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Abstract
Carbon modified porous γ-Fe2O3 particles (PFe2O3–C) are synthesized by a high temperature calcination method using 
sodium chloride as a template. During the nucleation and carbonation process, the Fe(NO3)3–C10H15N5 complex uniformly 
dispersed on the surface of NaCl particles which can limit its longitudinal growth, thus forming independent and homogene-
ous nanoparticles with a diameter of about 30 nm. Because of this special structure, the γ-Fe2O3 particles have a sufficient 
interspace between them, which can not only provide a large number of active sites for storing lithium ions, but also shorten 
diffusion length for lithium ion transport. The introduction of carbon can offer additional lithium ion storage and improve 
overall electrical conductivity. This PFe2O3–C electrode exhibits excellent rate performance (1139, 1067, and 972 mAh g−1 
at 2, 5, and 10 C, respectively, 1 C = 924 mAh g−1) and cycle performance (up to 2100 mAh g−1 after 200 cycles at 0.3 C).

1  Introduction

Lithium-ion batteries (LIBs) play an important role  in 
energy storage devices due to their extraordinary proper-
ties, such as long cycle life, high work voltage, no memory 
effect and environment-friendliness [1–3]. However, energy 
density and power density of LIBs still cannot satisfy the 
ever-increasing demands of electric vehicles and portable 
electronics [4, 5]. In principle, the energy storage is mainly 
achieved through the reversible conversion reaction in the 
electrode materials, which is the key factor to determine 
the performance of LIBs [2]. Therefore, exploring new 
anode materials to replace commercial graphite anode, 
which exhibits low theoretical capacity of 372 mAh g−1, 
has aroused great concern [6].

In recent years, transition metal oxides (TMOs) gain 
increasing interest because of their high theoretical capacity 

(450–1500 mAh g−1) and high abundance [3, 7]. Among 
these materials, Fe2O3 attracts more attentions due to its 
extraordinary properties, including high theoretical capac-
ity (1007 mAh g−1), low cost, non-toxicity, high corrosion 
resistance and easy to exploit [8–11]. Unfortunately, due to 
its poor intrinsic electronic conductivity and huge volume 
variation during the repeated lithiation/delithiation process, 
Fe2O3 electrode has high irreversible capacity loss, low ini-
tial coulombic efficiency and cycling stability, which has 
been hindering its commercial applications in LIBs [9, 12].

To overcome these drawbacks, many approaches have 
been exploited and could be classified into two groups. One 
of them is the construction of a porous architecture,which 
can not only withstand large volume changes caused by 
Li+ insertion/extraction but also provide more active sites 
for storing lithium ions and effective paths for transferring 
lithium ion and electron [13–17]. Another one is the surface 
modification of TMOS nanostructure with carbonaceous 
materials to improve electrical conductivity as well as pro-
vide additional capacity [3, 8, 18–21]. Carbonaceous mate-
rials formed from different carbon precursors have differ-
ent structural and electrochemical properties. Among these 
carbon precursors, ionic liquids (ILs) are gaining more and 
more attention because of their outstanding characteristics 
such as low viscosity, good fluidity, low vapor pressure and 
good thermal stability. Therefore, carbonaceous materials 
derived from ILs have a higher electrical conductivity and 
bonding strength [22].
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In this work, we used sodium chloride as a template to 
synthesize PFe2O3–C at high temperatures. The produced 
PFe2O3–C is consisted of independent and homogeneous 
γ-Fe2O3 nanoparticles with a diameter of ~ 30 nm. When 
served as an anode material for LIBs, PFe2O3–C exhib-
its high specific capacity and remarkable rate capability. 
It was also found that the increase of capacity is mainly 
occurred below 0.61 V due to the growth of polymeric 
gel-like film.

