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Abstract: Nano-Sb2O3 has excellent synergistic flame-retardant effects. It can effectively improve
the comprehensive physical and mechanical properties of composites, reduce the use of flame
retardants, save resources, and protect the environment. In this work, nanocomposites specimens
were prepared by the melt-blending method. The thermal stability, mechanical properties, and flame
retardancy of a nano-Sb2O3–brominated epoxy resin (BEO)–poly(butylene terephthalate) (PBT)
composite were analyzed, using TGA and differential scanning calorimetry (DSC), coupled with
EDX analysis, tensile testing, cone calorimeter tests, as well as scanning electron microscopy
(SEM) and flammability tests (limiting oxygen index (LOI), UL94). SEM observations showed that
the nano-Sb2O3 particles were homogeneously distributed within the PBT matrix, and the thermal
stability of PBT was improved. Moreover, the degree of crystallinity and the tensile strength were
improved, as a result of the superior dispersion and interfacial interactions between nano-Sb2O3

and PBT. At the same time, the limiting oxygen index and flame-retardant grade were increased as
the nano-Sb2O3 content increased. The results from the cone calorimeter test showed that the peak
heat release rate (PHRR), total heat release rate (THR), peak carbon dioxide production (PCO2P),
and peak carbon monoxide production (PCOP) of the nanocomposites were obviously reduced,
compared to those of the neat PBT matrix. Meanwhile, the SEM–energy dispersive spectrometry (EDX)
analysis of the residues indicated that a higher amount of C element was left, thus the charring layer
of the nanocomposites was compact. This showed that nano-Sb2O3 could promote the degradation
and charring of the PBT matrix, improving thermal stability and flame retardation.

Keywords: Nano-Sb2O3; poly(butylene terephthalate); thermostability; flammability

1. Introduction

With the development of lightweight-oriented automobiles, poly(butylene terephthalate) (PBT)
engineering plastics has become a focus of attention in the development and application of
automobiles [1]. However, neat PBT can easily burn if ignited, with a peak of heat release rate
up to 1404 kw/m2. A large amount of heat would be released in the combustion process, which would
cause increased fire accident fatalness [2]. Therefore, the development of PBT composite with
comprehensive mechanical properties, flame retardancy, and cost-effectiveness has become a key
to expand PBT application.

Halogen flame retardants are widely used because of their high flame retardancy efficiency and
low price. However, halogen flame retardants release toxic, corrosive gas and pollute the environment,
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which restrict their application. Carbon nanotubes and graphene has become a research focus [3,4],
but their complex preparation and high cost made them difficult to industrialize. Large additive
amount of phosphorus compounds, metal hydroxides, and organic montmorillonite deteriorate the
general physical and mechanical properties of matrix materials and restrict their further application.
To meet the needs of practical applications of polymer composites, halogen-free flame retardants,
nano-flame retardants and traditional halogen flame retardants were used together [5] in order to solve
the key problem in practical application of decreasing the amount of halogen flame retardants while
maintaining the flame retardancy and the comprehensive physical and mechanical properties of the
polymer composites.

The present research on flame retardancy of PBT matrix material is mainly focused on additive
flame retardants, which include flame retardants containing phosphorus, halogen–antimony synergetic
flame retardants, and different flame retardants used together. The dispersion performance of the
flame retardants [6], structure and properties of carbonized production [7], melting and dropping
production [8], degradation kinetics [9], and correlation of flame retardancy for the PBT composites
and retardant mechanism were investigated. For example, phosphorous flame retardants synergistic
montmorillonite [10], Sb2O3 [11], and carbon nanotubes [12] flame retardant PBT matrix materials
produced catalytic crosslinking in condensed phase, by which thermal stability and residual carbon
content increased. Meanwhile, the combustible volatile products were diluted, the free radicals in the
gas phase were captured, and the gas phase and the condensed phase worked together to produce the
effect of flame retardancy. A study found that nano-Sb2O3 particles exhibit excellent comprehensive
mechanical properties and flame retardancy [13] in the same condition. In view of this, the preparation
of nano-Sb2O3 particles [14,15], their surface modification [16], and synergistic flame retardancy were
researched, promoting the application and development of nano-Sb2O3. When nano-Sb2O3 and
halogen flame retardants [17], metal hydroxide [18], carbon nanotubes [19] were used together to
strengthen the flame-retardant efficiency of composites, the heat release rate and the total heat release
rate were obviously reduced, and the residue increased significantly.

