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a b s t r a c t

Bai (2010) proposed an efficient Hermitian and skew-Hermitian splitting (HSS) iteration
method for solving a broad class of large sparse continuous Sylvester equations. To further
improve the efficiency of the HSS method, in this paper we present a preconditioned HSS
(PHSS) iteration method and its non-alternating variant (NPHSS) for this matrix equation.
The convergence properties of the PHSS and NPHSS methods are studied in depth and the
quasi-optimal values of the iteration parameters for the two methods are also derived.
Moreover, to reduce the computational cost, we establish the inexact variants of the two
iteration methods. Numerical experiments illustrate the efficiency and robustness of the
two iteration methods and their inexact variants.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

We consider the following continuous Sylvester equations

AX + XB = C, (1)

where A ∈ Cm×m, B ∈ Cn×n and C ∈ Cm×n are given complex matrices. Assume that

(i) A, B and C are large and sparse matrices;
(ii) at least one of A and B is non-Hermitian;
(iii) both A and B are positive semi-definite, and at least one of them is positive definite.

Since there is no common eigenvalue between A and−B, we can easily obtain that the continuous Sylvester equation (1) has
a unique solution [1,2]. In addition, the continuous Lyapunov equation is a special case of the continuous Sylvester equation
(1) with B = A∗ and C Hermitian, where A∗ represents the conjugate transpose of the matrix A. Applications of this class of
continuous Sylvester equations arise in several areas, such as control and system theory [3–6], stability of linear systems [7],
linear algebra [8], signal processing [9], image restoration [10], filtering [11,12] and so on.

The above continuous Sylvester equation (1) can be equivalently rewritten as the following system of linear equations

Ax = c, (2)
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where A = In ⊗A+BT
⊗ Im, the vectors x and c contain the concatenated columns of thematrices X and C , respectively, with

Im, In being the identity matrices of orderm and n, respectively, ⊗ being the Kronecker product symbol and BT representing
the transpose of the matrix B. However, solving this equivalent linear system is quite expensive and ill-conditioned.

There are a large number of numerical methods for solving the continuous Sylvester equation (1). Direct algorithms
can only be applied to problems of reasonably small size, such as the Bartels–Stewart and the Hessenberg–Schur methods
[13,14]. Iterative methods are usually employed when the matrices A and B become large and sparse, for instance, the
Smith’smethod [15], the alternating direction implicit (ADI)method [10,16–19], gradient based algorithm [20,21] and others
[22–25]. We can also refer to [26] for a detailed survey of this area.

Recently, based on the Hermitian and skew-Hermitian splitting (HSS) of the matrices A and B, Bai proposed an HSS
iteration method [27] for solving the continuous Sylvester equation (1). This HSS method is a matrix variant of the
original HSS method for solving systems of linear equations, which is firstly presented by Bai, Golub and Ng [28]. Due
to its promising performance and elegant convergence properties, many HSS-based methods for solving linear systems
were subsequently studied to improve its robustness; see [29–41] and other literature. Hereafter, some of these methods
were further considered for solving the above continuous Sylvester equation [42–48] and other linear matrix equations
[49–51].

In this paper, we establish a preconditioned HSS (PHSS) iteration method and its non-alternating variant (NPHSS) for
solving the continuous Sylvester equation (1). Both of the two methods are preconditioned iteration, which can improve
convergence efficiency of the HSS iteration [27]. Similar approaches of using preconditioned technique in the algorithmic
designs of the iterative methods can be seen in [32–34,39,52,53].

In the remainder of this paper, a matrix sequence {Y (k)
}
∞

k=0 ⊆ Cm×n is said to be convergent to a matrix Y ∈ Cm×n if the
corresponding vector sequence {y(k)}∞k=0 ⊆ Cmn is convergent to the corresponding vector y ∈ Cmn, where the vectors y(k) and
y contain the concatenated columns of the matrices Y (k) and Y , respectively. If {Y (k)

}
∞

k=0 is convergent, then its convergence
factor and convergence rate are defined as those of {y(k)}∞k=0, correspondingly. In addition, we use ∥V∥2 and ∥V∥F to denote
the spectral norm and the Frobenius norm of the matrix V ∈ Cm×m, respectively. Note that ∥ · ∥2 is also used to represent
the 2-norm of a vector.

The rest of this paper is organized as follows. In Section 2, we present the PHSSmethod and its inexact variant for solving
the continuous Sylvester equation (1), and the convergence theorems are studied. We establish the NPHSS method and
its inexact variant for solving the continuous Sylvester equation (1) in Section 3, and the convergence theorems are also
discussed. In Section 4, numerical results are given to illustrate the effectiveness of our two methods and their inexact
variants. Finally, in Section 5, we end this work with a brief conclusion.