2 � Experimental section

2.1 � Synthesis of PFe2O3–C

The reagents were obtained from commercial suppliers and 
used without further purification. In a typical process, 
Fe(NO3)3·9H2O (1.81 g), 1-butyl-3-methylimidazolium dicy-
anamide ([BMIm][N(CN)2]) (1.28 g), and NaCl (18 g) were 
first dissolved in 35 mL deionized water. The solution was 
then dried in a drying oven at 80 °C for 24 h. After that, the 
obtained materials were annealed at 760 °C for 2 h in a tube 
furnace in flowing argon atmosphere to obtain carbon-mod-
ified Fe nanoparticles coated on the NaCl particles (Fe–C@
NaCl). In the second step, the Fe–C@NaCl nanoparticles 
were heated at 260 °C for 6 h in air to oxidize the Fe to 
yield carbon-modified γ-Fe2O3 nanoparticles coated on the 
NaCl particles (PFe2O3–C@NaCl). After cooling to room 
temperature, the obtained powder was washed with deion-
ized water to dissolve the NaCl and PFe2O3–C was obtained. 
For comparison, Fe2O3–C composites were also synthesized 
by carbonizing the mixture of Fe(NO3)3·9H2O and [BMIm]
[N(CN)2] without NaCl under the same conditions.

2.2 � Structural and morphology characterization

The X-ray powder diffraction (XRD) patterns of PFe2O3–C@
NaCl, PFe2O3–C and Fe2O3–C were collected by using a 
Rigaku D/max-2500 with Cu Kα radiation. Transmission 
electron microscopy (TEM) characterizations were carried 
out with a JEOL JEM-2010F equipment. The morphologies 
of PFe2O3–C@NaCl, PFe2O3–C and Fe2O3–C were observed 
on field emission scanning electron microscope (FESEM) 
by using an acceleration voltage of 15 kV (tescan MIRA3). 
Raman spectra of the samples were recorded on LabRAM-
HR800. Nitrogen adsorption and desorption isotherms was 
performed on Quadrasorb SI. The surface area and pore size 
distribution of samples were calculated by BET and DJH 
method, respectively. The total pore volume was calculated 
by the adsorption amount of nitrogen at relative pressure 
(P/P0) of 0.99.

2.3 � Electrochemical measurement

The electrochemical measurements of the anode materials 
were carried out in a half coin-type cell. The coating slurry 
is prepared by mixing 70 wt% active material, 20 wt% 
Super P, and 10 wt% polyvinylidene fluoride in N-methyl 
pyrrolidone. The solvent was evaporated on a copper foil 
at 80 °C for 12 h. A lithium foil servedas counter elec-
trode and was separated from the work electrode with the 
Celgard 2400 micro-porous polypropylene film. The elec-
trolyte is a solution of 1 M lithium hexafluorophosphate 
(LiPF6) that dissolved in the mixture of ethylene carbonate 
(EC) and 1,2-dimethoxyethane (DME) with a volume ratio 
of 1:1. The cycle performance and rate capability were 
performed in the voltage range between 0.001 and 3.0 V 
(vs. Li/Li+) on a battery test system (LAND CT2001, 
China). Electrochemical impedance spectra (EIS) and 
cyclic voltammetry (CV) measurements were performed at 
room temperature on a CHI660D electrochemistry work-
station (Chenhua, China).

3 � Result and discussion

Figure 1 shows the XRD patterns of PFe2O3–C@NaCl, 
PFe2O3–C and Fe2O3–C. For PFe2O3–C@NaCl samples, 
the diffraction peaks at 27.3°, 31.6°, 45.3°, 53.7°, 56.3°, 
66.1°, 72.92°, 75.1° and 83.8° are assigned to (111), (200), 
(220), (311), (222), (400), (331), (420) and (422) planes of 
NaCl (JCPDS No 70-2509), respectively. The diffraction 
peak of γ-Fe2O3 was less obvious, which may be attributed 
to the low content of γ-Fe2O3 in PFe2O3–C@NaCl [23]. 
For PFe2O3–C and Fe2O3–C, all diffraction peaks well cor-
respond to the planes of maghemite γ-Fe2O3 (JCPDS No 
39-1346) [8, 24]. Sharp diffraction peaks indicate good 
crystallinity of both samples. No other diffraction peak 
was observed, indicating that no other polymorphs iron 
oxide generation [25]. From previous literature, it can be 
known that the γ-Fe2O3 will not be further oxidized dur-
ing the cycle [26]. The diffraction peak of carbon was not 
observed, which may be due to the low content of car-
bon PFe2O3–C and Fe2O3–C. XRD results indicate that 
PFe2O3–C and Fe2O3–C materials were successfully pre-
pared [27].

