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a b s t r a c t

A novel SAITS alcoholismmodel on networks is introduced, in which alcoholics are divided
into light problem alcoholics and heavy problem alcoholics. Susceptible individuals can
enter into the compartment of heavy problem alcoholics directly by contacting with light
problem alcoholics or heavy problem alcoholics and the heavy problem alcoholics who
receive treatment can relapse into the compartment of heavy problem alcoholics are also
considered. First, the dynamics of our model on unweighted networks, including the basic
reproduction number, existence and stability of equilibria are studied. Second, the models
with fixed weighted and adaptive weighted networks are introduced and investigated. At
last, some simulations are presented to illustrate and extend our results. Our results show
that it is very important to treat alcoholics to quit the drinking.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Alcohol problem has become a very serious problem for young people with the development of society. Approximately
40% of US college students engage in drinking [1]. The proportion of students from ages 18–24 who are reported driving
under the influence of alcohol also increase from 26.5% to 31.4% from 1998 to 2001 [2]. Drinking damages to the human
body is huge and contributes to a number of human disease, such as cirrhosis, heart disease and so on [3–5].

Many scholars study alcohol problems or epidemic by constructing mathematical model [6–13]. Huo, Chen and Xiang [6]
investigated a binge drinkingmodelwith time delay. Huo and Zhang [7] introduced a novel alcoholismmodelwhich involves
impact of Twitter and studied the occurrence of backward , forward andHopf bifurcations. Xiang, Song andHuo [8] addressed
the global property of a drinking model with public health educational campaigns. Huo, Huang andWang et al. [11] studied
a new social epidemic model to depict alcoholism with media coverage. Xiang, Tang and Huo [12] introduced a classical of
virus dynamics model with intracellular delay and humoral immunity.
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Fig. 1. Transfer diagram for alcoholism model.

Since the contact process of population cannot be uniform collision, many people begin to study the model on complex
networks. The complex network is composed of a large number of nodes and a few edges connecting two nodes, in which
each node represents an individual in the real system, and each edge between two nodes is a connection among individuals.
If a node has k edges, we can say the individual has k neighborhoods, and define the node’s degree is k. Many people have
studied epidemic models on complex networks [14–32]. Pastor-Satorras and Vespiganai [16] introduced a dynamical model
for the spreading of infectious on scale-free networks, and found the absence of an epidemic threshold and its associated
critical behavior. Yang,Wang andRen [17] proposed amodified SIRmodel, inwhich each nodewas assignedwith an identical
capability of active contacts, A, at each time step, and found that on scale-free networks, the density of the recovered
individuals in the present model showed a threshold behavior. Liu and Zhang [23] investigated an SEIRS epidemic model
on scale-free networks. Zhu, Fu and Chen [32] proposed a generalized epidemic model on complex networks. Their results
explained why the heterogeneous connectivity patterns impacted the epidemic threshold.

Recently, mathematical models for alcoholism on complex networks have been investigated by many authors [33–35].
Motivated by the above works, we consider a new SAITS alcoholism model on scale-free networks. Comparing with the
above models, we not only divide alcoholics into light problem alcoholics and heavy problem alcoholics but also take into
account that susceptible individuals can enter into the compartment of heavy problem alcoholics directly by contactingwith
light problem alcoholics or heavy problem alcoholics. Furthermore, we consider the heavy problem alcoholics who receive
treatment can relapse into the compartment of heavy problem alcoholics.

The rest of this paper is organized as follows: In the next section, a SAITS alcoholism model on scale-free networks is
formulated and analyzed. In Section 3, the basic reproduction number and existence of equilibria are studied. In Section 4,
stability analysis of the equilibria are given. In Section 5, the SAITS alcoholism model on weighted contact network is
also introduced. Numerical simulations are illustrated in Section 6. In Section 7, we give the sensitivity analysis and the
conclusion.

2. Model formulation

The daily alcohol consumption for men is no more than 4 standard drinks, and for women is no more than 3 standard
drinks. One ‘‘standard’’ drink contains roughly 14 grams of pure alcohol. The ceiling of ‘‘low-risk’’ alcohol consumption per
week is 14 standard drinks for men and 7 standard drinks for women [36]. If a person whose alcohol consumption is more
than daily or weekly drinking ceiling, he/she most likely develops into ‘‘abuse-alcohol ’’ or ‘‘addicted-alcohol’’. In our model,
each individual is represented by a node of the network and the edges are the connection between individuals. The whole
population is divided into four compartments, namely: susceptibles S(t), refer to the people who do not drink or drink only
moderately; the light problem alcoholics A(t), refer to the drinkers who drink beyond daily or weekly ceiling and drink 4 to
5 standard drinks per day; the heavy problem alcoholics I(t), refer to the drinkers who drink more than daily and weekly
limits and drink more than 5 standard drinks per day; the treatments T (t), refer to the drinkers who receive treatment.
We assume that each node in the k − th group has the same degree k, and share the same state. Correspondingly, they are
compartmentalized into four groups with densities at time t , that is, Sk(t), Ak(t), Ik(t), Tk(t), where the subscript k is the
degree (k = 1, 2, . . . , n). Transfer diagram for our model is described in Fig. 1.