2. The preconditioned HSS (PHSS) iteration method

2.1. The PHSS method

Here and in the sequel, we use H(V ) :=
1
2 (V + V ∗) and S(V ) :=

1
2 (V − V ∗) to denote the Hermitian part and the skew-

Hermitian part of a square matrix V , respectively. Obviously, the matrix V naturally possesses the Hermitian and skew-
Hermitian splitting (HSS):

V = H(V ) + S(V );

see [27,28]. Then we obtain the following splitting of A and B:

A = (αP1 + H(A)) − (αP1 − S(A))

= (αP1 + S(A)) − (αP1 − H(A)),

and
B = (αP2 + H(B)) − (αP2 − S(B))

= (αP2 + S(B)) − (αP2 − H(B)),

where α is a given positive constant and P1 ∈ Cm×m, P2 ∈ Cn×n are two prescribed Hermitian positive definite matrices.
Therefore, the continuous Sylvester equation (1) can be equivalently reformulated as{

(αP1 + H(A))X + X(αP2 + H(B)) = (αP1 − S(A))X + X(αP2 − S(B)) + C,

(αP1 + S(A))X + X(αP2 + S(B)) = (αP1 − H(A))X + X(αP2 − H(B)) + C .
(3)

Under the assumptions (i)–(iii), there is no common eigenvalue between the matrices αP1 + H(A) and −(αP2 + H(B)), as
well as between thematrices αP1 + S(A) and −(αP2 + S(B)), so that the above two fixed-point matrix equations have unique
solutions for all given right-hand side matrices. This leads to the following preconditioned HSS (PHSS) iteration method for
solving the continuous Sylvester equation (1).
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Algorithm 1 (The PHSS Iteration Method). Given an initial guess X (0)
∈ Cm×n, compute X (k+1)

∈ Cm×n for k = 0, 1, 2, . . .
using the following iteration scheme until {X (k)

}
∞

k=0 satisfies the stopping criterion:{
(αP1 + H(A))X (k+ 1

2 ) + X (k+ 1
2 )(αP2 + H(B)) = (αP1 − S(A))X (k)

+ X (k)(αP2 − S(B)) + C,

(αP1 + S(A))X (k+1)
+ X (k+1)(αP2 + S(B)) = (αP1 − H(A))X (k+ 1

2 ) + X (k+ 1
2 )(αP2 − H(B)) + C

(4)

where α is a given positive constant and P1 ∈ Cm×m, P2 ∈ Cn×n are two prescribed Hermitian positive definite
matrices.

Remark 1. It is easy to see that the PHSS iteration method reduces to the HSS iteration method [27] with P1 = Im, P2 =
β

α
In,

where β is another given positive constant.

Remark 2. When B is a zero matrix, and X (k) and C reduce to column vectors, the PHSS iteration method becomes the one
for systems of linear equations; see [32,33]. In addition, when B = A∗ and C is Hermitian, it leads to a PHSS iteration method
for the continuous Lyapunov equations.

2.2. Convergence analysis of the PHSS method

Denote by A = H + S, with

H = H(A) = In ⊗ H(A) + H(B)T ⊗ Im and S = S(A) = In ⊗ S(A) + S(B)T ⊗ Im, (5)

and

P = In ⊗ P1 + PT
2 ⊗ Im.

We can easily verify thatH is a Hermitian positive definitematrix, S is a skew-Hermitianmatrix, and P is a Hermitian positive
definite matrix. Therefore, all eigenvalues of P−1H are real and positive, and all eigenvalues of P−1S are imaginary. Here and
in the sequel, denote

Λmax = max
Λj∈sp(P−1H)

{Λj}, Λmin = min
Λj∈sp(P−1H)

{Λj} and Ξmax = max
iΞj∈sp(P−1S)

{|Ξj|},

where sp(V ) denotes the spectrum of the matrix V and i =
√

−1.
The following theorem gives the convergence results of the PHSS iteration method for solving the continuous Sylvester

equation (1).

Theorem 1. Assume that A ∈ Cm×m and B ∈ Cn×n are positive semi-definite matrices, and at least one of them is positive definite.
Denote by

M(α, P) = (αP + S)−1(αP − H)(αP + H)−1(αP − S). (6)

Then the convergence factor of the PHSS iteration method (4) is given by the spectral radius ρ(M(α, P)) of the matrix M(α, P),
which is bounded by

σ (α, P) := max
Λj∈sp(P−1H)

|α − Λj|

|α + Λj|
. (7)

Consequently, we have

ρ(M(α, P)) ≤ σ (α, P) < 1, ∀α > 0, (8)

i.e., the PHSS iteration method (4) is unconditionally convergent to the exact solution X⋆
∈ Cm×n of the continuous Sylvester

equation (1).
Moreover, the minimum point α⋆ and the minimum value σ (α⋆, P) of the upper bound σ (α, P) are respectively as

α⋆
≡ argmin

α
{σ (α, P)} = argmin

α

{
max

Λj∈sp(P−1H)

⏐⏐⏐⏐α − Λj

α + Λj

⏐⏐⏐⏐
}

=

√
ΛminΛmax (9)

and

σ (α⋆, P) =

√
Λmax −

√
Λmin

√
Λmax +

√
Λmin

. (10)
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Proof. By making use of the Kronecker product, we can reformulate the PHSS iteration (4) as the following matrix–vector
form: ⎧⎪⎪⎨⎪⎪⎩

(In ⊗ (αP1 + H(A)) + (αP2 + H(B))T ⊗ Im)x(k+
1
2 )

= (In ⊗ (αP1 − S(A)) + (αP2 − S(B))T ⊗ Im)x(k) + c,
(In ⊗ (αP1 + S(A)) + (αP2 + S(B))T ⊗ Im)x(k+1)

= (In ⊗ (αP1 − H(A)) + (αP2 − H(B))T ⊗ Im)x(k+
1
2 ) + c,

which can be arranged equivalently as{
(αP + H)x(k+

1
2 ) = (αP − S)x(k) + c,

(αP + S)x(k+1)
= (αP − H)x(k+

1
2 ) + c.

