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Abstract The interfacial adhesion and viscoelasticity of an additional mass layer have a significant influence
on the resonant frequency of a quartz crystal microbalance (QCM), especially when the attached mass layer
is thick. In this study, a detailed quantitative investigation is conducted on the influence of the interface
parameter and viscosity coefficient on the resonant frequency and admittance of a QCM. The obtained explicit
expression of free vibration of the QCMcan be numerically solved usingMuller’s method. The results obtained
in this study show that the viscoelasticity of the mass layer and its bonding characteristics significantly affect
the performances of the QCM, such as the resonance frequency, displacement, and stress distributions, and
the peak and bandwidth of admittance. The non-proportional relation between the resonance frequency and
thickness of the mass layer becomes obvious when the thickness of the mass layer is larger than 2% that
of the quartz plate. Meanwhile, the error between the exact solution and Sauerbrey’s solution is enlarged as
the interface parameter increases or the viscosity coefficient decreases. The proposed method will be more
precise in solving the resonant frequency than Sauerbrey’s equation does and able to provide a guidance for
determining the viscosity of an attachedmass layer. The novel points in the article are as follows: (i) The effects
of the imperfect interface and viscosity on the resonance frequency of a QCM at different layer thicknesses are
investigated. (ii) The difference between effects of the imperfect interface and viscosity on the characteristics
of the admittance is discussed in detail.

1 Introduction

Quartz crystal has been used in numerous acoustic wave devices, such as resonators, oscillators, filters, and
QCMs, because of its good temperature stability. A QCM, whose basic structure consists of a quartz crystal
plate with two electrodes bonded on the two sides of the plate, is a very sensitive device for the detection of
mass, measurement of film thickness, and component analysis of gases or liquids. Using a QCM, the physical
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characteristics of the attached mass layer such as density, thickness, and stiffness can be determined from the
frequency variation [1].

Attracted by its promising applications, many researchers have been engaged in improving the performance
of QCMs. Sauerbrey [2] reported a linear relationship between the variation of the resonance frequency of
an oscillating quartz crystal and the additional mass. This relationship is referred to as Sauerbrey’s equation.
Subsequent studies have indicated that the effect of mass loading outside the electrode area on the resonant
frequency of a QCM must be considered [3]. Kong et al. [4] discussed the effect of a partial mass layer on
the properties of QCM and found that the trapped modes were sensitive to the mass layer. More fundamental
studies have been conducted recently on the behaviors of QCMs [5–7].

The above-mentioned studies are all based on the assumption that no energy is dissipated in the additional
mass layer.However,QCMtechnique is usually used to characterize the properties of liquids [8] andviscoelastic
polymer films [9,10], where energy loss is inevitable because of the damping effect. Numerous studies have
been conducted on the characteristics of QCMs with respect to energy dissipation. For example, the frequency
shift of a quartz crystal resonator caused by Newtonian liquid was determined in [11]. Furthermore, the effects
of elastic and viscoelastic mass layers were theoretically investigated in [12]. The influence of fluid viscosity on
the cutoff frequency can be indirectly identified using the thickness-shear mode [13]. Arnau et al. [14] analyzed
a quartz crystal resonator based on the thickness-shear mode in a semi-infinite viscoelastic medium using an
extended Butterworth–Van Dyke model. The material parameters [15], e.g., admittance and impedance of
QCMs, were experimentally determined for detecting additional liquid layers [16].

A perfect interfacewas assumed between themass layer and the quartz crystal plate in the studiesmentioned
above. However, an imperfect bond is inevitable because of various factors such as microcracks, temperature
mismatch, corrosion, and flow. It is well known that Sauerbrey’s equation gives inaccurate results due to the
inhomogeneity of mass and amplitude of vibration distributions [17] or slip interfaces [18,19]. Considering
these limitations, we study the effect of an imperfect interface and viscoelastic mass layer on the properties
of QCMs. In contrast to previous research, both the inertial and stiffness effects of the viscoelastic mass layer
are considered in free and forced vibrations, and the frequency shift caused by the additional mass layer has
been calculated from our theoretical formula.

