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h i g h l i g h t s

• Pattern synchronization is investigated within a three-layer network.
• Diffusive collapse in parameter can induce pattern transition.
• Synchronization approach is dependent on the channel number connected two layers.
• More coupling channels can enhance the pattern synchronization.
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a b s t r a c t

Neurons in nerve system show complex electrical behaviors due to complex connection
types and diversity in excitability. A tri-layer network is constructed to investigate the
signal propagation and pattern formation by selecting different coupling channels between
layers. Each layer is set as different states, and the local kinetics is described byHindmarsh–
Rose neuron model. By changing the number of coupling channels between layers and the
state of the first layer, the collective behaviors of each layer and synchronization pattern of
network are investigated. A statistical factor of synchronization on each layer is calculated.
It is found that quiescent state in the second layer can be excited and disordered state
in the third layer is suppressed when the first layer is controlled by a pacemaker, and
the developed state is dependent on the number of coupling channels. Furthermore, the
collapse in the first layer can cause breakdown of other layers in the network, and the
mechanism is that disordered state in the third layer is enhanced when sampled signals
from the collapsed layer can impose continuous disturbance on the next layer.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The mammalian brain is composed of a large number of neurons and these neurons can present various firing patterns
and dynamical properties in electrical activities by applying appropriate external stimulus. Since the breakthrough in
electrophysiology achieved by Hodgkin and Huxely, the biological neuronal model [1] based on neuraxon of squid and its
improved versions [2–6] have been used to investigate the dynamical properties of isolate neuron, collective behaviors of
neurons, pattern selection and synchronization of networks. For example, Volman et al. [7] proposed a neuron–astrocyte
model to detect the effect of astrocyte on neuronal activities. Gu et al., [8] discussed the bifurcation behavior based on
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Fig. 1. Schematic diagram for a tri-layer network. Blue dollar spot represents neuron on each layer, and purple tube marks the coupling channel between
layers. D1 is first layer, D2, D3 is the second, third layer of the network. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

Fig. 2. Developed spatial pattern is plotted for the tri-layer network at t = 50, 150, 500, 1000, 1500, 2500 time units. The first layer (a)–(f) is driven by
I1ext = 1.0, the second layer (g)–(l) I2ext = 2.67, the third layer (m)–(r) I3ext = 6.0, and the coupling intensity between neurons in the same layer is selected
at D = 1. The snapshots are plotted in color scale. Coupling channels between layers are switched off. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

experimental data and the complex nonlinear dynamics in the firing patterns of a sciatic nerve chronic constriction injury
model was discussed [9]. Ibarz et al. [10] thought that map-based neuron model could also be effective to produce the
dynamical properties of neuron. Brette [11] considered spiking neuron models defined by a one-dimensional differential
equation, and then the implications of these mathematical results in terms of neural coding and spike timing precision were
investigated Ji et al. [12] reported a piece-wise linear planar neuron model, namely, two-dimensional McKean model with
periodic drive, and the bifurcation mechanism for the bursting solution induced by the slowly varying periodic drive was
presented. Yu et al. [13] investigated the synchronization of neuron population subject to steady DC electric field induced
by magnetic stimulation; the effect of steady DC electric field induced by magnetic stimulation on the coherence of an
interneuronal network was discussed. Wang et al. [14] studied the phase synchronization involving burst synchronization
and spike synchronization of two electrically coupled Hindmarsh–Rose neurons, and found that the existence of equilibria
can be turned into intersection of two odd functions in a non-delayed systemA recurrent loop consisting of a single Hodgkin–
Huxley neuron influenced by a chemical excitatory delayed synaptic feedback was considered [15], and it is found that
the behavior of the system depends on the duration of the activity of the synapse Tang et al. [16] constructed a minimal
neuron–astrocyte network model by connecting a neurons chain and an astrocytes chain, and it is found that calcium wave
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Fig. 3. Developed spatial pattern is plotted for the tri-layer network at t = 50, 150, 500, 1000, 1500, 2500 time units. The first layer (a)–(f) is driven by
I1ext = 1.0, the second layer (g)–(l) I2ext = 2.67, the third layer (m)–(r) I3ext = 6.0, and the coupling intensity between neurons in the same layer is selected
at D = 1. Coupling channels between the three layers are switched on at t = 15 time units, the coupling intensity between adjacent layers is set as k = 1.0
and the coupling is nonreciprocal type as described in Eqs. (2).