Transfer diagram leads to the following system of ordinary differential equations:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dSk(t)
dt

= −kSk(t)(ρ1θ1(t) + ρ2θ2(t)) + bβAk(t) + dγ Tk(t),

dAk(t)
dt

= αkSk(t)(ρ1θ1(t) + ρ2θ2(t)) − bAk(t),

dIk(t)
dt

= b(1 − β)Ak(t) + (1 − α)kSk(t)(ρ1θ1(t) + ρ2θ2(t))

+ d(1 − γ )Tk(t) − cIk(t),
dTk(t)
dt

= cIk(t) − dTk(t),

(2.1)

where b, c, d and α, β, γ are nonnegative constants, and 0 ≤ α, β, γ ≤ 1.
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In fact, we know that only the contacts between susceptible and the light or heavy problem alcoholics nodes have possible
contributions in alcoholism transmission processes. A problem alcoholic node usually does not knowwhether its neighbors
are ‘‘infected’’ in a real alcoholism transmission processes, so we assume that each problem alcoholic node will contact
every neighbor once within one time step in our model. θ1(t) denotes the probability that a randomly selected neighbor
of a given node is a light problem alcoholics. Then kθ1(t) is the expected number of light problem alcoholic neighbors of
a susceptible node of degree k. θ2(t) denotes the probability that a randomly selected neighbor of a given node is a heavy
problem alcoholics. Then kθ2(t) is the expected number of heavy problem alcoholic neighbors of a susceptible node of degree
k. For uncorrelated networks [16,19], we have

θ1(t) =

∑
i

p(i|k)Ai(t) = ⟨k⟩−1
∑

i

ip(i)Ai(t),

θ2(t) =

∑
i

p(i|k)Ii(t) = ⟨k⟩−1
∑

i

ip(i)Ii(t).
(2.2)

Where, ⟨k⟩ =
∑

iip(i) denotes themean degree. p(k) is the degree distribution. The conditional probability p(i|k) denotes the
degree correlations that a node of degree k is connected to a node of degree i. In uncorrelated networks p(i|k) =

ip(i)
⟨k⟩ . θ1(t)

and θ2(t) are independent of k for uncorrelated networks. For simplicity, we set ρ(t) = ρ1θ1(t) + ρ2θ2(t). The meanings of
the parameters or variables in model (2.1) are as follows:

(i) ρ(t) represents the loss rate of susceptible individuals due to contact with the light problem alcoholic and the heavy
problem alcoholic, the portion αρ(t) turns into the light problem alcoholic compartment. The other turns into the
heavy problem alcoholic compartment. Parameter ρ1(ρ2) is the infectious rate for a susceptible individual after a
contact with a light problem alcoholic (a heavy problem alcoholic) one.

(ii) b is the removal rate of the light problem alcoholic compartment, and β is the proportion of the light problem
alcoholics that turn into susceptible. The other turns into the heavy problem alcoholic compartment.

(iii) c is the removal rate of a heavy problem alcoholic compartment.
(iv) d is the removal rate of the treatment compartment, and γ is the proportion of the treatment individuals that turn

into susceptible. The other turns into the heavy problem alcoholic compartment.

Since d(Sk(t)+Ak(t)+Ik(t)+Tk(t))
dt = 0, the total individual number is constant.Weassume that Sk(t)+Ak(t)+Ik(t)+Tk(t) = 1. The

system (2.1) represents human population, it is reasonable to assume that all state variables and parameters are nonnegative
for all t ≥ 0. It is easy to know that the region

Ω ={(Sk(t), Ak(t), Ik(t), Tk(t)) ∈ R4n
+

|Sk(t) + Ak(t) + Ik(t) + Tk(t) ≤ 1,

k = 1, 2, . . . , n},
(2.3)

is the positively invariant set for (2.1). Therefore, we consider the dynamics of system (2.1) in the set Ω in this paper.
Since Sk(t) = 1 − Ak(t) − Ik(t) − Tk(t), it is sufficient to study the follow system:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

dAk(t)
dt

= αk(1 − Ak(t) − Ik(t) − Tk(t))ρ(t) − bAk(t),

dIk(t)
dt

= b(1 − β)Ak(t) + (1 − α)k(1 − Ak(t) − Ik(t) − Tk(t))ρ(t)

+ d(1 − γ )Tk(t) − cIk(t),
dTk(t)
dt

= cIk(t) − dTk(t),

(2.4)

in the subspace

Ω∗
= {(Ak(t), Ik(t), Tk(t)) ∈ R3n

+
|Ak(t) + Ik(t) + Tk(t) ≤ 1, k = 1, 2, . . . , n}. (2.5)

3. The basic reproduction number and existence of equilibria

Theorem 1. Consider the system (2.4). Define

R0 =
⟨k2⟩
⟨k⟩

[
ρ1α

b
+

ρ2(1 − αβ)
cγ

]
,

then the following statements hold:
(1) There always exists a alcohol-free equilibrium E0

= {(0, 0, 0)}k;
(2) There is a unique alcoholism equilibrium E∗

= {(A∗

k, I
∗

k , T
∗

k )}k if R0 > 1.
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Proof. It is easy to know that the system (2.4) has a alcohol-free equilibrium E0
= {(0, 0, 0)}k.