In summary, characterization methods such as differential scanning calorimetry (DSC), TGA, SEM,
and cone calorimeter were used to investigate the crystallization behavior, thermal stability, mechanical
properties, and flame retardancy. The dispersion performance of the nano-Sb2O3 particles in PBT
composites and the residual carbon morphology after combustion were analyzed by SEM-equipped
energy dispersive spectrometry (EDX). On this foundation, synergistic flame retardancy of nano-Sb2O3

and brominated epoxy resin (BEO) were further studied.

2. Experimental

2.1. Materials

Poly(butylene terephthalate) (PBT, 1100-211M), with a density of 1.31 g/cm3, was provided by
Taiwan Chang Chun Plastics Co., Ltd., Suzhou, China. Nano-Sb2O3 were prepared and modified
by ball milling, as reported in our study [20]. The particle size was 50–100 nm. Brominated epoxy
resin (BEO, with an average weight of 20,000 and a bromine content of 53.2%) was provided by BASF
Chemical Co., Shanghai, China.

2.2. Preparation of Nanocomposites

First, PBT powder, BEO powder, and nano-Sb2O3 particles mixtures were dispersed by
high-energy ball milling. The ball grinding speed was 400 r/min, and the ball grinding time was 6 h.
The mixtures were dried at 110 ◦C overnight in a vacuum oven before use. Second, nanocomposites
were prepared with the dried mixtures through melt blending in a twin-screw extruder (SJZS-10A,
Wuhan Ruiming Plastic Machinery Co., Wuhan, China), and the barrel temperatures were set at 225 ◦C,
230 ◦C, 240 ◦C, and 245 ◦C, respectively. Finally, samples were obtained by microinjection molding
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(SZS-20, Wuhan Ruiming Plastic Machinery Co., Wuhan, China). The sample material ratio is shown
in Table 1. The mass ratios of the specimens (Br/Sb) were 9.8, 3.3, and 2.0.

Table 1. Composition of the formulations (wt %). BEO, brominated epoxy resin.

Sample No. PBT BEO Nano-Sb2O3

Neat PBT 100 0 0
PBT/BEO/nano-Sb2O3 1% 83 16 1
PBT/BEO/nano-Sb2O3 3% 81 16 3
PBT/BEO/nano-Sb2O3 5% 79 16 5

2.3. Characterization

At room temperature, tensile tests of the PBT matrix and its nanocomposites were conducted with
a WDW-500E tensile test machine (Nanjing Time Instrument Co., Ltd., Nanjing, China) at a speed of
20 mm/min. The average of the five individual determinations was calculated.

The surface morphology of fracture and carbonization were characterized by means of scanning
electron microscopy (SEM). Energy dispersive spectrometry (EDX) analyses were performed to study
the dispersion of nano-Sb2O3 particles in the PBT matrix at a high magnification. All samples were
coated with a thin homogenous gold layer by ion-sputtering to facilitate the measurements.

Differential scanning calorimetry (DSC) was used to analyze the samples’ thermal properties.
Scanning was performed from room temperature to 300 ◦C with a heating rate and a cooling rate of
10 ◦C/min under a nitrogen atmosphere.

A thermogravimetric analysis (TGA) instrument was used to measure the thermal decomposition
behaviors under nitrogen. The sample mass was in the range of 5–10 mg. The samples in an open
alumina crucible were heated from room temperature to 600 ◦C at a linear heating rate of 10 ◦C/min.

The limiting oxygen index (LOI) values were determined by a limiting oxygen index instrument,
according to GB/T 2406.2-2009 [21] (sample dimensions 80 × 10 × 4 mm3). A UL-94 vertical burning
test was carried out with a CZF-3 instrument, according to GB/T 2408-2008 (sample dimensions
125 × 12.5 × 3.2 mm3).

The fire behavior under forced-flaming conditions was assessed using a cone calorimeter. The tests
were performed according to the ISO 5660 standard [22]. The specimens (100 × 100 × 15 mm3) were
measured in aluminum foil and exposed horizontally to an external heat flux of 50 kW/m2 from the
heating coils, in well-ventilated conditions (air rate 24 L/s). The residues were collected after the test
and subsequently analyzed by SEM coupled with EDX.