(11)

Evidently, the iteration scheme (11) is the PHSS iteration method for solving the system of linear equations (2), with
A = H + S; see [33]. After concrete operations, the PHSS iteration (11) can be also expressed as a stationary iteration as
follows:

x(k+1)
= M(α, P)x(k) + N(α, P)c,

whereM(α, P) is the iteration matrix defined in (6), and

N(α, P) = 2α(αP + S)−1(αP + H)−1.

Hence, the conclusion is straightforward according to Theorem 2.1 in [33]. This completes the proof. □

2.3. Inexact PHSS iteration method

In the process of PHSS iteration (4), two sub-problems need to be solved exactly. To further improve computational
efficiency of the PHSS iteration,we establish an inexact PHSS (IPHSS) iteration,which solves the two sub-problems iteratively
[10,15–18,22,23]. We write the IPHSS iteration scheme in the following algorithm for solving the continuous Sylvester
equation (1).

Algorithm 2 (The IPHSS Iteration Method). Given an initial guess X (0)
∈ Cm×n, then this algorithm leads to the solution of the

continuous Sylvester equation (1):
k = 0;
while (not convergent)
R(k)

= C − AX (k)
− X (k)B;

approximately solve (αP1 +H(A))Z (k)
+ Z (k)(αP2 +H(B)) = R(k) by employing an effective iteration method, such that the

residual P (k)
= R(k)

− (αP1 + H(A))Z (k)
− Z (k)(αP2 + H(B)) of the iteration satisfies ∥P (k)

∥F ≤ εk∥R(k)
∥F ;

X (k+ 1
2 ) = X (k)

+ Z (k);
R(k+ 1

2 ) = C − AX (k+ 1
2 ) − X (k+ 1

2 )B;
approximately solve (αP1 + S(A))Z (k+ 1

2 ) + Z (k+ 1
2 )(αP2 + S(B)) = R(k+ 1

2 ) by employing an effective iteration method, such
that the residualQ (k+ 1

2 ) = R(k+ 1
2 )−(αP1+S(A))Z (k+ 1

2 )−Z (k+ 1
2 )(αP2+S(B)) of the iteration satisfies ∥Q (k+ 1

2 )∥F ≤ ηk∥R(k+ 1
2 )∥F ;

X (k+1)
= X (k+ 1

2 ) + Z (k+ 1
2 );

k = k + 1;
end.

Here, {εk} and {ηk} are prescribed tolerances used to control the accuracies of the inner iterations.
We remark that when P1 = Im and P2 =

β

α
In, the IPHSSmethod reduces to the inexact HSS (IHSS) method [27] for solving

the continuous Sylvester equation (1).
The convergence properties for the two-step iteration have been carefully studied in [28,31]. By making use of Theorem

3.1 in [28], we can demonstrate the following convergence results about the above IPHSS iteration method.

Theorem 2. Let the conditions of Theorem 1 be satisfied. If {X (k)
}
∞

k=0 ⊆ Cm×n is an iteration sequence generated by the IPHSS
iteration method and if X⋆

∈ Cm×n is the exact solution of the continuous Sylvester equation (1), then it holds that

∥X (k+1)
− X⋆

∥S ≤ (σ (α, P) + θνηk)(1 + θεk)∥X (k)
− X⋆

∥S, k = 0, 1, 2, . . .

where the norm ∥ · ∥S is defined as

∥Y∥S = ∥(αP1 + S(A))Y + Y (αP2 + S(B))∥F

for any matrix Y ∈ Cm×n, and the constants θ and ν are given by

θ = ∥A(αP + S)−1
∥2, ν = ∥(αP + S)(αP + H)−1

∥2. (12)
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In particular, when

(σ (α, P) + θνηmax)(1 + θεmax) < 1, (13)

the iteration sequence {X (k)
}
∞

k=0 ⊆ Cm×n converges to X⋆
∈ Cm×n, where εmax = maxk{εk} and ηmax = maxk{ηk}.

Proof. By making use of the Kronecker product and the notations introduced in Section 2.2, we can reformulate the above-
described IPHSS iteration as the following matrix–vector form:{

(αP + H)z(k) = r (k), x(k+
1
2 ) = x(k) + z(k),

(αP + S)z(k+
1
2 ) = r (k+

1
2 ), x(k+1)

= x(k+
1
2 ) + z(k+

1
2 ),

(14)

with r (k) = c − Ax(k) and r (k+
1
2 ) = c − Ax(k+

1
2 ), where z(k) is such that the residual

p(k) = r (k) − (αP + H)z(k)

satisfies ∥p(k)∥2 ≤ εk∥r (k)∥2, and z(k+
1
2 ) is such that the residual

q(k+
1
2 ) = r (k+

1
2 ) − (αP + S)z(k+

1
2 )

satisfies ∥q(k+
1
2 )∥2 ≤ ηk∥r (k+

1
2 )∥2.