To get the equilibrium solution (A∗

k, I
∗

k , T
∗

k ), we need to make the right side of system (2.4) equal to zero. Then the
equilibrium (A∗

k, I
∗

k , T
∗

k ) should satisfy⎧⎪⎪⎨⎪⎪⎩
αk(1 − Ak(t) − Ik(t) − Tk(t))ρ(t) − bAk(t) = 0,
b(1 − β)Ak(t) + (1 − α)k(1 − Ak(t) − Ik(t) − Tk(t))ρ(t)
+ d(1 − γ )Tk(t) − cIk(t) = 0,
cIk(t) − dTk(t) = 0.

(3.1)

A direct calculation yields:

A∗

k =
αkρcdγ

(c + d)Hk + c(αkρ + b)dγ
,

I∗k =
dHk

(c + d)Hk + c(αkρ + b)dγ
,

T ∗

k =
cHk

(c + d)Hk + c(αkρ + b)dγ
,

(3.2)

where

Hk = kρ[(αkρ + b)(1 − α) + b(1 − β)α − α(1 − α)kρ],

and ρ ≤ (ρ1 + ρ2).
Substituting A∗

k and I∗k of (3.2) into ρ, we obtain an equation of the form ρf (ρ) = 0, where

f (ρ) = 1 −

[
ρ1αcdγ + ρ2db(1 − αβ)

⟨k⟩

]∑ i2p(i)
(c + d)Hi + c(αkρ + b)dγ

.

Since f ′(ρ) > 0 and f (ρ1 + ρ2) > 0, the equation f (ρ) = 0 has a unique non-trivial solution if and only if f (0) < 0, i.e.

⟨k2⟩
⟨k⟩

[
ρ1α

b
+

ρ2(1 − αβ)
cγ

]
> 1,

where ⟨k2⟩ =
∑

i2p(i) is the diverging second moment. The proof is completed.

4. Stability analysis of the equilibria

4.1. The stability of the alcohol free equilibrium

Theorem 2. For system (2.4), the alcohol free equilibrium is globally asymptotically stable if R0 < 1.

Proof. In order to use the comparison theorem to prove the global stability of the alcohol free equilibrium, the equations in
(2.4) can be written in terms of⎛⎜⎜⎜⎜⎜⎝

dAk(t)
dt

dIk(t)
dt

dTk(t)
dt

⎞⎟⎟⎟⎟⎟⎠ = (F − V − U)

⎛⎝Ak(t)
Ik(t)
Tk(t)

⎞⎠ ,

where the matrices F , V ,U are given by

F(x) =

⎛⎝αkρ(t)(1 − Ak − Ik − Tk)
0
0

⎞⎠
3n×1

,

V(x) =

⎛⎝ bAk

cIk − (1 − α)kρ(t)(1 − Ak − Ik − Tk) − b(1 − β)Ak − d(1 − γ )Tk
dTk − cIk

⎞⎠
3n×1

.

The Jacobian matrices of F(x) and V(x) at the alcohol free equilibrium E0 are

F = DF(E0) =

⎛⎝F11 F12 0
0 0 0
0 0 0

⎞⎠
3n×3n

,
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V = DV
(
E0)

=

⎛⎝V11 0 0
V21 V22 V23

0 V32 V33

⎞⎠
3n×3n

,

F11 =
αρ1

⟨k⟩

⎛⎜⎜⎜⎝
P(1) 2P(2) · · · nP(n)
2P(1) 22P(2) · · · 2nP(n)

...
...

. . .
...

nP(1) 2nP(2) · · · n2P(n)

⎞⎟⎟⎟⎠
n×n

,

F12 =
αρ2

⟨k⟩

⎛⎜⎜⎜⎝
P(1) 2P(2) · · · nP(n)
2P(1) 22P(2) · · · 2nP(n)

...
...

. . .
...

nP(1) 2nP(2) · · · n2P(n)

⎞⎟⎟⎟⎠
n×n

,

V11 = bI, V21 = [−b(1 − β)]I − (1 − α)ρ1
ijp(j)
⟨k⟩ , V22 = cI − (1 − α)ρ2

ijp(j)
⟨k⟩ ,

V23 = [−d(1 − γ )]I, V32 = −cI, V33 = dI,

U =

⎛⎝ αkρ(t) αkρ(t) αkρ(t)
(1 − α)kρ(t) (1 − α)kρ(t) (1 − α)kρ(t)

0 0 0

⎞⎠
3n×3n

,

where U is a nonnegative matrix, I is identity matrix and 0 is zero matrix. Thus⎛⎜⎜⎜⎜⎜⎝
dAk(t)
dt

dIk(t)
dt

dTk(t)
dt

⎞⎟⎟⎟⎟⎟⎠ ≤ (F − V )

⎛⎝Ak(t)
Ik(t)
Tk(t)

⎞⎠ .

If R0 < 1, which is equivalent to F−V having all its eigenvalues in the left half plane. It follows that the linearized differential
inequality system is stable whenever R0 < 1. So, Ak → 0, Ik → 0, Tk → 0, as t → ∞, for this linear ordinary differential
equations system. Since it is a quasimonotone system, using a standard comparison theorem, Ak → 0, Ik → 0, Tk → 0, for
the nonlinear system for R0 < 1, so that the alcohol free equilibrium is globally asymptotically stable in Ω∗ when R0 < 1.
The proof is completed.