3. Result and Discussion

3.1. Crystallization and Melting Behavior

The non-isothermal crystallization and melting behaviors of neat PBT and its nanocomposites
are presented in Figure 1. The obtained thermodynamic parameters of crystallization and melting
behavior, such as the initial crystallization temperature (Tonset), the crystallization peak temperature
(Tc), the crystallization rate of the polymer (Tonset-Tc), the enthalpy of melting (∆Hm), the nucleation
efficiency of the polymer (NE),a and the crystallinity (Xc) are listed in Table 2.

The degree of crystallinity of neat PBT was calculated from the melting enthalpies by the following
Equation (1) [23]:

Xc =
∆Hm

∆H0
m

× 100% (1)
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where ∆Hm is the melting enthalpy of the samples, and ∆H0
m is the heat of fusion corresponding to

100% crystalline PBT, which is 140 J/g [24]. The degree of crystallinity for nanocomposites was then
determined by considering the weight fraction of the PBT matrix (Wf), by the following Equation (2).

Xc =
∆Hm

∆H0
m × Wf

× 100% (2)

The nucleation efficiency of the nanocomposites was calculated by the following Equation (3)

NE =
(Tca−Tc1)

(Tc2−Tc1)
× 100% (3)

where Tca is the crystallization temperature after adding the nucleating agent, Tc1 is the crystallization
temperature of neat PBT, and Tc2 is the highest crystallization temperature of the system self-nucleation.

Table 2. Thermodynamic parameters for the nonisothermal crystallization of neat PBT and
its nanocomposites.

Sample No. Tonset (◦C) Tc (◦C) Tonset-Tc/◦C ∆Hm (J·g−1) NE (%) Xc (%)

Neat PBT 204.3 195.2 9.1 31.6 0 22.6
PBT/BEO/nano-Sb2O3 1% 205.9 199.7 6.2 31.9 49.5 27.5
PBT/BEO/nano-Sb2O3 3% 211.1 202.6 8.5 34.7 81.3 30.6
PBT/BEO/nano-Sb2O3 5% 213.1 203.4 9.7 29.6 90.1 26.8

It is shown in Table 2 that the addition of nano-Sb2O3 particles increased the crystallinity
temperature and nucleation efficiency of the nanocomposites and showed regularity. With the increase
of the mass fraction of the nano-Sb2O3 particles, the crystallization temperature and nucleation
efficiency increased, but the rate of this increase diminished. This was due to the effect of nano-Sb2O3

on PBT with heterogeneous nucleation. The increase of the crystallization temperature slowed
down the nucleation efficiency, which indicated that heterogeneous crystal nuclei increased with
the increase of the nano-Sb2O3 mass fraction, and nano-Sb2O3 particles dispersed difficultly and began
to agglomerate. The number of heterogeneous crystal nuclei reached the limit; with the increase of
the nano-Sb2O3 mass fraction, it first decreased and then rose. Tonset-Tc gradually decreased and then
rose with the increase of the mass fraction of nano-Sb2O3, which indicated that the crystallization
rate and crystallinity of PBT raised and then decreased. This was the result of interfacial interactions
between nanoparticles and PBT, strengthened after nano-Sb2O3 was added by surface treatment.
The free energy of the nucleation process was reduced, thus the PBT segment was easy to adsorb and
nucleate. When PBT started to crystallize at a higher temperature, more perfect and stable crystals were
formed, which was beneficial to the improvement of mechanical strength as well as to the reduction
of multiple melting behavior. Nucleation was also beneficial to regular stacking and crystallization
of PBT molecular chains [25]. The degree of crystallinity increased, and the grain was refined. However,
when the addition of nanoparticles reached a certain value, the particles as centers of the induction
of crystallization gradually became saturated. The function of the nanoparticles as nucleating agents
gradually reduced and the crystallinity of the composite system began to reduce. This is consistent with
the crystallization rule of carbon-based nanofillers/PBT composites studied by Huajie Yin et al. [26].