propagation in astrocytes determines the propagation of SDs in the connected neurons. Based on these neuronal models,
extensive dynamical analysis and control have been carried out for potential applications. For example, Guo et al. [17]
analyzed the dynamics of network of neuron-coupled astrocyte when autaptic driving is applied.Wang et al. [18] explained
the formation mechanism of autapse connection to neuron based on a cable neuron model and confirmed that injury in
neuron could contribute to the formation of autapse. Similar to the chaotic oscillators, bifurcation parameter in neuronal
model plays an important role in selecting modes of electrical activities, and the parameter estimation becomes attractive
for further investigation on transition of electrical activities. Tyukin et al. [19] considered the problem of how to recover
the state and parameter values of typical model neurons, such as Hindmarsh–Rose, FitzHugh–Nagumo, Morris–Lecar, from
in-vitro measurements of membrane potentials. Ozer et al. [20] investigated the contribution of subthreshold periodic
current forcing on synchronization of neuronal spiking activity. Wang et al. [21] suggested adaptive synchronization and
anti-synchronization can be used to identify the unknown parameters of the neuronal model.

Indeed, some realistic factors should be considered in analyzing the dynamical properties of neuronal activities. For
example, noise can change the dynamics of electrical activities synchronization behavior and pattern formation of neu-
rons [22–24]. The electromagnetic induction plays an important role in changing the modes of electric activities [25]; it is
found that multiple modes of electrical activities can be detected by adjusting the external electromagnetic radiation on the
improved neuron model by mapping the electromagnetic induction with magnetic flux variable [26]. Autapse, which is a
specific synapse connected the axon and dendrites of the same neuron via close loop, this type of connection is described
by time-delayed feedback on a close loop and this time delay is called as intrinsic response time delay [27–29]. The neuron
shows sensitive response to electrical autapse than the chemical autapse [30], and the dynamical properties of electrical
activities such as firing pattern of neurons can be adjusted by autaptic inhibition [31,32]. Furthermore, distribution of
autapse connection in the network can regulate the collective behaviors of network like a pacemaker [33,34] by generating
continuous pulses [35], target waves [36], spiral waves [37], and also can block the wave propagation by generating
defects [38] due to negative feedback from autapse driving. Extensive studies confirmed that autapse driving is effective to
enhance synchronization of coupled neurons and network [39]. Isolate neuron setting and appropriate dynamical analysis
are helpful to understand themode transition of electrical activities, and also potentialmechanism for occurrence of neuronal
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Fig. 4. Developed spatial pattern is plotted for the tri-layer network at t = 50, 150, 500, 1000, 1500, 2500 time units. The first layer (a)–(f) is driven by
I1ext = 1.0, the second layer (g)–(l) I2ext = 2.67, the third layer (m)–(r) I3ext = 6.0, and the coupling intensity between neurons in the same layer is selected
at D = 1. Coupling channels between the three layers are switched on at t = 15 time units, the coupling intensity between layers is set as k = 1.0, and the
coupling is nonreciprocal type as described in Eqs. (2). Within the first layer, the bifurcation parameter χ is switched from 1.56 to zero from t = 500 time
units.

disease. While most of the researchers thought collective behaviors of neurons should be considered on networks under
different topological connection and controllable conditions [40–42] For example, Stochastic and coherence resonance in
neuronal network [43–46], and pacemaker-guided spatial regularity [47] in excitablemedia can give important guidance and
understanding on self-organization, synchronization [48] in neuronal network in presence of noise, also signal detection [49]
as well. On the other hand, the pattern formation of neuronal network could give useful guidance to understand the phase
transition and mode changes of electrical activities for a set of large number of neurons. However, most of these works have
been carried out on one layer of network even though the neurons are connected in complex type. As a result, Qin et al. [50]
investigated the synchronization between two-layer network of neurons under cross-coupling between the two layers, and
found that synchronization can be enhancedwhenmore neurons took part in the coupling between two layers by generating
stable wave source such as target wave or spiral wave (pace maker) in the first layer. Readers can refer to a review [51–53]
for the dynamical behavior of neuronal networks and references therein.