4.2. The persistence of system

In this subsection, at first, we introduce three lemmas to prove the persistence of the system (2.4).
On the basis of Theorem 2, we suppose that A1 = y1, A2 = y2, . . . , An = yn, I1 = yn+1, I2 = yn+2, . . . , In = y2n, T1 =

y2n+1, T2 = y2n+2, . . . , Tn = y3n and y = (y1, . . . , yn, yn+1, . . . , y2n, y2n+1, . . . , y3n)T . System (2.4) can be written as follows

dy
dt

= Ay + N(y),

where A = F − V ,

N(y) = −

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

αρ(y1 + yn+1 + y2n+1)
2αρ(y2 + yn+2 + y2n+2)

...

nαρ(yn + y2n + y3n)
(1 − α)ρ(y1 + yn+1 + y2n+1)
2(1 − α)ρ(y2 + yn+2 + y2n+2)

...

n(1 − α)ρ(yn + y2n + y3n)
0
...

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
3n×1

,
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A =

(
A11 A12

A21 A22

)
3n×3n

,

where

A11 =

(
B11 B12

B21 B22

)
2n×2n

,

where,

B11 =

⎛⎜⎝αρ1G1 − b · · · αρ1Gn
...

...
...

nαρ1G1 · · · nαρ1Gn − b

⎞⎟⎠
n×n

,

B12 =

⎛⎜⎝ αρ2G1 · · · αρ2Gn
...

...
...

nαρ2G1 · · · nαρ2Gn

⎞⎟⎠
n×n

,

B21 =

⎛⎜⎝(1 − β)b + (1 − α)ρ1G1 · · · (1 − α)ρ1Gn
...

...
...

nαρ1G1 · · · (1 − β)b + (1 − α)ρ1Gn

⎞⎟⎠
n×n

,

B22 =

⎛⎜⎝(1 − α)ρ2G1 − c · · · (1 − α)ρ2Gn
...

...
...

n(1 − α)ρ2G1 · · · n(1 − α)ρ2Gn − c

⎞⎟⎠
n×n

,

A12 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 · · · 0
...

...
...

0 · · · 0
d(1 − γ ) · · · 0

...
...

...

0 · · · d(1 − γ )

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
2n×n

,

A21 =

⎛⎜⎝0 · · · 0 c · · · 0
...

...
...

...
...

...

0 · · · 0 0 · · · c

⎞⎟⎠
n×2n

,

A22 = −dI,

and I is identity matrix. Define G(j) =
jp(j)
⟨k⟩ .

Lemma 1 ([37]). Let A = aij be an irreducible n × n matrix and assume aij ≥ 0 whenever i ̸= j. Then there exists an positive
eigenvector ω of A and the corresponding eigenvalue is S(A).

The stability modulus S(A) is defined by S(A) = maxReλi, i = 1 . . . n, where λi are the eigenvalues of A.

Lemma 2 ([37]). Consider the system
dy
dt

= Ay + N(y), (4.1)

where A is an n × n matrix and N(y) is continuously differentiable in a region D ⊂ Rn. Assume

(i) the compact convex set C ⊂ D is positively invariant with respect to the system (4.1), and 0 ∈ C;
(ii) limy→0 ∥ N(y) ∥ /∥ y ∥= 0;
(iii) there exist a constant r > 0 and a real eigenvector ω of AT such that (ω · y) ≥ r ∥ y ∥ for all y ∈ C;
(iv) (ω · N(y)) ≤ 0 for all y ∈ C;
(v) y = 0 is the largest positively invariant set contained in H = {y ∈ C |(ω · N(y)) = 0}.

Then either y = 0 is globally asymptotically stable in C, or for any y0 ∈ C − {0} the solution ϕ(t, y0) of (4.1) satisfies

lim inf
t→∞

∥ ϕ(t, y0) ∥≥ e,
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e > 0 independent of y0. Moreover, there exists a constant solution of (4.1), y = y∗, y∗ ∈ C − {0}.

Theorem 3. If R0 > 1, the system (2.4) is permanent, and there exists a small constant ξ > 0, such that

lim inf
t→∞

{Ak(t), Ik(t), Tk(t)}nk=1 ≥ ξ,

where (Ak(t), Ik(t), Tk(t)) is any solution of (2.4), satisfying (2.5), and Ak(0) > 0, Ik(0) > 0, Tk(0) > 0.

Proof. We will prove it by using the hypotheses of Lemma 2.

(i) We can see the compact convex Ω∗ is a positively invariant set for system (2.4), and 0 ∈ Ω∗;
(ii) Using the limit rule and mean inequality, we can work out limy→0 ∥ N(y) ∥ /∥ y ∥= 0;
(iii) Apparently A11

T
= (aij)2n×2n is irreducible and aij ≥ 0, for all i ̸= j. Then from Lemma 1, there exists an eigenvectorω =

(ω1, ω2, . . . , ω2n) of A11
T , and the associated eigenvalue is S(A11

T ). S(A11
T ) > 0, if R0 > 1. Let ω2n+1 = · · · = ω3n = 0

and ω = (ω1, ω2, . . . , ω3n), then ATω = S(A11
T )ω. The vector ω is the eigenvector of the matrix AT that corresponds to

the eigenvalue S(A11
T ). Assume r = min1≤i≤2n{ωi} > 0, for all y ∈ Ω∗, then we obtain (ω · y) ≥ r ∥ y ∥;