The curves of DSC non-isothermal crystallization are shown in Figure 1a. The curve of Tc

for nano-Sb2O3–PBT composites showed a remarkable increase of more than 8 ◦C at the highest
nano-Sb2O3 loading level (i.e., 5 wt %). This result showed that the introduction of nano-Sb2O3

accelerated the crystallization process of PBT through a heterogeneous nucleation effect. In the
following heating scan, multiple melting behaviors were observed in the neat PBT, as shown in
Figure 1b. The multiple melting behaviors were caused by fusion of a certain amount of the original
crystals, followed by recrystallization, and final melting of more perfect crystals, which partly formed
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during the primary crystallization and partly formed through the recrystallization process occurred
during the heating scan [27]. Conversely, the nano-Sb2O3/PBT composites showed single-melting
behavior. Nano-Sb2O3 acted as an additional active substrate, which promoted the crystallization
of the PBT matrix. This heterogeneous nucleation also led to the formation of more defect-ridden
crystalline lamellae and less ordered PBT crystals [28], which possessed a single-melting behavior
as a result. The presence of the nano-Sb2O3 reduced the ability of the polymer chains to be fully
incorporated into the growing crystalline lamellae to some extent.
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Figure 1. DSC non-isothermal crystallization curves (a) and melting curves (b) of neat poly(butylene
terephthalate) (PBT) and its nanocomposites.

3.2. Mechanical Properties

The mechanical properties of the PBT matrix and its nanocomposites are shown in Table 3. It can
be seen that the tensile strength and Young’s modulus of the nanocomposites became better than
those of the PBT matrix when adding to nano-Sb2O3 particles. The tensile strength was increased
by increasing the nano-Sb2O3 particles content from 1 wt % to 3 wt %, because the modifying
agent enhanced the interfacial adhesion between the nano-Sb2O3 particles and the PBT matrix,
which made the nano-Sb2O3 particles absorb certain loads in the tension process. On the other
hand, the improvement of grain refinement and crystallinity of the PBT removed stress concentration,
which was caused by ununiform grain size distribution during the tensile process. The ability to resist
deformation clearly improved. This showed that the tensile strength of the composites was increased,
and then the mechanical properties of PBT could be improved; however, they began to decrease when
the nano-Sb2O3 particles content reached 5 wt %. The decrease of the tensile strength was due to
the poor dispersion of the nano-Sb2O3 particles in the PBT matrix and the low level of interfacial
adhesion between the two components. The Young’s modulus of the nanocomposites increased with
the nano-Sb2O3 particles content and then slightly decreased at 5 wt %.

Table 3. Mechanical properties of the neat PBT and of its nanocomposites.

Sample No. Tensile Strength (MPa) Young’s Modulus (GPa)

Neat PBT 54.6 ± 0.5 1.8 ± 0.1
PBT/BEO/nano-Sb2O3 1% 61.1 ± 0.8 2.1 ± 0.1
PBT/BEO/nano-Sb2O3 3% 61.7 ± 0.7 2.3 ± 0.1
PBT/BEO/nano-Sb2O3 5% 58.5 ± 0.7 2.2 ± 0.1

The SEM micrographs and EDX images are shown in Figure 2. The dispersion of the nano-Sb2O3

particles in the PBT matrix was revealed by EDX. It was observed that nano-Sb2O3 particles were
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dispersed uniformly in the PBT matrix. However, the agglomeration tendency of the nano-Sb2O3

particles in the PBT matrix gradually augmented with the increase of the nano-Sb2O3 particles
content. As a result, the nanocomposites presented low tensile strength at the highest nano-Sb2O3

particles content. The nanocomposites containing 5 wt % nano-Sb2O3 particles had relatively smooth
appearances (Figure 2c). When the nano-Sb2O3 particles content was 1 wt % and 3 wt %, the tensile
fractured surfaces showed a rough region and cracks (Figure 2a,b). Less nano-Sb2O3 particles could act
as lower stress concentrators [29] in the nanocomposites, which could absorb more energy to improve
the tensile strength, consistently with the tensile test results.
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3.3. Thermal Decomposition Behaviors

The thermal degradation behaviors of the neat PBT and its composites were investigated by TGA
in N2. The mass loss and mass loss rate curves of the neat PBT and its composites are displayed in
Figure 3, and the related data are summarized in Table 4. T10% was defined as the temperature at
which the weight loss was 10 wt %. TPeak% was the maximum value of the weight loss. As we could
see, the decomposition of the neat PBT and its composites could be divided into two stages: a fast
decomposition stage and a stable carbon layer slow decomposition stage. The first stage occurred
mainly between 330 and 430 ◦C. In this stage, the decomposition temperature range of the neat PBT
matrix was narrow, concentrated at 370–430 ◦C, with a 10% weight loss that occurred at 372 ◦C,
a maximum mass loss rate at 407 ◦C, and a weight loss as high as 91%. The initial decomposition
temperature and peak heat release rate of PBT decreased after adding the nano-Sb2O3 flame retardant.
This effect might be attributed to the catalytic effect of the metal oxide on the fragmentation of the
macromolecule chain [30], which promoted the rapid oxidation of PBT. This demonstrated that an
interaction between the flame retardant and PBT promoted the flame-retardant composites to degrade
at lower temperatures, resulting in some high-quality residual char layer.