SEM and TEM are used to analyze the morphologies 
of PFe2O3–C@NaCl, PFe2O3–C and Fe2O3–C materi-
als. From Fig. 2a–c, we can see that the PFe2O3–C uni-
formly dispersed on the surface of NaCl particles. The 
addition of NaCl can limit the longitudinal growth of 
the Fe(NO3)3–C10H15N5 complex in nucleation and 
carbonation process, which result in independent and 
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Fig. 1   XRD patterns of PFe2O3–C@NaCl (a), PFe2O3–C and Fe2O3–C (b)

Fig. 2   a SEM image, b EDS elemental mapping, and c TEM image of PFe2O3–C@NaCl; d SEM image, e EDS elemental mapping, and f TEM 
image of PFe2O3–C; g SEM image and h TEM image of Fe2O3–C
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homogeneous nanoparticles with a diameter of ~ 30 nm. 
As can be seen from Fig. 2d, PFe2O3–C material has rough 
surfaces and the nanoparticles have a diameter of about 
30 nm. While the surface of Fe2O3–C is smooth and the 
Fe2O3 particles have a large diameter of ~ 500 nm (Fig. 2g, 
h). The result of EDS elemental analysis show the uni-
form distribution of carbon on the Fe2O3 particles, which 
can provide additional sites for lithium ion storage and 
improve the electrical conductivity (Fig. 2e). The TEM 
image (Fig. 2f) further confirms that PFe2O3–C consists of 
independent and homogeneous nanoparticles that are sepa-
rated by significant gap. This unique structure can shorten 
the lithium-ion and electron transport path, buffer the lith-
ium-ion volume expansion, and provide more active sites. 
In comparison, the Fe2O3–C material in Fig. 2g, h consists 
of bulk particles with no obvious boundaries between the 
particles. This structure cannot facilitate lithium ion trans-
port or buffer the volume expansion [28].

To further study the structure of carbon in the PFe2O3–C 
and Fe2O3–C, the Raman spectroscopy was applied. In 
Fig. 3a, the two broad Raman bands at about 1342 and 
1586 cm−1 correspond to the D-band of edge and disordered 
structures and the ordered sp2-hybridized G-band, respec-
tively [29]. The intensity ratio of D band to G band (ID/IG) 
is indicator of the crystallinity of various carbon materials. 
The larger value of ID/IG, the higher the degree of disorder 
in the carbon material [30]. The ID/IG ratios of PFe2O3–C 
and Fe2O3–C were 1.22 and 1.13, respectively, indicating 
that PFe2O3–C has more defects and lower ordered structure, 
which can provide more active sites for lithium ion storage, 
thus contributing extra specific capacity. Three large bands 
at 700 cm−1 (A1), 500 cm−1 (E) and 350 cm−1 (T1) attrib-
uted to the vibration modes of γ-Fe2O3, further confirming 
that Fe element was completely oxidized to γ-Fe2O3 [31].

N2 adsorption–desorption isotherms of PFe2O3–C and 
Fe2O3–C are shown in Fig. 3b. The isothermal curves of 

both samples exhibit a type IV curve with H3 hysteresis 
loop located at a relative pressure of 0.4–1.0. The pore size 
distribution (inset in Fig. 3b) indicates that PFe2O3–C has 
more micropores and mesopores [32, 33]. The specific sur-
face area of PFe2O3–C (26.9 m2 g−1) is about four times 
of Fe2O3–C (6.7 m2 g−1), which can provide more active 
sites for the storage of lithium ions and serve as an effective 
electron transport path [34]. The pore volume of PFe2O3–C 
(about 0.072 cm3 g−1) is also much larger than Fe2O3–C 
(about 0.021 cm3 g−1). Therefore, PFe2O3–C has better 
performance on buffering the volume change of the Fe2O3 
nanocrystal during charge/discharge cycles. This is consist-
ent with the results of TEM and SEM.