Evidently, the iteration scheme (14) is the inexact PHSS iteration method for solving the system of linear equations (2),
with A = H + S. Then, by making use of Theorem 3.1 in [28] we can obtain the estimate

|||x(k+1)
− x⋆

|||≤ (σ (α, P) + µθεk + θ (ρ + θνεk)ηk)|||x(k) − x⋆
|||, k = 0, 1, 2, . . . (15)

where the constants θ and ν are defined in (12), µ and ρ are given by

µ = ∥(αP − H)(αP + H)−1
∥2, ρ = ∥(αP + S)(αP + H)−1(αP − S)(αP + S)−1

∥2,

and the norm |||·||| is defined as follows: for a vector y ∈ Cmn, |||y|||= ∥(αP + S)y∥2. We can easily obtain that

µ ≤ σ (α, P), ρ ≤ ν,

and for a matrix Y ∈ Cm×n,

|||y|||= ∥(αP + S)y∥2 = ∥(αP1 + S(A))Y + Y (αP2 + S(B))∥F = ∥Y∥S,

where the vector y contains the concatenated columns of the matrix Y .
Hence, we can equivalently rewrite the estimate (15) as

∥X (k+1)
− X⋆

∥S ≤ (σ (α, P) + θνηk)(1 + θεk)∥X (k)
− X⋆

∥S, k = 0, 1, 2, . . . .

This proves the theorem. □

Remark 3. Theorem 2 shows that in order to guarantee the convergence of the IPHSS iteration, it is not necessary for {εk}

and {ηk} to approach to zero as k is increasing. All we need is that the condition (13) is satisfied.

3. The non-alternating preconditioned HSS (NPHSS) iteration method

3.1. The NPHSS method

Different from the above two fixed-point matrix equations (3), the continuous Sylvester equation (1) can be equivalently
reformulated as following non-alternating form

(αP1 + H(A))X + X(αP2 + H(B)) = (αP1 − S(A))X + X(αP2 − S(B)) + C . (16)

Similarly, the above fixed-point matrix equation has a unique solution for all given right-hand side matrices. This leads to
the following non-alternating preconditioned HSS (NPHSS) iteration method for solving the continuous Sylvester equation
(1).

Algorithm 3 (The NPHSS Iteration Method). Given an initial guess X (0)
∈ Cm×n, compute X (k+1)

∈ Cm×n for k = 0, 1, 2, . . .
using the following iteration scheme until {X (k)

}
∞

k=0 satisfies the stopping criterion:

(αP1 + H(A))X (k+1)
+ X (k+1)(αP2 + H(B)) = (αP1 − S(A))X (k)

+ X (k)(αP2 − S(B)) + C (17)

where α is a given positive constant and P1 ∈ Cm×m, P2 ∈ Cn×n are two prescribed Hermitian positive definite matrices.



1100 X. Li et al. / Computers and Mathematics with Applications 75 (2018) 1095–1106

Due to Hermitian positive definiteness of the matrices αP1 + H(A) and αP2 + H(B), every sub-system in (17) can be
effectively solved.

Remark 4. When we take P1 = Im and P2 =
β

α
In, the NPHSS iteration method reduces to a non-alternating HSS (NHSS)

iteration method for solving the continuous Sylvester equation (1).

Remark 5. When B is a zero matrix, and X (k) and C reduce to column vectors, the NPHSS iteration method becomes the one
for systems of linear equations [34], and the NHSS iterationmethod becomes the one for systems of linear equations [34,35].
In addition, when B = A∗ and C is Hermitian, it leads to an NPHSS iteration method for the continuous Lyapunov equations.

3.2. Convergence analysis of the NPHSS method

By making use of Theorem 1 and Corollary 1 in [34], we can obtain the following convergence theorem about the NPHSS
iteration method for solving the continuous Sylvester equation (1).

Theorem 3. Assume that A ∈ Cm×m and B ∈ Cn×n are positive semi-definite matrices, and at least one of them is positive definite.
Denote by

M̄(α, P) = (αP + H)−1(αP − S). (18)

Then the convergence factor of the NPHSS iteration method (17) is given by the spectral radius ρ(M̄(α, P)) of the matrix M̄(α, P),
which is bounded by

σ̄ (α, P) :=

√
α2 + Ξ 2

max

α + Λmin
. (19)

Consequently, it holds that

(i) If Λmin ≥ Ξmax, then σ̄ (α, P) < 1 for any α > 0, which means that the NPHSS iteration method is unconditionally
convergent;

(ii) if Λmin < Ξmax, then σ̄ (α, P) < 1 if and only if

α >
Ξ 2

max − Λ2
min

2Λmin
, (20)

which means that the NPHSS iteration method is convergent under the condition (20).

