṁ = 0.008S + 0.8E + 0.8I − 0.03M.

(4.4)

When β passes through the critical value β∗∗, the positive endemic equilibrium P1∗ loses its stability and a Hopf bifurcation
occurs. This property can be seen from Fig. 7.

5. Sensitivity analysis

In this section, we perform sensitivity analyses of the basic reproductive number R0 and the infectious individuals I .
First, we perform the sensitivity analysis of the basic reproductive number R0. We study the influence of α,µ1 and β to

R0. It is straightforward from (3.4) that R0 increases as β increases. This agrees with the intuition that higher transmission
coefficient increases the basic reproduction number. In order to see the relationship of these parameters andR0, we regard
R0 as a function about those parameters. Note that

∂R0

∂α
= −

βρAµ1

µ2τ (α1 + ρ)(γ + α1 + α2)
e−

αµ1A
α1τ < 0,

∂R0

∂µ1
= −

βρAα
α1

2τ (α1 + ρ)(γ + α1 + α2)
e−

αµ1A
α1τ < 0.

Therefore, we find that R0 decreases as α and µ1 increase. The parameter values are

A = 0.8day−1, α = 0.8day−1, τ = 0.6day−1, β = 0.8person−1day−1, ρ = 0.4day−1,

µ1 = 0.2day−1, µ2 = 0.8day−1, µ3 = 0.8day−1, α1 = 0.2day−1, α2 = 0.02day−1, γ = 0.6day−1.

Fig. 8(a) shows that the basic reproduction R0 is reducing when α is increasing. Fig. 8(b) suggests that the basic
reproduction R0 is reducing when µ1 is increasing.

Second, we main consider the effect of α,µ1, τ , γ on the dynamics of infected individuals. The parameters are

A = 0.8day−1, α = 0.8day−1, τ = 0.6day−1, β = 0.8person−1day−1, ρ = 0.4day−1,

µ1 = 0.2day−1, µ2 = 0.8day−1, µ3 = 0.8day−1, α1 = 0.2day−1, α2 = 0.02day−1, γ = 0.6day−1.

From Fig. 9, we know that infected number will decrease when α,µ1 and γ increase, and increase when τ increases.
From Figs. 8 and 9, we find that media coverage has a great impact on the transmission of epidemic diseases.
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Fig. 6. The endemic equilibrium P1∗ of the system (2.1) is locally asymptotically stable when R0 > max(1,R01) and β < β∗ .
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Fig. 7. The endemic equilibrium P1∗ of the system (2.1) occurs a Hopf bifurcation when R0 > max(1,R01) and β > β∗ . In other word, the system (2.1)
converges to a sustained periodic solution.



H.-F. Huo et al. / Physica A 490 (2018) 702–720 719

Fig. 8. The effect of media-related parameters on the dynamics of infectious individuals. The parameter that varies is indicated in each figure.

Fig. 9. The effect of message-related parameters on the dynamics of infectious individuals. The parameter that varies is indicated in each figure.

6. Discussion

A new SEIS epidemic disease with the impact of media is formulated and stability of the steady states is proved. When
R0 < 1, the disease-free equilibrium is globally asymptotically stable; When R0 > 1, the disease-free equilibrium is
unstable. Meanwhile, When R0 = 1, a forward and backward bifurcation occur, which show a more and more complicated
dynamics behavior of disease transmission. A Hopf bifurcation occurs when a threshold curve is crossed, which implies the
possibility of multiple outbreaks of epidemic disease. Our results show that the media coverage are helpful in reducing the
spread of epidemic disease.
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If we consider a multi-group model. The system (2.1) can be rewritten:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ṡi = Ai + γiIi − Si
n∑

j=1

βije−αijMij Ij − µiSi,

Ėi = Si
n∑

j=1

βije−αijMij Ij − ρiEi − µiEi,

İi = ρiEi − γiIi − (µi + di)Ii,
Ṫi = µ1iS + µ2iE + µ3iIi − τiMi.

(6.1)

Here Si, Ei, Ii and Mi are the number of susceptible individuals, exposed individuals, infective individuals, messages,
respectively, in group i. The other parameters have the same as meaning of the system (2.1). We leave these works for
the future.
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