In complex biological and ecological systems,multiple layers of network could be used to describe the diversity in neurons
so that identical nodes can be collected into the same layer. For example, the cardiac tissue is composed of epimyocardium,
myocardial intima and myocardium; as a result, three layers can be reliable to describe the difference between each layer
of the media. In the cortex, there are many neurons with diversity in excitability. As a result, excitatory and inhibitory type,
excitability diversity should be considered. On the other hand, neurons can be under different modes in electrical activities,
waken or asleep, quiescent, spiking, bursting or chaotic states, respectively. Therefore, it is interesting to design such a
tri-layer network to detect the diffusive effect on different layers in the network, transition of synchronization and pattern
selection of each layer under coupling.

In this paper, a tri-layer neuronal network with excitability diversity in layers is used to study the signal propagation and
pattern synchronization between layers by observing the pattern transition of the network. The three layers are coupled
monodirectionally (nonreversing type) and only finite channels are used to connect the adjacent layers. The first layer is
driven to generate pacemaker-like wave source so that the next two layers can be driven to keep pace with the collective
behaviors in the first layer. Furthermore, the collapse [54,55] in the first layer is induced by rapid switch in certain parameter,
the transition of pattern in the second and third layer of the network are detected and discussed.
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Fig. 5. Developed spatial pattern is plotted for the tri-layer network at t = 50, 150, 500, 1000, 1500, 2500 time units. The nodes (60 ≤ i, j ≤ 65) in first
layer (a)–(f) is driven by I1ext = 2.67 while other nodes are driven by I1ext = 1.0; the second layer (g)–(l) I2ext = 1.0; the third layer (m)–(r) I3ext = 6.0, and
the coupling intensity between neurons in the same layer is selected at D = 1. Coupling channels between layers are switched off.

2. Model and scheme

The dynamics of the Hindmarsh–Rose (HR) neuron [56] is described by⎧⎨⎩ẋ = y − ax3 + bx2 − z + Iext
ẏ = c − dx2 − y
ż = r[s(x + χ ) − z]

(1)

where the variable x, y, z denotes the membrane potential, slow current for recovery variable and adaption current,
respectively. Iext is the external forcing current, and a, b, c, d, r, s, χare parameters. A quiescent state, spiking, bursting and
even chaotic state can be reproduced from this model by changing the external forcing current carefully. For simplicity, the
HR neuron is used to describe the local kinetics of each node of the tri-layer network, and network on each layer is coupled
with nearest-neighbor connection type (regular network), and the collective dynamical behaviors can be described by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1ij = y1ij − ax31ij + bx21ij − z1ij + I1ext + D(x1i−1j + x1i+1j + x1ij−1 + x1ij+1 − 4x1ij)
ẏ1ij = c − dx21ij − y1ij
ż1ij = r[s(x1ij + χ ) − z1ij]
ẋ2ij = y2ij − ax32ij + bx22ij − z2ij + I2ext + D(x2i−1j + x2i+1j + x2ij−1 + x2ij+1 − 4x2ij)
+ k(x1ij − x2ij)δiαδjβ
ẏ2ij = c − dx22ij − y2ij
ż2ij = r[s(x2ij + χ ) − z2ij]
ẋ3ij = y3ij − ax33ij + bx23ij − z3ij + I3ext + D(x3i−1j + x3i+1j + x3ij−1 + x3ij+1 − 4x3ij)
+ k(x2ij − x3ij)δiαδjβ
ẏ3ij = c − dx23ij − y3ij
ż3ij = r[s(x3ij + χ ) − z3ij]