Moreover, the minimum point ᾱ⋆ and the minimum value σ̄ (ᾱ⋆, P) of the upper bound σ̄ (α, P) are respectively as

ᾱ⋆
≡ argmin

α
{σ̄ (α, P)} = argmin

α

{√
α2 + Ξ 2

max

α + Λmin

}
=

Ξ 2
max

Λmin
(21)

and

σ̄ (ᾱ⋆, P) =
Ξmax√

Λ2
min + Ξ 2

max

. (22)

Proof. By making use of the Kronecker product and the notations introduced in Section 2.2, we can reformulate the NPHSS
iteration (17) as the following matrix–vector form:

(In ⊗ (αP1 + H(A)) + (αP2 + H(B))T ⊗ Im)x(k+1)

= (In ⊗ (αP1 − S(A)) + (αP2 − S(B))T ⊗ Im)x(k) + c,

which can be arranged equivalently as

(αP + H)x(k+1)
= (αP − S)x(k) + c. (23)

Evidently, the iteration scheme (23) is the NPHSS iteration method for solving the system of linear equations (2), with
A = H + S; see [34]. After concrete operations, the NPHSS iteration (23) can be also expressed as a stationary iteration
as follows:

x(k+1)
= M̄(α, P)x(k) + N̄(α, P)c,

where M̄(α, P) is the iteration matrix defined in (18), and

N̄(α, P) = (αP + H)−1.

Hence, the conclusion is straightforward according to Theorem 1 and Corollary 1 in [34]. This completes the proof. □
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3.3. Inexact NPHSS iteration method

Similar to inexact PHSS (IPHSS) iteration, we can also develop an inexact NPHSS (INPHSS) iteration for solving the
continuous Sylvester equation (1). We write the INPHSS iteration scheme in the following algorithm.

Algorithm 4 (The INPHSS Iteration Method). Given an initial guess X (0)
∈ Cm×n, then this algorithm leads to the solution of

the continuous Sylvester equation (1):
k = 0;
while (not convergent)
R(k)

= C − AX (k)
− X (k)B;

approximately solve (αP1 +H(A))Z (k)
+ Z (k)(αP2 +H(B)) = R(k) by employing an effective iteration method, such that the

residual P (k)
= R(k)

− (αP1 + H(A))Z (k)
− Z (k)(αP2 + H(B)) of the iteration satisfies ∥P (k)

∥F ≤ εk∥R(k)
∥F ;

X (k+1)
= X (k)

+ Z (k);
k = k + 1;
end.

Here, {εk} is a prescribed tolerance used to control the accuracies of the inner iterations.
We remark that when P1 = Im and P2 =

β

α
In, the IPHSS method reduces to the inexact NHSS (INHSS) method for solving

the continuous Sylvester equation (1).
By making use of Theorem 3 in [34], we can demonstrate the following convergence results about the above INPHSS

iteration method.

Theorem 4. Let the conditions of Theorem 3 be satisfied. If {X (k)
}
∞

k=0 ⊆ Cm×n is an iteration sequence generated by the INPHSS
iteration method and if X⋆

∈ Cm×n is the exact solution of the continuous Sylvester equation (1), then it holds that

∥X (k+1)
− X⋆

∥F ≤ (σ̄ (α, P) + µ̄θ̄εk)∥X (k)
− X⋆

∥F , k = 0, 1, 2, . . .

where the constants µ̄ and θ̄ are given by

µ̄ = ∥(αP + H)−1
∥2, θ̄ = ∥A∥2.

In particular, when

σ̄ (α, P) + µ̄θ̄εmax < 1, (24)

the iteration sequence {X (k)
}
∞

k=0 ⊆ Cm×n converges to X⋆
∈ Cm×n, where εmax = maxk{εk}.

Proof. By making use of the Kronecker product and the notations introduced in Section 2.2, we can reformulate the above-
described INPHSS iteration as the following matrix–vector form:

(αP + H)z(k) = r (k), x(k+1)
= x(k) + z(k), (25)

with r (k) = c − Ax(k), where z(k) is such that the residual

p(k) = r (k) − (αP + H)z(k)

satisfies ∥p(k)∥2 ≤ εk∥r (k)∥2.
Evidently, the iteration scheme (25) is the inexact NPHSS iteration method for solving the system of linear equations (2),

with A = H + S; see [34]. Then, by making use of Theorem 3 in [34] we can obtain the estimate

∥x(k+1)
− x⋆

∥2 ≤ (σ̄ (α, P) + µ̄θ̄εk)∥x(k) − x⋆
∥2, k = 0, 1, 2, . . . . (26)

Then we can equivalently rewrite the estimate (26) as

∥X (k+1)
− X⋆

∥F ≤ (σ̄ (α, P) + µ̄θ̄εk)∥X (k)
− X⋆

∥F , k = 0, 1, 2, . . . .