(iv) As each item of N(y) is nonpositive and ω ≥ 0, (ω · N(y)) ≤ 0;
(v) For system (2.4), H = {y ∈ Ω∗

|(ω · N(y)) = 0}. If y ∈ H, we can receive 1
⟨k⟩

∑n
i=1iωi(ρ1

∑n
k=1kp(k)yi +

ρ2
∑n

k=1kp(k)yn+i)(yi + yn+i + y2n+i) = 0 for all i = 1, 2, . . . , n. Since ω1 > 0, k > 0, thus (ρ1
∑n

k=1kp(k)yi +

ρ2
∑n

k=1kp(k)yn+i)(yi+yn+i+y2n+i) = 0.According to the system (2.4), we know y = 0 is the unique solution contained
in H, so, y = 0 is the largest positively invariant set contained in H = {y ∈ C |(ω · N(y)) = 0}. All the hypotheses of
Lemma 2 are satisfied. The proof is completed.

5. The SAITS alcoholismmodel on weighted contact networks

In order to study the effect of the intimacy between individuals, we will introduce the modified SAITS models which are
based on the model (2.1) with fixed weighted and adaptive weighted networks in this section.

5.1. The SAITS model on fixed weighted networks

The modified SAITS model with fixed weighted networks can be described by the following:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dSk(t)
dt

= −
λkSkg(k)
⟨kg(k)⟩

(θ1(t) + θ2(t)) + bβAk(t) + dγ Tk(t),

dAk(t)
dt

=
αλkSkg(k)
⟨kg(k)⟩

(θ1(t) + θ2(t)) − bAk(t),

dIk(t)
dt

= b(1 − β)Ak(t) +
(1 − α)λkSkg(k)

⟨kg(k)⟩
(θ1(t) + θ2(t)) + d(1 − γ )Tk(t)

− cIk(t),
dTk(t)
dt

= cIk(t) − dTk(t),

(5.1)

where Sk, Ak, Ik, Tk, b, c, d, α, β, γ have the samemeaning with the standard SAITS model (2.1). We only change the contact
transmission rate between susceptible people and light problem alcoholic or heavy problem alcoholic as Θ1 or Θ2, where

Θ1(t) =

∑
i

λik
ϕ1(i)
i

p(i|k)Ai(t) = ⟨k⟩−1
∑

i

λikϕ1(i)p(i)Ai(t),

Θ2(t) =

∑
i

λik
ϕ2(i)
i

p(i|k)Ii(t) = ⟨k⟩−1
∑

i

λikϕ2(i)p(i)Ii(t).
(5.2)

The meanings of the parameters or variables in (5.2) are as follows:

(i) λik is the transmission rate from nodes with degree i to nodes with degree k .
(ii) ϕ1(i)(ϕ2(i)) is the infectivity of light problem alcoholic (heavy problem alcoholic) with degree i.
(iii) The conditional probability p(i|k) denotes the degree correlations that a node of degree k is connected to a node of

degree i. Considering the uncorrelated network, p(i|k) =
ip(i)
⟨k⟩ , where ⟨k⟩ =

∑
iip(i) denotes the average degree of the

network.

Making use of node’s degrees to express the weights of edges is very common in many complex networks [33,38]. The
weight between two nodes with degree k and k′ may represent as a function of their degree. An example is ωkk′ = ω0(kk′)β ,
where ω0 and β always change according to different network. Through the above analysis, we know ωkk′ belongs to an
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edge, thus, the strength of a node which also can be obtained by summing the weights of the links that connected to it
(Nk = k

∑
k′p(k

′
|k)ωkk′ ). Now we use the function ω(i, j) = g(i)g(j) to express the edge weights between two nodes. We

assume that g(k) is an increasing function of k due to the nodes withmore connections will bemore powerful and gainmore
weights. So we can get the weight of a node with degree k, which is summing up the weights of links connected to it, hence,
φ(k) = k

∑
ip(i|k)ω(i, k). On uncorrelated networks, φ(k) = kg(k)⟨kg(k)⟩/⟨k⟩. We assume that a total transmission rate λi for

each node with degree k, thus we can obtain the transmission by the link from the i-degree node to a k-degree node.

λik = λi
ω(i, k)

φi
=

λg(k)⟨k⟩
⟨kg(k)⟩

. (5.3)

Substituting (5.3) into (5.2), we obtain

Θ ′

1(t) =
λg(k)
⟨kg(k)⟩

∑
i

ϕ1(i)p(i)Ai(t),

Θ ′

2(t) =
λg(k)
⟨kg(k)⟩

∑
i

ϕ2(i)p(i)Ii(t).
(5.4)

Substituting (5.4) into (2.1), we obtain the fixed weight system (5.1). Where θ1(t) =
∑

iϕ1(i)p(i)Ai(t) and θ2(t) =∑
iϕ2(i)p(i)Ii(t) in (5.1).
We denote that θ (t) = θ1(t) + θ2(t). Since Sk(t) = 1 − Ak(t) − Ik(t) − Tk(t), it is sufficient to study the following system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

dAk(t)
dt

=
αλk(1 − Ak(t) − Ik(t) − Tk(t))g(k)

⟨kg(k)⟩
θ (t) − bAk(t),

dIk(t)
dt

=
(1 − α)λk(1 − Ak(t) − Ik(t) − Tk(t))g(k)

⟨kg(k)⟩
θ (t) + b(1 − β)Ak(t)

+ d(1 − γ )Tk(t) − cIk(t),
dTk(t)
dt

= cIk(t) − dTk(t),

(5.5)

in the subspace

Ω∗
= {(Ak(t), Ik(t), Tk(t)) ∈ R3n

+
|Ak(t) + Ik(t) + Tk(t) ≤ 1, k = 1, 2, . . . , n}. (5.6)

Next, it is easy to have the following theorem.