(2)
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Fig. 6. Developed spatial pattern is plotted for the tri-layer network at t = 50, 150, 500, 1000, 1500, 2500 time units. The nodes (60 ≤ i, j ≤ 65) in first
layer (a)–(f) is driven by I1ext = 2.67 while other nodes are driven by I1ext = 1.0; the second layer (g)–(l) I2ext = 1.0; the third layer (m)–(r) I3ext = 6.0, and
the coupling intensity between neurons in the same layer is selected at D = 1. Coupling channels between the three layers are switched on at t = 15 time
units, the coupling intensity between layers is set as k = 1.0, and the coupling is nonreciprocal type as described in Eqs. (2).

whereD is the coupling intensity between neurons in the same layer, k is the coupling intensity between adjacent layers. The
subscript ij represents the node position in each layer, i, j, α, β,are integers, the function δdefines the number of coupling
channels and coupling area as, δiα = 1 for α = i,otherwise, δiα = 0; δjβ = 1 for β = j,otherwise, δjβ = 0. The diagram of
the tri-layer network is plotted in Fig. 1.

To discern the phase transition for collective behaviors of neurons on each layer, a statistical factor of synchronization
R [36–38] is calculated by using mean field theory, and it reads as follows

F =
1
N2

N∑
j=1

N∑
i=1

xij; R =
⟨F 2

⟩ − ⟨F⟩
2

1
N2

∑N
j=1

∑N
i=1

(
⟨x2ij⟩ − ⟨xij⟩2

) (3)

where xij is the sampled membrane potential for neuron on node (ij) in the same layer, N2 neurons are placed on
nodes of square array uniformly. The symbol ⟨∗⟩ represents the average calculating over time (transient period). Perfect
synchronization is realized in the network (each layer) at R∼1 while non-perfect synchronization or desynchronization
is found at R∼0. It is also confirmed that regular spatial pattern can be developed in the network at lower factor of
synchronization, while higher factor of synchronization can generate homogeneous state in the network because each
neuron can keep pace with the behavior of other neurons. That is to say, complete synchronization in the network of each
layer makes the network become homogeneous thus no regular spatial pattern can be formed. To discern the competition
and cooperation between layers of the network, each layer is set as different states. Certain parameter is switched from
previous value to another value to induce collapse of network, thus the collapse-induced disorder and transition of collective
behaviors, synchronization transition of network can be detected. In a realistic network, collapse associated with sudden
parameter changes could be diffusive and more nodes are invaded to cause a breakdown in network. For simplicity, the
collapse of parameter χ begins from node (52, 32) and its adjacent four nodes, and the parameter χ = 1.56 in the HR
neuronal model is switched to χ = 0 at t = 500 time units. The outer adjacent neurons are invaded within 1.5 time
units until the collapsed area covers more neurons because the collapsed area always is increased in size. Coupling channels
between the three layers are switched on at t = 15 time units to observe the diffusive effect between layers.
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Fig. 7. Developed spatial pattern is plotted for the tri-layer network at t = 50, 150, 500, 1000, 1500, 2500 time units. The nodes (60 ≤ i, j ≤ 65) in first
layer (a)–(f) is driven by I1ext = 2.67 while other nodes are driven by I1ext = 1.0; the second layer (g)–(l) I2ext = 1.0; the third layer (m)–(r) I3ext = 6.0, and
the coupling intensity between neurons in the same layer is selected at D = 1. Coupling channels between the three layers are switched on at t = 15 time
units, the coupling intensity between layers is set as k = 5.0, and the coupling is nonreciprocal type as described in Eqs. (2).

3. Numerical results and discussion

In the numerical studies, the Euler forward algorithm is carefully used for calculating the dynamical equations for
networkswith time step h = 0.01. Indeed, fourth order Runge–Kutta algorithm can be used for higher accuracy in numerical
studies. In fact, in case of pattern selection and synchronization of multi-layer network or network composed of a large
number of nodes, Euler forward algorithm is exact enough to detect the statistical properties and transition of collective
behaviors of network. To decrease and shorten the calculating period, we prefer to use the Euler forward algorithm than
fourth order Runge–Kutta algorithm by applying appropriate time steps. The network is considered under no-flux boundary
condition and all the nodes are selected with the same initial values as (3.0, 0.3, 0.1), 100 × 100 neurons are placed on the
square array in each layer uniformly. In the end, the case that initial values are selected by random value is also discussed.
The parameters are selected as a = 1, b = 1, c = 3, d = 5, r = 0.006, s = 4, and χ = 1.56. In this section, the first layer is set
as quiescent state, target wave controlled state, and then diffusive collapse is considered in the first layer of the network. The
transition of spatial patterns in the second and third layer of the network is detected. Finally, the effect of coupling channels
is investigated by calculating the factor of synchronization.