This proves the theorem. □

4. Numerical results

In this section, we are going to examine the feasibility and efficiency of PHSS, NHSS and NPHSS iteration methods and
their inexact variants for solving the continuous Sylvester equation (1). In the following, the efficiency of all the iteration
methods is tested by comparing the number of iteration steps (denoted as IT) and the computing time (in seconds, denoted
as CPU). The numerical experiments are performed in Matlab on an Intel(R) Core(TM) i5 processor (2.40 GHz, 8GB RAM).
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Table 1
The experimental optimal iteration parameters for HSS, PHSS, NHSS and
NPHSS.

Method HSS PHSS NHSS NPHSS

n = 10 q = 0.05 2.65 0.70 0.01 0.01
q = 0.1 2.77 0.73 0.01 0.01
q = 0.2 2.89 0.76 0.08 0.03
q = 0.5 3.00 0.79 3.81 1.00
q = 1 2.75 0.87 15.9 4.17

n = 20 q = 0.05 1.99 0.62 0.01 0.01
q = 0.1 2.10 0.65 0.01 0.01
q = 0.2 2.19 0.68 0.28 0.09
q = 0.5 2.26 0.70 4.69 1.46
q = 1 2.45 0.76 19.9 6.62

n = 40 q = 0.05 1.85 0.61 0.01 0.01
q = 0.1 1.83 0.60 0.01 0.01
q = 0.2 1.92 0.63 0.29 0.10
q = 0.5 1.91 0.63 5.25 1.72
q = 1 1.96 0.64 23.5 7.70

n = 80 q = 0.05 1.73 0.58 0.01 0.01
q = 0.1 1.73 0.58 0.02 0.01
q = 0.2 1.81 0.60 0.27 0.09
q = 0.5 1.82 0.61 4.86 1.62
q = 1 1.83 0.61 22.0 7.28

n = 160 q = 0.05 1.63 0.54 0.01 0.01
q = 0.1 1.76 0.59 0.02 0.02
q = 0.2 1.72 0.58 0.44 0.15
q = 0.5 1.74 0.58 4.87 1.63
q = 1 1.68 0.56 21.0 6.97

In our implementations, the initial guess is chosen to be the zero matrix, and the iteration is terminated once the current
iterate X (k) satisfies

∥C − AX (k)
− X (k)B∥F

∥C∥F
≤ 10−6.

In addition, all the sub-problems involved in each step of the HSS, PHSS, NHSS and NPHSS iteration methods are solved
exactly by the Bartels–Stewart method in [13]. In IHSS, IPHSS, INHSS and INPHSS iteration methods, we set εk = ηk = 0.01,
k = 0, 1, 2, . . . , and use the Smith’s method [15] as the inner iteration scheme.

We consider the continuous Sylvester equation (1) withm = n and the matrices

A = MA + 2qNA +
100

(n + 1)2
I, B = MB + 2qNB +

100
(n + 1)2

I,

whereMA,NA,MB,NB ∈ Rn×n are the tridiagonal matrices given by

MA = tridiag(−1, 2, −1), NA = tridiag(1.5, 0, −1.5),

MB = tridiag(−1, 4, −1), NB = tridiag(3, 0, −3);

see also in [27].
For convenience, the preconditioners P1 and P2 involved in the PHSS and NPHSS methods are chosen to be the diagonal

parts of the coefficient matrices A and B, respectively. For the actual iteration parameters of the HSS and NHSS methods, we
take α = β .

In Tables 1–2, for various problem sizes n and parameters q, we list the experimental optimal iteration parameters and
the theoretical quasi-optimal iteration parameters of the four iteration methods, respectively. From Tables 1–2, we can see
that when n increases, the optimal iteration parameters of the NHSS and NPHSS methods are increasing as well, while those
of the HSS and PHSS methods are gradually decreasing. Moreover, for all cases, the optimal iteration parameters in the
preconditioned methods are much smaller than those in the corresponding non-preconditioned methods.

In Tables 3–4, numerical results for HSS, PHSS, NHSS and NPHSS with the experimental optimal iteration parameters and
the theoretical quasi-optimal iteration parameters are listed, respectively. From Tables 3–4, we can observe that the PHSS
method is superior to the HSS method both in terms of iteration step and CPU time, and the NPHSS method considerably
outperforms the NHSS method both in iteration step and CPU time. We also see that when q is small (the Hermitian part
H is dominant), NHSS and NPHSS methods, no matter compared with the experimental optimal parameters or compared
with the theoretical quasi-optimal parameters, perform much better than HSS and PHSS methods both in iteration step
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Table 2
The theoretical quasi-optimal iteration parameters for HSS, PHSS, NHSS and
NPHSS.