2 Theoretical analysis

The structure of a QCM comprises an AT-cut quartz crystal plate and a viscoelastic mass layer (Fig. 1). Its
thickness direction is along the y-axis, and the z-axis is perpendicular to the x–y plane. The viscoelastic mass
layer with thickness h2 is imperfectly attached to the quartz crystal plate of thickness h1. Two electrodes are
present at the two surfaces of the quartz crystal plate. The periodic voltage ± V0 exp (iωt) is simultaneously
applied to the electrodes. The electrodes are very thin compared with the additional mass layer; thus, their
mass and inertia are neglected [20].

When an electrical field is applied across the quartz crystal plate along the y-direction, a thickness-shear
mode can be generated in the lateral direction; the corresponding wave equation in the plane strain problem
can be expressed in the following form [21]:

⎧
⎨

⎩

c̄66
∂2u1
∂y2

= ρ1
∂2u1
∂t2

,

e26
∂2u1
∂y2

− ε22
∂2ϕ1
∂y2

= 0
(1)
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y
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h2
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Fig. 1 AT-cut quartz plate with viscoelastic mass layer
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where u1 and ϕ1 denote the mechanical displacement and electric potential function in the x-direction of the
quartz crystal plate, respectively, and ρ1 is the mass density; c̄66, e26, and ε22 are the effective elastic shear
modulus, the piezoelectric and dielectric constants of the quartz crystal, respectively. The effective elastic

shear modulus can be expressed as c̄66 = c66 + iωηq + e226
ε22

, where c66, ω, and ηq denote the elastic constant,

angular frequency, and viscosity coefficient of the quartz crystal, and i = √−1.
Similarly, the equation of motion of the viscoelastic layer is [12]:

μ̄
∂2u2
∂y2

= ρ2
∂2u2
∂t2

(2)

where u2 and ρ2 are the mechanical displacement in the x-direction and the density of the viscoelastic mass
layer, respectively, and μ̄ = μ + iωη is the effective elastic shear modulus. Here, μ and η are the elastic
constant and the viscosity coefficient of the mass layer, respectively.

The solutions of Eq. (1) can be easily derived as follows [21]:

u1 (y, t) = [A1 cos (k1y) + B1 sin (k1y)] e
iωt , (3.1)

ϕ1 (y, t) =
[
e26
ε22

A1 cos (k1y) + e26
ε22

B1 sin (k1y) + C1y + D1

]

eiωt , (3.2)

and the shear stress can be expressed as

σ (1)
yx (y, t) = (

c66 + iωηq
) ∂u1

∂y
+ e26

∂ϕ1

∂y

= {c̄66k1 [−A1 sin (k1y) + B1 cos (k1y)] + e26C1} eiωt (4)

where A1, B1,C1, and D1 are constants to be determined, and k1 = ω
√

ρ1
c̄66

is the wavenumber of the thickness-

shear mode in the quartz crystal plate.
Similarly, the solution of Eq. (2) can be written as

u2 (y, t) = [A2 cos (k2y) + B2 sin (k2y)] e
iωt , (5)

and the shear stress can be expressed as

σ (2)
yx (y, t) = μ̄

∂u2
∂y

= {μ̄k2 [−A2 sin (k2y) + B2 cos (k2y)]} eiωt (6)

where A2 and B2 are constants to be determined, and k2 = ω
√

ρ2
μ̄

is the corresponding wavenumber within

the viscoelastic mass layer. The six unknown constants can be determined from boundary conditions. Six
independent boundary conditions are required to describe the physical behavior of quartz and the viscoelastic
layer. The wave displacement generates an accompanying electrical potential through which the piezoelectric
wave can be electrically detected. The impedance/admittance analysis, in which the spectra of impedance and
admittance are recorded as functions of the excitation frequency, is widely used to detect the perturbation of
bulk acoustic wave (BAW) sensors. The admittance is defined as the ratio of the input current to voltage. The
current across the quartz crystal, which is the time derivative of the charge, can be expressed as [21]

I = − iωε22C1S (7)

where S is the effective electrode surface area and C1 is the constant from Eq. (3.2). The admittance of the
quartz crystal resonator can be given as

Y = I

V
= −iωε22S

2V0
C1 = G + i B (8)

where G is the conductance and B is the susceptance. The magnitude [|Y |] and phase angle (θ ) of admittance
can be expressed as [18]

|Y | = (G2 + B2)1/2, (9)

θ = tan−1
(
B

G

)

. (10)
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The impedance is Z = V
I = R + i X, where R and X denote the resistance and reactance, respectively [22].