Each node of the first layer is driven by same external forcing current as I1 = 1.0, I2 = 2.67 for second layer and I3 = 6.0
for the third layer of the network. As a result, the first layer can generate quiescent and homogeneous state, the second
layer presents bursting and disordered state, while the third layer can find chaotic and disordered state when the coupling
channels between layers are cut off and the results are calculated in Fig. 2. The following snapshots are the distribution of
variable (membrane potential of neuron) xij, and the color diversity is generated due to the difference ofmembrane potentials
for neurons.

The results in Fig. 2 found that the developed states of the network depend on the external forcing current and the
coupling intensity, thus different spatial states can be formed in each isolate layer. Furthermore, the tri-layer network is
activated by switching on the coupling channels between adjacent layers of the network. For simplicity, neurons on the
nodes 20 ≤ α, β ≤ 25 in each layer are connected to the next adjacent layer. The transition of spatial patterns on the
network is plotted in Fig. 3.
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Fig. 8. Developed spatial pattern is plotted for the tri-layer network at t = 50, 150, 500, 1000, 1500, 2500 time units. The nodes (60 ≤ i, j ≤ 65) in first
layer (a)–(f) is driven by I1ext = 2.67 while other nodes are driven by I1ext = 1.0; the second layer (g)–(l) I2ext = 1.0, the third layer (m)–(r) I3ext = 6.0, and
the coupling intensity between neurons in the same layer is selected at D = 1. The parameter χ = 1.56 in the HR neuronal model is switched to χ = 0
at t = 500 time units. Coupling channels between the three layers are switched on at t = 15 time units, the coupling intensity between layers is set as
k = 1.0, and the coupling is nonreciprocal type as described in Eqs. (2).

It is interesting to find that target like wave is formed in the local area of the second and third layer due to the coupling
between layers in the local area. The coupling area in the second layer is driven by quiescent signals from the first layer
thus the transient wave front could be suppressed by the bursting states in the second layer even though target-like wave
is triggered in the local area connected to the first layer. In fact, for the second and third layer, finite channel connection can
input external stimuli with diversity thus target wave can be formed in a local area. However, the emergence of target wave
in the local area connected to other layers are suppressed by thewave fronts emitted from other nodes in the same layer, as a
result, the third layer is also occupied by disordered state completely. As reported in Refs. [54,55], collapse of network can be
induced by rapid shift in parameter,which certain parameter is changed to another value suddenly. The potentialmechanism
is that switch in parameter value can change the local kinetics of node of the network, and the destruction or invading can
be diffused among the network due to continuous coupling between adjacent nodes. It is interesting to investigate the signal
propagation between layers in the tri-layer network when parameter collapse occurs in the first layer, which the bifurcation
parameter χ is switched from 1.56 to zero (in addition, other values also finds the similar results), and the results are plotted
in Fig. 4.

The results in Fig. 4 confirmed that the collapse can be propagated outwardly and can also induce breakdown in the
second and third layers of the network. That is, collapse in the above layer can enhance breakdown and disorder in the next
layers due to channel coupling between layers. It is interesting to investigate the case whether target wave in the first layer
can suppress the disordered states on the second and third layers. For simplicity, forcing current with diversity is imposed
on the first layer so that target wave can be developed, e.g. in the local area 60 ≤ i, j ≤ 65 the external forcing current
I1ext = 2.67, the other nodes of the first layer are driven by I1ext = 1.0, and the results are plotted in Fig. 5.