Method HSS PHSS NHSS NPHSS

n = 10 q = 0.05 3.3105 0.8652 0.0977 0.0128
q = 0.1 3.3105 0.8652 0.3909 0.0511
q = 0.2 3.3105 0.8652 1.5638 0.2043
q = 0.5 3.3105 0.8652 9.7736 1.2771
q = 1 3.3105 0.8652 39.0943 5.1084

n = 20 q = 0.05 2.5497 0.7902 0.1585 0.0246
q = 0.1 2.5497 0.7902 0.6341 0.0983
q = 0.2 2.5497 0.7902 2.5363 0.3930
q = 0.5 2.5497 0.7902 15.8516 2.4563
q = 1 2.5497 0.7902 63.4064 9.8251

n = 40 q = 0.05 2.3203 0.7584 0.1890 0.0309
q = 0.1 2.3203 0.7584 0.7559 0.1235
q = 0.2 2.3203 0.7584 3.0234 0.4941
q = 0.5 2.3203 0.7584 18.8963 3.0882
q = 1 2.3203 0.7584 75.5853 12.3526

n = 80 q = 0.05 2.2578 0.7488 0.1989 0.0330
q = 0.1 2.2578 0.7488 0.7955 0.1319
q = 0.2 2.2578 0.7488 3.1818 0.5276
q = 0.5 2.2578 0.7488 19.8865 3.2977
q = 1 2.2578 0.7488 79.5462 13.1907

n = 160 q = 0.05 2.2416 0.7462 0.2016 0.0336
q = 0.1 2.2416 0.7462 0.8063 0.1342
q = 0.2 2.2416 0.7462 3.2251 0.5368
q = 0.5 2.2416 0.7462 20.1569 3.3552
q = 1 2.2416 0.7462 80.6274 13.4206

Table 3
Numerical results for HSS, PHSS, NHSS and NPHSS with the experimental optimal iteration parameters.

Method n HSS PHSS NHSS NPHSS

q IT CPU IT CPU IT CPU IT CPU

n = 10 q = 0.05 9 0.0040 7 0.0034 3 0.0012 3 0.0011
q = 0.1 9 0.0043 7 0.0040 4 0.0016 3 0.0015
q = 0.2 9 0.0045 7 0.0039 7 0.0030 6 0.0025
q = 0.5 8 0.0037 6 0.0035 22 0.0122 18 0.0085
q = 1 9 0.0054 7 0.0038 66 0.0258 52 0.0179

n = 20 q = 0.05 11 0.0096 9 0.0135 3 0.0043 3 0.0034
q = 0.1 11 0.0154 9 0.0140 5 0.0049 4 0.0041
q = 0.2 11 0.0105 9 0.0085 9 0.0075 8 0.0071
q = 0.5 10 0.0128 8 0.0118 36 0.0386 31 0.0305
q = 1 10 0.0155 8 0.0133 116 0.0900 101 0.0704

n = 40 q = 0.05 11 0.0630 8 0.0267 3 0.0145 3 0.0138
q = 0.1 12 0.0401 9 0.0300 5 0.0185 4 0.0153
q = 0.2 12 0.0387 9 0.0320 10 0.0388 8 0.0252
q = 0.5 12 0.0386 9 0.0369 41 0.1256 34 0.1045
q = 1 12 0.0350 9 0.0310 151 0.3943 125 0.2940

n = 80 q = 0.05 11 0.2328 8 0.1636 3 0.0498 3 0.0416
q = 0.1 12 0.1973 9 0.1914 5 0.0799 4 0.0781
q = 0.2 12 0.1826 9 0.1793 10 0.1839 8 0.1569
q = 0.5 12 0.1752 9 0.1713 45 0.6057 38 0.5479
q = 1 13 0.2098 9 0.1809 161 2.1321 143 1.8236

n = 160 q = 0.05 11 1.0480 8 1.0091 3 0.2526 3 0.2465
q = 0.1 11 1.0756 9 1.0320 5 0.4143 3 0.3542
q = 0.2 12 1.1480 10 1.1212 9 0.9526 7 0.7437
q = 0.5 12 1.1716 9 1.1646 50 3.9229 40 3.2474
q = 1 13 1.3568 10 1.2345 158 12.5696 139 10.5460

and CPU time. As q becomes large (the skew-Hermitian part S is dominant), the superiorities of NHSS and NPHSS methods
disappear.

In Table 5, numerical results for the inexact variants of the HSS, PHSS, NHSS and NPHSSmethods are listed. Herewe adopt
the corresponding iteration parameters in Table 1 for convenience and not the experimental optimal parameters of its own.
From Table 5, we can obtain the same conclusions as above Tables.
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Table 4
Numerical results for HSS, PHSS, NHSS and NPHSS with the theoretical quasi-optimal iteration parameters.

Method n HSS PHSS NHSS NPHSS

q IT CPU IT CPU IT CPU IT CPU

n = 10 q = 0.05 11 0.0048 10 0.0043 3 0.0026 3 0.0014
q = 0.1 11 0.0052 10 0.0052 5 0.0031 4 0.0017
q = 0.2 10 0.0048 9 0.0045 9 0.0055 7 0.0060
q = 0.5 9 0.0095 8 0.0067 31 0.0257 22 0.0146
q = 1 8 0.0037 8 0.0031 95 0.0451 66 0.0283

n = 20 q = 0.05 13 0.0109 12 0.0106 4 0.0039 3 0.0026
q = 0.1 13 0.0122 11 0.0108 7 0.0057 5 0.0044
q = 0.2 13 0.0115 11 0.0110 17 0.0138 10 0.0081
q = 0.5 11 0.0169 9 0.0120 71 0.0568 41 0.0265
q = 1 10 0.0091 9 0.0076 218 0.1389 128 0.0836