Theorem 4. For system (5.5), define

R1 =
λ

⟨kg(k)⟩

[
α⟨kϕ1(k)g(k)⟩

b
+

⟨kϕ2(k)g(k)⟩(1 − αβ)
cγ

]
.

There always exists a alcohol-free equilibrium E1
= {(0, 0, 0)}k, when R0 > 1 has a unique alcoholism equilibrium E∗∗

= {(A∗∗

k ,

I∗∗

k , T ∗∗

k )}k.

Proof. To get the equilibrium solution (A∗∗

k , I∗∗

k , T ∗∗

k ), we need to make the right side of system (5.5) equal to zero. Then the
equilibrium (A∗∗

k , I∗∗

k , T ∗∗

k ) should satisfy⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

αλk(1 − Ak(t) − Ik(t) − Tk(t))g(k)
⟨kg(k)⟩

θ (t) − bAk(t) = 0,

(1 − α)λk(1 − Ak(t) − Ik(t) − Tk(t))g(k)
⟨kg(k)⟩

θ (t) + b(1 − β)Ak(t)

+ d(1 − γ )Tk(t) − cIk(t) = 0,

cIk(t) − dTk(t) = 0.

(5.7)

A direct calculation yields:

A∗∗

k =
αλkg(k)θcdγ ⟨kg(k)⟩

[(c + d)λkg(k)θHk
∗
+ c⟨kg(k)⟩(αλkg(k)θ + b⟨kg(k)⟩)dγ ]

,

I∗∗

k =
dλkg(k)θHk

∗

[(c + d)λkg(k)θHk
∗
+ c⟨kg(k)⟩(αλkg(k)θ + b⟨kg(k)⟩)dγ ]

,

T ∗∗

k =
cλkg(k)θHk

∗

[(c + d)λkg(k)θHk
∗
+ c⟨kg(k)⟩(αλkg(k)θ + b⟨kg(k)⟩)dγ ]

,

(5.8)
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Fig. 2. Each compartment population changes over time on scale-free networks when R0 < 1.

where

Hk
∗

= (αλkg(k)θ + b⟨kg(k)⟩)(1 − α) + b(1 − β)⟨kg(k)⟩α − (1 − α)λkg(k)θα.

Obviously, θ = 0 satisfies (5.8). Hence, Ak = Ik = Tk = 0 is an equilibrium of (5.5), which is called the alcohol-free
equilibrium.

Substituting A∗∗

k and I∗∗

k into θ (t) = θ1(t)+θ2(t), an equation of the form θF (θ ) = 0 is obtained, where F (θ ) = 1− (A+B)

A =

∑
k

ϕ1(k)P(k)
αλkg(k)cdγ ⟨kg(k)⟩

(c + d)λkg(k)θHk
∗
+ c⟨kg(k)⟩(αλkg(k)θ + b⟨kg(k)⟩)dγ

,

B =

∑
k

ϕ2(k)P(k)
dλkg(k)Hk

∗

(c + d)λkg(k)θHk
∗
+ c⟨kg(k)⟩(αλkg(k)θ + b⟨kg(k)⟩)dγ

.

Since F ′(θ ) > 0, and F (θ1 + θ2) > 0 the equation θF (θ ) = 0 has a unique non-trivial solution if and only if F (0) < 0, i.e.
λ

⟨kg(k)⟩

[
α⟨kϕ1(k)g(k)⟩

b
+

⟨kϕ2(k)g(k)⟩(1 − αβ)
cγ

]
> 1.

The proof is completed.

Similar to the proof of Theorems 2 and 3, we can also obtain follow theorem of the system (5.5).

Theorem 5. For system (5.5), there are two possibilities. Either R1 < 1, the alcohol free equilibrium E1 is globally asymptotically
stable inΩ∗, or R1 > 1, system (5.5) is permanent, that is there exists a constant ξ which satisfies lim inft→∞{Ak(t), Ik(t), Tk(t)} ≥

ξ , where (Ak(t), Ik(t), Tk(t)) is any solution of (5.5), satisfying (5.6), and Ak(0) > 0, Ik(0) > 0, Tk(0) > 0.