The mechanical and electrical boundary and continuity conditions must be satisfied for the problem. For
the electrode and the traction-free surfaces, the stress component and electric potential function are given as
follows:

σ (1)
yx (−h1, t) = 0, σ (2)

yx (h2, t) = 0. (11)

ϕ1 (−h1, t) = V0, ϕ2 (0, t) = −V0. (12)

When the viscoelastic layer is imperfectly bonded to the surface of the AT-cut quartz crystal plate, the shear-
lag model, which has been verified experimentally, can be used to describe the mechanical behaviors of the
imperfect interface [23,24]. The interface is then treated as a layer with no thickness. However, it still possesses
elasticity and elastic strain energy, i.e., the shear displacement across the interface can be different to account
for its deformation [18,19,23,24]. Namely,

σ (1)
yx (y, t) = σ (2)

yx (y, t) = K [u2 (0, t) − u1 (0, t)] , (13)

where K represents the elastic constant of the interface. When K → 0, the two materials lose their mechanical
interaction, whereas if K → +∞, the two layers are attached perfectly. Substitution of Eqs. (3–6) into Eqs.
(11–13) yields the following six linear and homogeneous equations for coefficients A1, B1, C1, D1, A2, and
B2: ⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

c̄66k1 [A1 sin (k1h1) + B1 cos (k1h1)] + e26C1 = 0,
e26
ε22

[A1 cos (k1h1) − B1 sin (k1h1)] − C1h1 + D1 = V0,
μ̄k2 [−A2 sin (k2h2) + B2 cos (k2h2)] = 0,
c̄66k1B1 + e26C1 = μ̄k2B2,
μ̄k2B2 = K (A2 − A1) ,
e26
ε22

A1 + D1 = −V0.

(14)

From Eq. (14), we can derive the exact expressions of the undetermined coefficients as follows:

A2 = 2V0



, A1 = P1A2, B1 = P2A2, C1 = P3A2, D1 = −e26
ε22

P1A2 − V0, B2 = tan (k2h2) A2 (15)

where


 = e26
ε22

[P1 cos(k1h1) − P1 − P2 sin(k1h1)] − P3h1, (16.1)

P1 = 1 − μ̄

K
k2 tan(k2h2), (16.2)

P2 = μ̄k2 tan(k2h2) + c̄66k1P1 sin(k1h1)

c̄66k1 [1 − cos(k1h1)]
, (16.3)

P3 = − c̄66k1 [P2 cos(k1h1) + P1 sin(k1h1)]

e26
. (16.4)

When 
 = 0, the frequency equation of the thickness-shear mode in the QCM with zero initial voltage
(V0 = 0), which is related to the free vibration, is obtained as follows:

k1 [1 − cos(k1h1)]

[

1 − μ̄

K
k2 tan(k2h2)

] {

k1h1 sin(k1h1) − e226
c̄66ε22

[1 − cos(k1h1)]

}

+
[

k1 sin(k1h1)

[

1 − μ̄

K
k2 tan(k2h2)

]

+ μ̄

c̄66
k2 tan(k2h2)

]

×
{

k1h1 cos(k1h1) − e226
c̄66ε22

sin(k1h1)

}

= 0. (17)

For the sake of convenience, a dimensionless interface parameter Γ = c66
Kh1

has been introduced. When
Γ → +∞, the two layers are not attached, and as Γ → 0, the two layers are attached perfectly.

eq3a
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3 Results and discussion

In this study, the characteristics of both the free and forced vibrations of QCM are studied. Polymethyl
methacrylate (PMMA) is selected as the viscoelastic mass layer to investigate the effects of interface parameter
and viscosity coefficient on the vibration frequency and admittance of QCM. The material constants of PMMA
[25,26] and AT-cut quartz crystal [21,27] are listed in the “Appendix.” The thickness of the quartz crystal plate
(h1) is fixed to be 0.5 mm.