It is found that the each layer develops its state under appropriate external forcing current when the coupling channels
between layers are shut off. The first layer is occupied by stable target wave when external forcing current with diversity is
formed; the second layer keeps quiescent state while the third layer steps into spatiotemporal disorder. Furthermore, the
coupling channels are switched on, the propagation of target wave and response of the second and third layer of the network
are detected, the results are plotted in Fig. 6.
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Fig. 9. Developed spatial pattern is plotted for the tri-layer network at t = 50, 150, 500, 1000, 1500, 2500 time units. The nodes (60 ≤ i, j ≤ 65) in first
layer (a)–(f) is driven by I1ext = 2.67 while other nodes are driven by I1ext = 1.0; the second layer (g)–(l) I2ext = 1.0,; the third layer (m)–(r) I3ext = 6.0, and
the coupling intensity between neurons in the same layer is selected at D = 1. The parameter χ = 1.56 in the HR neuronal model is switched to χ = 0
at t = 500 time units. Coupling channels between the three layers are switched on at t = 15 time units, the coupling intensity between layers is set as
k = 5.0, and the coupling is nonreciprocal type as described in Eqs. (2).

The development of spatial patterns found that target wave kept alive and transient target wave is also developed in a
local area of the second layer due to driving from the first layer, and the unstable target wave close to the coupling area in the
second layer finally developed into spiral segments for growing up spiral wave. Furthermore, breakup of the target wave in
the second layer generates continuous disturbance on the third layer via channel coupling, as a result, the third layer became
disordered completely. It is interesting to explore this case when the coupling intensity between layers is increased, and the
results are plotted in Fig. 7.

It is found that target wave can also be developed in the second layer with increasing the coupling intensity between the
layers; however, wave front of the third layer is suppressed by the spatiotemporal chaos and the target like wave encounters
breakup to generate more segments. That is to say, the developed target wave cannot be effective to induce stable target
wave in the third layer via finite channel coupling between the second and third layer. Furthermore, the coupling intensity
between the second and third layer is increased togetherwith the increasing the number of coupling channels, it is confirmed
that target wave can also be developed. It is known that spiral wave can be formed by breaking target wave or plane wave
in the media, and the self-sustained spiral wave can regulate the collective behaviors of network. Therefore, collapse in
parameter is considered in the first layer by switching the parameter from χ = 1.56 to χ = 0 at t = 500 time units, and
the results are shown in Fig. 8.

The developed target wave in first layer is broken due to parameter collapse, and the diffusive collapse in parameter
destroys the target wave completely. Furthermore, the target wave in the second layer was also broken into segments and
spiral waves are formed. However, the third layer cannot support spiral wave nor target wave even channel coupling keep
active. Extensive numerical results are carried out by increasing the intensity of channel coupling k = 5, and the results are
shown in Fig. 9.

Similar to the case in Fig. 8, the first layer is occupied segments developed from broken target wave due to diffusive
collapse in parameter, the second layer can form spirals due to breakup of target wave. The third layer also finds
spatiotemporal chaos when the disordered signals from the second layer are imposed on the third layer of the network.
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Fig. 10. Developed spatial pattern is plotted for the tri-layer network at t = 50, 150, 500, 1000, 1500, 2500 time units. The first layer (a)–(f) is driven by
I1ext = 1.0, the second layer (g)–(l) I2ext = 2.67, the third layer (m)–(r) I3ext=6.0, and the coupling intensity between neurons in the same layer is selected
at D = 1. The snapshots are plotted in color scale. Coupling channels between layers are switched off and random values are used for initials setting. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

As mentioned above, all the nodes in each layer are set with the same initial values. It is interesting to discuss the case
when initials are selected with random values (−0.1, 0.1), the pattern formation and synchronization between layers are
investigated in the same way, the results are shown in Fig. 10 when channels between layers are switched off.

It is found that the developed state in each layer is different from the next layer when each layer is imposed on different
external forcing currents. As a result, the first layer is developed into homogeneous state and each neuron become quiescent
completely. The second and third layer of the network become disordered states when larger external forcing current is
imposed on each node, and coupling in each layer can enhance the oscillating behaviors. In the following, the coupling
channels are switched on, and the synchronization, pattern formation is investigated in Fig. 11.