Table 4. Thermogravimetric analysis (TGA) data of the neat PBT and its nanocomposites under
nitrogen (10 ◦C/min, 5–10 mg; error ± 0.5 wt %, ±1 ◦C).

Sample No. T10% (◦C) TPeak% (◦C) Char at 600 ◦C (%)

Neat PBT 372 407 1.1
PBT/BEO/nano-Sb2O3 1% 355 396 2.9

PBT/BEO/nano-Sb2O3 3% (experimental) 357 391 11.8
PBT/BEO/nano-Sb2O3 3% (calculated) 353 401 8.0

PBT/BEO/nano-Sb2O3 5% 356 397 10.1

In the second stage, as the temperature continued to rise, the initial carbon layer decomposed
gradually, but the residues of composite were higher compared with the neat PBT. It has been reported
that an efficient charring process in flame-retardant polymeric materials occurred at a temperature
higher than the processing temperature but much lower than the decomposition temperature of the
polymer matrix [31]. As a result, this earlier weight loss in the first degradation step was favorable
to retard the degradation of the polymeric matrix in a higher temperature range. The neat PBT left
only 1.1 wt % char residue at 600 ◦C, while the addition of nano-Sb2O3 resulted in the improvement of
the char yields of PBT. When the nano-Sb2O3 content was 1 wt %, 3 wt %, and 5 wt %, the char yields
content at 600 ◦C was 2.9 wt %, 11.8 wt %, and 10.1 wt %, respectively. Moreover, the experimental value
of char residues for the 3 wt % nano-Sb2O3 composites at 600 ◦C was higher than the calculated value.
These results showed that the components of the nanocomposites interacted with each other, and the
presence of nano-Sb2O3 could significantly enhance the thermal stability of the nanocomposites.
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3.4. Fire Behaviour: Forced Flaming Combustion (Conecalorimeter)

The flame retardation properties of the neat PBT and its composites were investigated by
combustion calorimetry under a forced combustion to obtain thermal combustion data, including heat
release rate (HRR), peak heat release rate (PHRR), total heat release (THR), CO production (COP),
CO2 production (CO2P), smoke production rate (SPR), total smoke production (TSP), and so on.
The related data are summarized in Table 5.

HRR, PHRR, and THR are very important parameters to evaluate the combustion performance
of polymers, which could be used to predict the transferring speed of flame and fire size. As shown
in Figure 4a,b and Table 5, the HRR rose rapidly when the neat PBT had been burnt and decreased
rapidly after the vertical displacement reached the peak (917.5 kW/m2). By increasing the amount
of the nano-Sb2O3 flame retardant, the value of HRR and THR showed an obvious decrease for the
nanocomposites. When the content of the nano-Sb2O3 flame retardant exceeded 3 wt %, the HRR
value did not change much. The HRR, PHRR, and THR of the neat PBT were 375.1 kW/m2,
917.5 kW/m2, and 265.6 kW/m2, respectively. The amount of flame retardants added to nano-Sb2O3

was 1 wt %, 3 wt %, and 5 wt %. In these conditions, HRR, PHRR, and THR were significantly reduced,
with maximum decreases of 57.6%, 75.5%, and 43.7%. This showed that nano-Sb2O3 could reduce
the release of heat during the combustion process of the composite materials. As shown in Figure 5,
nano-Sb2O3 promoted the formation of a protective carbon layer on the surface of the composite in the
combustion process. The formation of a carbon layer prevented heat transfer and flame transmission
to a certain extent [32], retarded the combustion of the bottom polymer, inhibited the growth of HRR
and THR, and extended the combustion time. In addition, as can be seen from Figure 4b, the curve
inclination rate of THR decreased, which indicates that that fire spread rate could be reduced by the
addition of nano-Sb2O3.