Figure 4a shows the CV plots of PFe2O3–C electrode for 
four cycles at a scan rate of 0.1 mV s−1 from 0 to 3.0 V (vs. 
Li/Li+). These plots display a typical pattern of Fe2O3–C 
composite [35, 36]. The electrochemical reaction of Li+ with 
Fe2O3 can be described by the following equations [37–40]:

In the first cathode curve, the peak at 0.97 V is related to 
the lithium intercalation into the γ-Fe2O3 crystal structure 
(Eq. 1). The capacity associated with the voltage drop is 
267 mAh g−1 (Fig. 4b), which is equivalent to the uptake 
of 1.6 mol of Li (x = 1.6, in Eq. 1) per mole of PFe2O3–C. 
Thus, the above steps generate the Li1.6Fe2O3 intermedi-
ate product, indicating that the crystal structure of γ-Fe2O3 
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is not destroyed [37]. The peak at 0.69 V results from the 
conversion of Li1.6Fe2O3 to Li2Fe2O3 (Eq. 4, consumed 
2–x = 0.4 mol of Li+), the reduction of Fe3+ to Fe0 (Eq. 2, 
consumed 4 mol Li+), and the formation of solid electrolyte 
interface (SEI) film. It is noteworthy that this peak is van-
ished at 0.42 V in the first cycle and 0.61 V in the following 
cycles. The capacity of 1508 mAh g−1 is achieved from the 
open circuit voltage (OCV) to the 0.42 V, representing a 
total uptake of 9 mol Li+ per mole of PFe2O3–C, which cor-
responds to a complete reduction of Fe3+ to Fe0 (including 

Eqs. 1, 2, 4) and SEI film. Obviously, 3 mol Li+is consumed 
to form SEI via subtraction. The total discharge capacity 
in the first cycle finally reached 1943.8 mAh g−1, which is 
equivalent to the uptake of 11.6 mol of Li+. Therefore, the 
proportion of Li+ to form SEI is 25.9%, which is in agree-
ment with the initial coulombic efficiency of 75.2% from 
voltage profiles of PFe2O3–C in Fig. 4b. Another two anodic 
peaks at 1.63 and 1.83 V are attributed to the oxidation of 
Fe0 to Fe2+ and Fe3+ (Eqs. 5, 6), respectively. In the subse-
quent cycles, the shift of the main cathode peak from 0.69 to 
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0.82 V derives from the small scale structural adjustment of 
PFe2O3–C, which enhances the electrical contact among the 
cell components [41]. Starting from the second cycle, the 
peak position and shape of the CV almost overlap, indicating 
that the electrode has great reversibility and integrity [42].

Figure 4b shows the voltage profiles of PFe2O3–C at the 
1st, 10th, 20th, 25th, 30th, 40th, 50th, 60th, and 70th cycles 
at a current density of 0.3 C. The first discharge and charge 
capacity are 1943.8 and 1462.1 mAh g−1, respectively. The 
irreversible capacity loss is due to the formation of SEI film 
and electrolyte decomposition, resulting in a coulombic 
efficiency of only 75.22% [43–45]. The discharge voltage 
plateau at 0.82 V in the first cycle is different from those 
of other cycles at 0.93 V, indicating that irreversible reac-
tions occurred in the first cycle, which is consistent with 
the CV results. The discharge curves below 0.61 V become 
higher and more sloping with the increase of cycle number, 
indicating that the growth of PGF tended to be easier due to 
the nanocrystallization of the particles during the repeated 
lithiation/delithiation process. Interestingly, after 25 cycles, 
a slight plateau appears at 1.6 V, becoming more obvious as 
charge/discharge cycles increase, even forming a semicircle 
at 70 cycles. The main reason is that the stable PGF gen-
erated on the surface of the active substance increases the 
diffusion distance and the resistance of Li+. Meanwhile, the 
charging curve is a sloping curve with no obvious voltage 
platform, owing to the large surface area induced during the 
former discharge process which could widen the reaction site 
energy range for intercalation compound or the amorphous 
character of the active materials itself.

Figure  4c shows the long cycling performance of 
PFe2O3–C and Fe2O3–C at a current density of 0.3 C. The 
reversible capacity of PFe2O3–C retains to 1306 mAh g−1 
after 20 cycles and increases to 1881 mAh g−1 after 100 
cycles. The capacity fading of PFe2O3–C electrode in the 
preliminary cycles is due to the decomposition of the SEI 
film on the Fe2O3-based anode surface. According to the 
SEM and BET results, the PFe2O3–C electrode has a larger 
specific surface area than Fe2O3–C, thus requiring ten more 
cycles to form the SEI film before terminating by insulate 
SEI. Subsequent increase in cycle capacity is due to the extra 
capacity resulting from the reversible formation/decomposi-
tion of the polymeric gel-like film (PGF) on the active mate-
rial surface [46]. This phenomenon has also been found in 
Fe3O4 and many other nanostructured metal oxide anodes 
[47–50]. Due to the high specific surface area of PFe2O3–C, 
more PGF can be grown on the surface of the active mate-
rial, leading to larger capacity increase of PFe2O3–C than 
Fe2O3–C.