Compared the results in Fig. 11 with the results in Fig. 9, the disordered states in the second layer is suppressed when
sampled signals are input into the layer via coupling channels, and the third layer is also suppressed as well. Extensive
numerical results confirmed that the second and third layerwill keep pacewith the states in the first layerwhen the coupling
intensity in channels between layers is increased. Furthermore, we also investigated the case when parameter shift-induced
collapse is considered, and the results are plotted in Fig. 12.

It is found that collapse in the first layer can induce disordered states, as a result, the sampled signals are imposed on
the second layer and this type of disturbance can enhance the disorder in the second layer, and also the third layer as well.
By further increasing the coupling intensity between layers, the collective behaviors and spatial pattern in the next layer is
controlled by the sampled signals from the previous (above) layer.

Indeed, the synchronization between layers of the network is also dependent on the channel number involved with
coupling between layers when the coupling intensity is fixed. Therefore, it is important to investigate the pattern formation
in the tri-layer network when different numbers of coupling channels are switched on between the layers. The first, second
and third layer is reset as ordered state (e.g. targetwave), quiescent state and chaotic state, which can be realized by applying
different external stimuli and the developed state could be independent of the setting of initial values (random or identical
initials). The collapse in parameter begins from the first layer, the number for coupling between layers is selected by n∗n = 1,
4, 9, 16, 25, for example, n ∗ n = 25 means that nodes in a square array with 5 × 5 nodes are connected to 5 × 5 nodes in
the next layer of the network, n ∗ n = 1 means that a single channel keeps open between the adjacent layers. The factor of
synchronization is calculated under different numbers of coupling channels, and the results are shown in Fig. 13.
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Fig. 11. Developed spatial pattern is plotted for the tri-layer network at t = 50, 150, 500, 1000, 1500, 2500 time units. The first layer (a)–(f) is driven by
I1ext = 1.0, the second layer (g)–(l) I2ext = 2.67, the third layer (m)–(r) I3ext=6.0, and the coupling intensity between neurons in the same layer is selected
at D = 1. Coupling channels between the three layers are switched on at t = 15 time units, the coupling intensity between layers is set as k = 1.0 and the
coupling is nonreciprocal type as described in Eqs. (2). Random values are used for initials setting.

Asmentioned in the previousworks, smaller factor of synchronization is often associatedwith regular spatial distribution.
For example, the network is occupied by a target wave or spiral wave which regulates the network as a pacemaker,
while spiral pattern is destroyed and synchronization is enhanced under higher factor of synchronization. The factor of
synchronization for the third layer confirmed that phase transition occurs when external forcing is imposed on the third
layer and number of coupling channels is increased. The factor of synchronization for the first layer shows slight a change
when the target wave is invaded (or destroyed) by diffusive collapse in parameter, thus the regular spatial distribution is
suppressed. The factor of synchronization for the second layer keeps lower value because target like wave can be developed
due to driving from the first layer via finite channels. We also investigated the case that diffusive collapse occurred in the
second layer, while the first layer, the third layer is driven by the second layer as well, the results are plotted in Fig. 14.

It is found that the driving layer (second layer) holds higher factor of synchronization and presents slight changes even
the number of coupling channels is increased, the driven layers (the first and third layer) gave different responseswhenmore
coupling channels are switched on. The first layer still holds smaller factor of synchronization because the initial quiescent
state is helpful to support ordered wave, while the third layer under initial chaotic state can suppress the external forcing
from the driving (second) layer via finite coupling channels. Furthermore, coupling channels (4 × 4) connected to the first
and third layer are switched to different areas, which is similar to the cross coupling between two-layer network in Ref. [50],
it is found that the synchronization factors for each layer keep close to certain values and also the spatial distribution shows
slight difference. It indicates that the pattern formation on each layer depends on the initial selection [57] (quiescent, spiking,
or chaotic state, which can be developed from arbitrary initial values by applying appropriate external forcing current), and
also the number of coupling channels than the position selection.