3.1 Free vibration analysis

Equation (17) is a transcendental equation, in which the resonance frequency cannot be expressed with an
explicit expression. Muller’s method [28], which is an extension of the secant method, can be employed if
the three initial values are properly selected for the convergence of the algorithm. However, Muller’s method
cannot be easily applied to our problem because the resonance frequency is unknown when the viscoelastic
mass layer is very thin. Nevertheless, the initial resonance frequency can be obtained from the forced vibration
analysis, as discussed in the next section.

Figure 2 shows the relationship between the resonance frequency ( f ) and thickness ratio (β = h2/h1)
under different conditions. When β = 0, the frequency is constant and equals 3.3117 MHz, which is the
resonance frequency of a blank quartz crystal plate with two electrodes. This validates the accuracy of the
numerical calculations of this study. The calculated results obtained from Sauerbrey’s equation [2,29] are also
plotted in Fig. 2 for comparison. As can be seen, when β varies between 0 and 0.02, the results calculated using
Eq. (17) are in accordance with those obtained with Sauerbrey’s equation. Namely, Sauerbrey’s equation is
applicable if the viscoelastic mass layer is sufficiently thin. However, when the thickness of the mass layer is
larger than 2% of the quartz plate thickness, i.e., β > 0.02, the effects of the interface parameter and viscosity
coefficient on the resonance frequency become increasingly obvious, and the non-proportional relation between
the resonance frequency and thickness ratio is increasingly evident. Therefore, Sauerbrey’s equation (
 f =
− f 3/20

√
ρLηL/

√
πρQμQ) in [2,29] cannot be used to exactly calculate the resonance frequency of the QCM

when the mass layer is thick. To describe the effects of an additional mass layer on the performance of QCMs
more accurately, the interaction between the layer and the AT-cut crystal plate and the viscoelasticity of the
mass layer must be included in the analysis.

To further study the effects of interface parameter and viscosity coefficient, the frequency shift
 f = f − f0
can be defined according to [20]. Here, f0 is the resonance frequency of the blank quartz crystal plate with two
electrodes, and f0 = 3.3117MHz in this study. Figures 3 and 4 show the variation of frequency shift (
 f )
with the interface parameter (Γ ) and viscosity coefficient (η), respectively. We fixed β = 0.1; therefore, 
 f

Fig. 2 Relationship between the resonance frequency and thickness ratio of the viscoelastic mass layer to the quartz plate
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Fig. 3 Relationship between the frequency shift and the interface parameter

Fig. 4 Relationship between the frequency shift and the viscosity coefficient

is not equal to zero when Γ = 0 and η = 0. Some conclusions can be drawn from Figs. 3 and 4. Firstly, both
Γ and η have a significant effect on 
 f . Secondly, the absolute value of 
 f increases as Γ increases because
the stiffness of the whole structure decreases. As η increases, the absolute value of 
 f decreases, because
the elastic constant of the mass layer increases when η increases, which increases the stiffness of the whole
structure.

The displacement and stress distributions along the thickness of the QCM under various conditions are
illustrated in Figs. 5 and 6, respectively. The displacement and stress components have divided the maximum
value when η = 0. In Fig. 5, we can see that themaximum displacement occurs at the surface of the viscoelastic
mass layer, whereas the vibration near the middle plane of the crystal is approximately zero. However, the
stress distribution is opposite. The maximum amplitude occurs at the middle plane of the crystal plate. When
y/h1 = −1 and y/h1 = 0.1, the traction is free, which is given by Eq. (11). It should be noted that the
displacement at the weak interface, i.e., y/h1 = 0, is discontinuous owing to the application of boundary
condition Eq. (13). Moreover, the amplitudes of displacement and stress decrease as the viscosity coefficient
increases because the damping effect which will lead to energy loss becomes more significant with increasing
viscosity coefficient.
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Fig. 5 Dimensionless displacement distribution along the thickness of QCM under different conditions

Fig. 6 Dimensionless stress distribution along the thickness of QCM under different conditions