5.2. The SAITS model on adaptive weighted networks

Some individuals tend to be more cautious in social contacts and make some reflects to reducing the intimacy when
the alcoholism becomes severe. Such behaviors can change the strengths of nodes and the weights of links, which can be
seen as an adaptive weighted networks. Next, we will study the following the modified SAITS model on adaptive weighted
networks:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dSk(t)
dt

= −
λkSkg(k)exp(−h(k)(A(t) + I(t)))
⟨kg(k)exp(−h(k)(A(t) + I(t)))⟩

(θ1(t) + θ2(t)) + bβAk(t) + dγ Tk(t),

dAk(t)
dt

=
αλkSkg(k)exp(−h(k)(A(t) + I(t)))
⟨kg(k)exp(−h(k)(A(t) + I(t)))⟩

(θ1(t) + θ2(t)) − bAk(t),

dIk(t)
dt

= b(1 − β)Ak(t) +
(1 − α)λkSkg(k)exp(−h(k)(A(t) + I(t)))

⟨kg(k)exp(−h(k)(A(t) + I(t)))⟩
(θ1(t) + θ2(t))

+ d(1 − γ )Tk(t) − cIk(t),
dTk(t)
dt

= cIk(t) − dTk(t),

(5.9)
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We use the function

g ′(k, t) = g(k)exp(−h(k)(A(t) + I(t))),

where h(k) is a increasing function of k. The corresponding λik becomes

λik = λi
ω(i, k)

φi
=

λ⟨k⟩g(k)exp(−h(k)(A(t) + I(t)))
⟨kg(k)exp(−h(k)(A(t) + I(t)))⟩

. (5.10)

Substituting (5.10) into (5.2), we obtain

Θ ′′

1 (t) =
λg(k)exp(−h(k)(A(t) + I(t)))
⟨kg(k)exp(−h(k)(A(t) + I(t)))⟩

∑
i

ϕ1(i)P(i)Ai(t),

Θ ′′

2 (t) =
λg(k)exp(−h(k)(A(t) + I(t)))
⟨kg(k)exp(−h(k)(A(t) + I(t)))⟩

∑
i

ϕ2(i)P(i)Ii(t).
(5.11)

Substituting (5.11) into (2.1), we obtain the adaptive weighted system (5.9). Where θ1(t) =
∑

iϕ1(i)p(i)Ai(t) and θ2(t) =∑
iϕ2(i)p(i)Ii(t) in (5.9). Since Sk(t) = 1 − Ak(t) − Ik(t) − Tk(t), it is sufficient to study the following system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

dAk(t)
dt

=
αλk(1 − Ak(t) − Ik(t) − Tk(t))g(k)exp(−h(k)(A(t) + I(t)))

⟨kg(k)exp(−h(k)(A(t) + I(t)))⟩
θ (t) − bAk(t),

dIk(t)
dt

=
(1 − α)λk(1 − Ak(t) − Ik(t) − Tk(t))g(k)exp(−h(k)(A(t) + I(t)))

⟨kg(k)exp(−h(k)(A(t) + I(t)))⟩
θ (t)

+ b(1 − β)Ak(t) + d(1 − γ )Tk(t) − cIk(t),
dTk(t)
dt

= cIk(t) − dTk(t),

(5.12)

in the subspace

Ω∗
= {(Ak(t), Ik(t), Tk(t)) ∈ R3n

+
|Ak(t) + Ik(t) + Tk(t) ≤ 1, k = 1, 2, . . . , n}. (5.13)

The basic reproduction numbers of (5.12) is also R1,which implies that the adaption of weights cannot change the basic
reproduction number. Since the stability of the system (5.12) is difficult to prove, we will only give some simulations to
discuss it in the next section.

6. Numerical simulations

Numerical simulations are presented to illustrate the results of the system (2.1),(5.5) and (5.9). We take the scale-free
networks with degree distribution is P(k) = ck−γ (2 < γ ≤ 3).

In Fig. 2, b = 0.6, c = 0.8, d = 0.7, α = 0.4, β = 0.8, ρ1 = 0.03, ρ2 = 0.03, γ = 0.8, we know that the basic
reproduction number R0 = 0.9451. In Fig. 2(a) k = 100, in Fig. 2(b) k = 50. We can see that when R0 < 1, alcoholics
will disappear. Moreover, the smaller degree is, the faster the alcoholics disappear. This diagram is a better validation of
Theorem 2, the alcohol free equilibrium is globally asymptotically stable when R0 < 1.

Then we change the size of the infective rate in Fig. 3, let ρ1 = 0.09, ρ2 = 0.10 and the basic reproduction number
R0 = 3.0290. In Fig. 3(a) k = 100, in Fig. 3(b) k = 50. We can see that when R0 > 1, alcoholics will converge to a positive
stationary even for a small fraction of the light alcoholics and heavy alcoholics, which means the alcoholism state are stable.
Moreover, the larger degree is, the faster the alcoholism equilibrium converge to a positive stationary. Fig. 3 is a better
illustration of Theorem 3, alcoholism is permanent when R0 > 1.

Figs. 4 and 5 show the dynamical behavior of light alcoholic and heavy alcoholicwith different degree.We find the smaller
degree is, the faster the alcoholics disappear; the larger degree is, the larger value of the alcoholics level.