Finally, we have to investigate the case that each layer is driven by the next layer, for example, the second layer is
driven by the first layer, the third layer is driven by the second layer, the first layer is driven by the third layer. The initial
state(developed from arbitrary initial values) for the first layer is selected by quiescent state and diffusive collapse also
propagates from the first layer, the second layer is set as bursting initial states, the third layer is under chaotic initial states,
the distribution for factors of synchronization is calculated in Fig. 15.

The results in Fig. 15 confirmed that the developed states mainly depend on the initial state (not initial value) for each
layer, which is controlled by the external forcing current. The first layer propagates the diffusive collapse in parameter and
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Fig. 12. Developed spatial pattern is plotted for the tri-layer network at t = 50, 150, 500, 1000, 1500, 2500 time units. The first layer (a)–(f) is driven by
I1ext = 1.0, the second layer (g)–(l) I2ext = 2.67, the third layer (m)–(r) I3ext = 6.0, and the coupling intensity between neurons in the same layer is selected
at D = 1. Coupling channels between the adjacent layers are switched on at t = 15 time units, the coupling intensity between layers is set as k = 1.0, and
the coupling is nonreciprocal type as described in Eqs. (2). Within the first layer, the bifurcation parameter χ is switched from 1.56 to zero from t = 500
time units. Random values are used for initials setting.

Fig. 13. Distribution for factor of synchronization is calculated by changing the number of coupling channels. The initial state (developed from appropriate
value and external forcing current) is selected by target wave (ordered state), quiescent state and chaotic state, respectively. Diffusive collapse in parameter
occurs in the first layer. Coupling intensity between layers is selected by k = 1. The three lines in color describe the distribution for synchronization factors
in different layers. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 14. Distribution for factor of synchronization is calculated by changing the number for coupling channels. The initial state (developed from appropriate
value and external forcing current) is selected by target wave (ordered state), quiescent state and chaotic state, respectively. Diffusive collapse in parameter
occurs in the second layer and sampled signals are used to drive the first and the third layer via channel coupling. Coupling intensity between layers is
selected by k = 1. The three lines in color describe the distribution for synchronization factors in different layers. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

Fig. 15. Distribution for factor of synchronization is calculated by changing the number of coupling channels. The initial state (developed from arbitrary
initial values by applying appropriate external forcing current) is selected as quiescent state, bursting and chaotic state, respectively. Diffusive collapse
in parameter occurs in the first layer, and coupling intensity between layers is selected by k = 1. The three lines in color describe the distribution for
synchronization factors in different layers.

the spatial distribution is destroyed. With increasing the number of coupling channels, smaller factor of synchronization is
approached in the second and third layer of the network and regular spatial patterns could be formed. For isolate one layer
network, spiral wave and target wave can be developed to suppress the spatiotemporal chaos or disordered state. However,
the pattern synchronization among layers of multi-layer network becomes difficult, as a result, larger coupling intensity of
coupling channels and sufficient coupling channels should be switched on so that different layers can exchange signals and
keep pace with each other, in this way, synchronization can be approached.

4. Conclusions

The Hindmarsh–Rose neuron is used to describe the local kinetics of nodes in a multi-layer neuronal network. The
network composed of three layers and the adjacent layers are connected with finite coupling channels. In this way, neurons
with the same excitability can be included into the same layer while the realistic never system with excitability diversity
can be described by a multi-layer network. By imposing appropriate external forcing current, the three different layers can
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be kept under quiescent, spiking, bursting, and even chaotic state for each node, and different spatial distributions can be
formed. In the case of unidirectional coupling, the second layer can synchronize the first layer and form target wave or spiral
wave, while the third layer is often suppressed by disordered state because the developed target wave is neither stable nor
powerful. Furthermore, diffusive collapse in parameter realized by sudden switch in certain parameter is considered in the
network. It is found that the diffusive collapse in the first layer can be propagated to the next layer even the coupling channel
is under finite number. Furthermore, it is found that the synchronization pattern between different layers also depends on
the number of coupling channels connected to the adjacent layers. Our results could give possible guidance to understand
the signal propagation between different function regions and mode selection to different external stimulus.
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