3.2 Forced vibration analysis

In this section, forced vibration is discussed in detail for the case of V0 = 1 V. Figures 7 and 8 show the
effect of the interface parameter on the amplitude and phase of the admittance of the QCM, respectively,
with η = 0 and β = 0.1. The admittance reaches the maximum at the resonance frequency. Moreover, it
should be noted that the admittance amplitude is not zero at other frequencies. For instance, in the case of
Γ = 0, the amplitude of admittance is 0.05234 S at a resonance frequency of f = 3.12044 MHz. When
the frequency f = 3.12723 MHz, this value is only 0.00002 S. As the interface parameter increases, the
plots of the admittance magnitude and corresponding phase exhibit a shift of the resonance peak toward a
lower frequency as expected. The bandwidth of admittance at the resonant frequency is so narrow that the
magnitude of admittance is very sensitivity to the step of the external frequency near the resonance frequency.
Hence, the maximum value of admittance at resonances in the present contribution cannot be captured exactly.
On the other hand, from numerical simulation, the admittance magnitude reaches its maximum when the
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Fig. 7 Effect of interface parameter on the amplitude of admittance of the QCM when η = 0 and β = 0.1

Fig. 8 Effect of interface parameter on the phase of admittance of the QCM when η = 0 and β = 0.1

corresponding phase angle first approaches zero. This phenomenon is the same as that of the unperturbed
QCM [16].

The amplitude and phase distributions of the admittance of the QCM for some selected viscosities when
the interface is perfectly bonded are shown in Figs. 9 and 10, respectively. As can be seen from Fig. 9, the
resonant peak at η = 0 is much higher than those for other viscosity coefficients. As the viscosity coefficient
increases, the resonant peak becomes smaller, and the bandwidth increases as more energy has been dissipated.
Correspondingly, the mechanical quality factor of QCM has been reduced. For the case of antiresonance (the
amplitude of the admittance reaches minimum at the antiresonant frequency), the antiresonant peak increases
when the viscosity coefficient increases. As the viscosity coefficient increases, the phase of admittance becomes
less sharp (Fig. 10).When the viscosity coefficient is sufficiently large, for instance, if η is larger than 5 Ns/m2,
the phase of admittance is always larger than zero. It should be noted that at this time, i.e., the viscous coefficient
is adequately large, the mass layer takes on more liquid-like properties. This phenomenon is very important
for excitation within an oscillator [30,31]. However, the corresponding phase of admittance is still sensitive
to viscosity variations. In general, we have studied the effects of imperfect interface and viscoelasticity of an
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Fig. 9 Amplitude distribution of admittance of the QCM for some selected viscosities when Γ = 0 and β = 0.1

Fig. 10 Phase distribution of admittance of the QCM for some selected viscosities when Γ = 0 and β = 0.1

additional mass layer on QCM theoretically. Furthermore, the corresponding experimental investigations will
be carried out in the future.

4 Conclusions

In this study, a detailed quantitative investigation has been conducted on the influence of the interface parameter
and viscosity coefficient on the resonance frequency and admittance of QCMs. Muller’s method is employed
to solve the complex resonant frequency equation. The main conclusions can be summarized as follows:

(i) The non-proportional relation between the resonance frequency and thickness of the mass layer becomes
obvious when the thickness of the mass layer is larger than 2% of the quartz plate thickness. The resonance
frequency decreases as the interface parameter Γ increases from 0 to 1, while the resonance frequency
increases when the viscosity coefficient η increases from 0 to 10 Ns/m2.
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(ii) With the interface parameter increasing, the admittance magnitude and the corresponding phase exhibit a
corresponding shift of the resonance peak toward a lower frequency. As the viscosity coefficient increases,
the resonant peak of the admittance becomes smaller and the bandwidth increases. When the viscosity
coefficient η is larger than 5 Ns/m2, the phase of admittance is always larger than zero.

The results obtained in the paper can provide a theoretical guidance for expanding the applications ofQCMs
attached to viscoelastic mass layers and developing high-performance chemical sensors and biosensors.

Acknowledgements The authors gratefully acknowledge the financial support provided by the National Natural Science Foun-
dation of China (Nos. 31470908, 11672223, and 11472123) and the National 111 Project of China (No. B06024).

Appendix

Material constants of AT-cut quartz:
c66 = 29.01 × 109 N/m2, e26 = −0.095 C/m2, ε22 = 39.82 × 10−12 C/Vm,
ρ1 = 2649 kg/m3, ηq = 8.376 × 10−3 Ns/m2, S = 0.2984 cm2.
Material constants of PMMA:
μ = 1.43 × 109 N/m2, ρ2 = 1180 kg/m3.
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