Fig. 6 describesmodels with different degrees on fixedweight networks. Let n = 40, g(k) = kr0, ϕ1(k) = kr1, ϕ2(k) = kr2,
where r0, r1, r2 are positive constants. r0 = 1, r1 = 0.6, r2 = 0.9, λ = 0.02, b = 0.2, c = 0.3, d = 0.5, α = 0.4, β =

0.4, γ = 0.8. Then R0 = 0.9761 and alcoholics decrease gradually even disappear.
In Fig. 7 n = 70, r0 = 1.2, r1 = 0.5, r2 = 0.9, λ = 0.013, b = 0.1, c = 0.1, d = 0.04, α = 0.9, β = 0.9, γ = 0.9. Then

R0 = 1.5213 and alcoholics densities reach their positive steady levels quickly and higher than the without weights.
Figs. 6 and 7 further validate the Theorem 5.
Figs. 8 and 9 illustrate the light alcoholic and heavy alcoholic with different degree on adaptive weight network when

R0 < 1 and R0 > 1. So, we choose the same parameters as Figs. 6 and 7, and h(k) = kr3, r3 = 1.1 When h(k) = 0, the
adaptive weight network is fixed weight network. Then we find that the light alcoholic and heavy alcoholic coverage to a
smaller value.
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Fig. 3. Each compartment population changes over time on scale-free networks when R0 > 1.

Fig. 4. Dynamical behavior of light alcoholic and heavy alcoholic with different degree on scale-free networks when R0 < 1.

Fig. 5. Dynamical behavior of light alcoholic and heavy alcoholic with different degree on scale-free networks when R0 > 1.
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Fig. 6. Dynamical behavior of light alcoholic and heavy alcoholic with different degree on fix weight network when R0 < 1.

Fig. 7. Dynamical behavior of light alcoholic and heavy alcoholic with different degree on fix weight network when R0 > 1.

Fig. 8. Dynamical behavior of light alcoholic and heavy alcoholic with different degree on adaptive weight network when R0 < 1.
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Fig. 9. Dynamical behavior of light alcoholic and heavy alcoholic with different degree on adaptive weight network when R0 > 1.

Fig. 10. The relationship between the basic reproduction number R0 and the parameters on scale-free networks.

7. Sensitivity analysis and conclusions

The sensitivity analysis of the basic reproductive number R0 will be performed in terms of the parameters, obviously

∂R0

∂ρ1
=

α⟨k2⟩
b⟨k⟩

,
∂R0

∂ρ2
=

(1 − αβ)⟨k2⟩
cγ ⟨k⟩

,

∂R0

∂α
=

(ρ1cγ − bβρ2)⟨k2⟩
bcγ ⟨k⟩

,
∂R0

∂β
= −

αρ2⟨k2⟩
cγ ⟨k⟩

,

By calculating, it is easy to know that ∂R0
∂ρ1

> 0, ∂R0
∂ρ2

> 0, ∂R0
∂β

< 0. From Fig. 10(a), we can see that larger ρ1 or ρ2 can lead to
larger R0, thatmeans long times contactwith light problem alcoholics or heavy problem alcoholics canmake the propagation
of alcoholism easier. From Fig. 10(b), R0 increases as α increases (when ρ1cγ > bβρ2,

∂R0
∂α

> 0).
In this paper, we have discussed a SAITS alcoholism model on scale-free networks, and subdivide the alcoholics into

two groups (light problem alcoholics and heavy problem alcoholics). Through calculation, we find that the model exists
two equilibria (alcohol-free equilibrium and alcoholism equilibrium). Using the existence of the alcoholism equilibrium,
we obtained the basic reproduction R0, which is closely related to the topology of the networks. As the basic reproduction
number R0 is in direct proportion to the value ⟨k2⟩

⟨k⟩ , network heterogeneity may make the alcoholism more easily to spread.
Using the comparison theorem, we analyze the stability of the alcohol-free equilibrium. If R0 < 1, the alcoholics will
disappear, but if not, the number of alcoholics will remain in a stable value. Furthermore, we also studied the modified
SAITS model on fixed and adaptive weighted networks. By the same calculation, we know that they have the same basic
reproduction R1. Numerical simulations also confirm these theoretical results.



262 H.-F. Huo et al. / Physica A 496 (2018) 249–262

By the definition of R0, we know that R0 ∝
⟨k2⟩

⟨k⟩ . So R0 is proportional to the second moment of the degree, which
diverges for increasing network sizes. we have that the alcoholism has a finite probability to generate a major outbreak
in heterogeneous networks whatever the infection rate, and the heterogeneity of networks may make the alcoholism more
easily to spread.

From Figs. 4 to 9, we find that the larger degree leads to larger value of the alcoholism level in ourmodels with or without
weighted.

From above sensitivity analysis, we can find the following control strategies: one is to reduce the infection rates ρ1 and
ρ2 or to reduce the contact rates θ1 and θ2. Due to the contact rates are affected by the degree k, by reducing the degree of
alcoholics, we also can control the spread of the alcoholism.

It is easy to know that ∂R0
∂b = −

αρ1⟨k2⟩

b2⟨k⟩
< 0, ∂R0

∂c = −
(1−αβ)ρ2⟨k2⟩

c2γ ⟨k⟩
< 0. Increasing the remove rates b, c of the light alcoholic

and heavy alcoholic compartment, R0 can also decrease. So, it is very important to treat alcoholics.
It is a very interesting to further study the effect of rewiring mechanism on alcoholic dynamics, and investigate the rich

dynamics such as backward bifurcation, bistability andHopf bifurcation,which is caused by rewiringmechanismon adaptive
networks. We leave these work in the future.
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