To study the behavior of the discharge capacity (red 
curve) in each voltage range, the curves are split into two 
parts: above 0.61 V and below 0.61 V, as shown in Fig. 4d. 
The blue curve represents the capacity above 0.61 V and the 

green curve stands for the capacity below 0.61 V. The blue 
curve decreases gradually before 20 cycles, which is paral-
lel to the red curve. After 20 cycles, the blue curve remains 
relatively stable. While the green curve increases after the 
10th cycle, and then follows the trend of the red curve after 
20 cycles. This indicates that the increased capacity mainly 
occurs in the region below 0.61 V, which is due to the PGF 
growth and the fast decomposition of electrolyte at low 
potentials [51].

In addition to excellent reversible capacity, PFe2O3–C 
also exhibits outstanding rate performance. As shown in 
Fig. 4e, the rate capacity test was measured on a duplicate 
cell at different current rates of 0.3, 1, 2, 5, and 10 C in the 
voltage range of 0.01–3.0 V. The average reversible capac-
ity of PFe2O3–C electrode are 1427, 1193, 1139, 1067, 
and 972 mAh g−1 at 0.3, 1, 2, 5, and 10 C, respectively, 
which are significantly better than the Fe2O3–C electrode. 
The PFe2O3–C electrode still provides a higher reversible 
capacity of 972 mAh g−1 even at a high current density 
of 10 C, correponding to ~ 68.1% of the capacity at 0.3 C. 
When returning to 0.3 C, the reversible capacity of both 
samples increased in subsequent cycles, which is similar to 
the cycling performance in Fig. 4c.

The dynamic behavior of PFe2O3–C and Fe2O3–C was 
investigated by EIS, as shown in Fig. 5a. The semicircu-
lar diameter of PFe2O3–C is smaller than that of Fe2O3–C, 
indicating that the charge-transfer resistance of PFe2O3–C is 
small. To further study the PGF growth, the EIS of another 
duplicate at 10th, 20th, 30th, 40th, 50th, 84th and 99th 
cycles was measured at 1 C, as show in Fig. 5b. The imped-
ance data is analyzed by fitting the equivalent circuit (inset 
of Fig. 5b), where R0, Rf, and Rd represent the electrolyte 
resistance, the surface film resistance, and the charge trans-
fer resistance, respectively. Cf and Cd are the correspond-
ing capacitances of Rf and Rd, respectively. Therefore, the 
electronic component groups of Part f (Rf, Cf) and Part d 
(Rd, Cd) are related to the SEI layer and PGF, respectively. 
The fitted result for charge transfer resistance (Rd) is shown 
in Table 1. The value of Rd decreased in the first 30 cycles 
and increased in subsequent cycles, which is consistent with 
the capacity behavior. This is due to that a small amount of 
PGF is generated before the first 30 cycles and more PGF 
is grown after 30 cycles during charge–discharge process, 
thereby consuming more Li+. This result further explains 
why the voltage platform appears at ~ 1.6 V (Fig. 4b).

4 � Conclusions

PFe2O3–C particles were synthesized by using sodium 
chloride as a templating agent. Compared with Fe2O3–C, 
PFe2O3–C consists of uniform and independent Fe2O3 
nanoparticles with a diameter of about 30 nm, delivering 
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high rate capability and cycling performance. This can be 
attributed porous structure of PFe2O3–C, which can provide 
sufficient active sites for storing lithium ions, shorten the dif-
fusion length and buffer the volume expansion. In addition, 
integration of carbon can also offer additional lithium ion 
storage and improve the electrical conductivity of the mate-
rial. These results indicate this method can be applied to 
prepare electrode materials for highly efficient energy stor-
age applications, which with further optimization should be 
suitable for widespread applications.
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