SPR and TSP are also important parameters when evaluating flame retardancy [33]. As shown
in Figure 4c,d and Table 5, the SPR and TSP peak values were significantly higher after adding
nano-Sb2O3. The SPR and TSP peak values of the neat PBT were 0.073 m2/s and 342 m2/kg,
respectively. Adding different nano-Sb2O3 contents of 1 wt %, 3 wt %, and 5 wt %, the peak values
of SPR were 0.21 m2/s, 0.241 m2/s, and 0.33 m2/s, and the peak values of TSP were 662 m2/kg,
691 m2/kg, and 698 m2/kg. This indicated that the addition of nano-Sb2O3 could inhibit the release of
heat and increase the flue gas release. This was due to gas phase flame retardancy and solid phase
flame retardancy produced by the bromine–antimony synergistic flame retardant, further preventing
air from entering the surface of the specimens. Heat and mass transfer between polymer and heat
source were limited, which resulted in incomplete combustion of the bottom polymer. This was also
the main reason for the increase of smoke production.

Carbon dioxide (CO2) and carbon monoxide (CO) toxic gases produced in a fire are a chief cause
of asphyxiation. As shown in Figure 4e,f and Table 5, the release curves of CO2 and carbon monoxide
of the neat PBT are similar to the HRR and SPR curves, respectively. After adding nano-Sb2O3 flame
retardants, CO2 emission reduced observably. By adding different nano-Sb2O3 contents of 1 wt %,
3 wt %, and 5 wt %, CO2 emission were reduced by 65.7%, 68%, and 76.7%, and CO emission were
reduced by 35.4%, 8.8%, and 10.1%, respectively. This showed that the addition of nano-Sb2O3

flame retardants had the role of a flame inhibitor in the gas phase. The nano-Sb2O3 flame retardants
could effectively reduce the production of CO and CO2 in the combustion process, which has a great
significance in fire avoidance.
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Figure 4. (a) Heat release rate (HRR); (b) total heat release rate (THR); (c) smoke production rate (SPR);
(d) total smoke production (TSP); (e) CO2 production; (f) CO production as a function of the burning
time for the neat PBT and its composites in the cone calorimeter tests at 50 kW/m2.
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Table 5. Cone calorimeter data for the neat PBT and its composites at a heat flux of 50 kW/m2.

Sample No. TTI
(s)

HRR
(kW/m2)

PHRR
(kW/m2)

THR
(MJ/m2)

PSPR
(m2/s)

TSP
(m2/kg)

PCO2P
(kg/kg)

PCOP
(kg/kg)

Residue
(wt %)

Error ±2 ±10 ±10 ±1 ±0.01 ±30 ±0.01 ±0.002 ±0.5
Neat PBT 36 375.1 917.5 (451 s) a 265.6 0.073 342 18.91 1.058 3.6

PBT/BEO/nano-Sb2O3 1% 25 203.2 289.0 (789 s) a 189.4 0.210 662 6.48 0.683 7.7
PBT/BEO/nano-Sb2O3 3% 22 161.1 224.5 (841 s) a 154.2 0.241 691 6.06 0.965 11.3
PBT/BEO/nano-Sb2O3 5% 20 159.4 230.6 (616 s) a 149.5 0.330 698 4.41 0.951 10.5

TTI: time to ignition; HRR: average heat release rate; PHRR: peak heat release rate; THR: total heat release; PSPR:
average peak smoke production rate; TSP: total smoke production; PCO2P: peak CO2 production; PCOP: peak CO
production; a: time to peak heat release rate.
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protecting the underlying materials from further burning [34], which effectively reduces the fire 
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Figure 5. Digital photographs and SEM images of cone calorimeter residues of the neat PBT and
its composites: (a) neat PBT; (b) 1 wt % nano-Sb2O3 composites; (c) 3 wt % nano-Sb2O3 composites;
(d) 5 wt % nano-Sb2O3 composites, in the cone calorimeter tests at a heat flux of 50 kW/m2.
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In order to investigate the flame retardant mechanism, the structures of these residues were
characterized by SEM coupled with EDX. The digital photographs and SEM images of the residues for
the neat PBT and its composites are displayed in Figure 5. Here, Figure 5(a1–a3) were macroscopic
feature, low and high magnification of SEM images after burning, respectively. Representing method
in Figure 5b,c were same as 5a. As it could be seen from Figure 5, there appeared to be more solid
chars left behind on the surface of the nanocomposites than on that of the neat PBT. This could be
explained by the better carbonization effects of nano-Sb2O3 on the PBT matrix, in agreement with
the TGA analysis and cone calorimeter tests. The EDX results of the residues for the neat PBT and
its composites were summarized in Table 6. The residue samples of the neat PBT and the 1 wt %
nano-Sb2O3 composites were primarily composed of C and O elements. The residues were only
composed of C element when the content of nano-Sb2O3 were 3 wt % and 5 wt %. All composites were
free of Sb element. This showed that Sb element decomposed from the composites participated in
the gas-phase flame retardant action. The Br–Sb synergistic flame-retardancy system could effectively
trap radicals in the carbonization reaction. Figure 5c,d showed that the composites residue was firmer,
thicker, and more compact. The more compact carbon layer could effectively insulate the air and
act as an effective barrier to prevent heat transfer, protecting the underlying materials from further
burning [34], which effectively reduces the fire hazards.