n = 40 q = 0.05 14 0.0503 13 0.0490 4 0.0153 3 0.0131
q = 0.1 14 0.0483 13 0.0470 8 0.0245 6 0.0171
q = 0.2 14 0.0430 13 0.0397 23 0.0590 13 0.0429
q = 0.5 13 0.0429 13 0.0395 116 0.3113 60 0.1698
q = 1 12 0.0413 10 0.0354 353 0.8687 192 0.4649

n = 80 q = 0.05 15 0.2184 13 0.2123 4 0.0562 3 0.0450
q = 0.1 15 0.2517 13 0.2054 9 0.1459 6 0.0809
q = 0.2 15 0.2256 13 0.2104 25 0.3396 14 0.1883
q = 0.5 14 0.2155 12 0.2099 134 1.8272 69 0.9498
q = 1 14 0.1994 12 0.1951 495 6.4603 251 3.2606

n = 160 q = 0.05 15 1.4244 12 1.2974 4 0.3242 3 0.2355
q = 0.1 15 1.4711 13 1.3944 9 0.7425 6 0.5190
q = 0.2 15 1.5617 13 1.4626 26 2.0862 15 1.2312
q = 0.5 15 1.4228 13 1.3990 140 10.8828 72 5.6789
q = 1 14 1.3140 12 1.2006 539 42.3886 272 21.8806

Table 5
Numerical results for IHSS, IPHSS, INHSS and INPHSS.

Method n IHSS IPHSS INHSS INPHSS

q CPU IT CPU IT CPU IT CPU IT CPU

n = 10 q = 0.05 9 0.0031 7 0.0026 3 0.0009 3 0.0008
q = 0.1 9 0.0037 6 0.0032 4 0.0013 3 0.0009
q = 0.2 9 0.0040 7 0.0031 6 0.0029 5 0.0023
q = 0.5 8 0.0030 6 0.0025 19 0.0102 17 0.0065
q = 1 8 0.0041 7 0.0033 60 0.0192 50 0.0135

n = 20 q = 0.05 11 0.0080 9 0.0068 3 0.0031 3 0.0022
q = 0.1 10 0.0124 8 0.0101 5 0.0037 4 0.0030
q = 0.2 11 0.0083 9 0.0071 9 0.0070 8 0.0062
q = 0.5 10 0.0090 8 0.0079 33 0.0297 29 0.0265
q = 1 9 0.0134 7 0.0115 109 0.0721 98 0.0634

n = 40 q = 0.05 11 0.0561 8 0.0234 3 0.0115 3 0.0108
q = 0.1 12 0.0342 9 0.0259 5 0.0158 4 0.0135
q = 0.2 12 0.0301 9 0.0276 9 0.0289 8 0.0240
q = 0.5 12 0.0351 9 0.0330 35 0.1003 30 0.0927
q = 1 12 0.0313 9 0.0278 134 0.3210 110 0.2786

n = 80 q = 0.05 11 0.2012 8 0.1394 3 0.0379 3 0.0359
q = 0.1 12 0.1620 9 0.1413 5 0.0615 4 0.0585
q = 0.2 11 0.1541 9 0.1303 9 0.1419 7 0.1229
q = 0.5 11 0.1483 9 0.1276 37 0.5643 31 0.5021
q = 1 12 0.1756 9 0.1629 141 1.7351 129 1.5330

n = 160 q = 0.05 11 0.9487 8 0.9094 3 0.2223 3 0.2198
q = 0.1 11 0.9786 9 0.9110 5 0.3753 3 0.3257
q = 0.2 12 1.0100 10 0.9846 9 0.8528 6 0.6215
q = 0.5 11 1.0158 9 0.9761 39 3.2992 34 2.9990
q = 1 12 1.1586 10 1.0001 139 10.3599 128 8.9660

Therefore, the PHSS and NPHSS methods proposed in this work are two powerful and attractive iterative approaches for
solving large sparse continuous Sylvester equations. In addition, we tend to use NPHSS iterationmethod to solve continuous
Sylvester equation (1) when the Hermitian parts of the two coefficient matrices are dominant and employ PHSS if the skew-
Hermitian parts are dominant.
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5. Conclusions

For solving a broad class of continuous Sylvester equations, we have proposed a preconditioned HSS (PHSS) iteration
method and its non-alternating variant (NPHSS) to improve the convergence efficiency of the HSS iteration method [27].
The PHSS method is obviously a type of generalization of the classical HSS method [27]. PHSS returns to HSS when we take
P1 = Im, P2 =

β

α
In. The NPHSS method is an efficient non-alternating variant of the PHSS method. Moreover, we establish

the inexact variants of the PHSS and NPHSS iteration methods to reduce the computational cost. Convergence properties of
the PHSS and NPHSS iteration methods and their inexact variants are analyzed in detail. We also give the theoretical quasi-
optimal parameters that minimize the upper bounds of the iterative spectrums of the PHSS and NPHSS methods. Finally, we
give some numerical results to illustrate the efficiency and robustness of our methods.

At last, we should mention that the choice of the optimal iteration parameters for the PHSS and NPHSS methods is still
an interesting but difficult topic, which may be considered in future study.
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