Table 6. Energy dispersive x-ray (EDX) data of the residues for the neat PBT and its composites after
the cone calorimeter tests.

Sample No.
Element Content (wt %)

C O Sb

Neat PBT 95.69 4.31 0
PBT/BEO/Sb2O3 1% 95.91 4.09 0
PBT/BEO/Sb2O3 3% 100 0 0
PBT/BEO/Sb2O3 5% 100 0 0

3.5. Flammability

As simple and important methods for evaluating the flame retardancy of polymeric materials,
LOI testing and vertical flame testing were conducted to understand the combustion behavior of the
neat PBT and its composites, and the results are presented in Table 7 and Figure 6.

Table 7. Results of the limiting oxygen index (LOI) and UL-94 tests for the neat PBT and its composites.

Sample LOI (%)
UL94, 4.0 mm Bar

t1/t2
a (s) Dripping Rating

Neat PBT 21.8 ± 1 BC b Yes NR c

PBT/BEO/nano-Sb2O3 1% 24.6 ± 1 11.7/13.8 No V-1
PBT/BEO/nano-Sb2O33% 27.8 ± 1 5.1/7.6 No V-0
PBT/BEO/nano-Sb2O3 5% 28.7 ± 1 3.8/5.6 No V-0

a t1 and t2, average combustion times after the first and second application of the flame. b BC, burns to clamp. c NR,
not rated.

The results showed that the value of LOI was 21.8% for the neat PBT, and there was a droplet
which could ignite the absorbent cotton as it burned. When adding 1 wt % nano-Sb2O3 flame retardant,
the value of LOI increased to 24.6% and reached UL-94 V-1 grade. By increasing the amount of flame
retardant, the value of LOI showed a gradual increasing trend. When the amounts of nano-Sb2O3

flame retardant were 3 wt % and 5 wt %, the LOI value increased to 27.8% and 28.7%, reached
UL-94 V-0 grade, and showed lower times of burning. The results showed that the Br–Sb synergistic
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flame-retardant system had good flame retardant effect. This was consistent with the test results of the
cone calorimeter.
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3.6. Discussion of the Mechanism

On the basis of all the above experimental results and discussions, the synergistic flame-retardant
mechanism of nano-Sb2O3 and BEO can be elucidated as follows.

In the gas phase, the neat PBT formed active OH and H radicals during combustion. The reaction
rate increased rapidly and released a large amount of heat (Figure 4a,b). Meanwhile, mass loss became
greater, while, HBr, produced by pyrolysis, reacted with nano-Sb2O3, producing considerable SbBr3

at high temperature. The SbBr3 vapor could dilute ignitable gases, cut off the supply of oxygen,
and take away the heat produced during combustion. Meanwhile, the decomposition of SbBr3 could
produce bromine radicals which acted as radical scavengers [35]. The bromine radicals trapped the
OH and H radicals and changed the reaction mode. In a combusting reaction zone, the oxygen radicals
reacted with antimony and produced antimony oxide radicals, which also could trap active H and OH,
decreasing the reaction heat [36].

In the condensed phase, all the Sb element was released to the gas phase according to the
SEM–EDX tests (Table 6); however, nano-Sb2O3 synergizing with BEO could enhance the heat
absorption and decrease the material surface temperature rapidly during combustion. Nano-Sb2O3

could produce the effect of catalytic cross-linking during combustion [37], increasing the amount of
carbon residues and the thermal stability. This can be seen from the experimental values and theoretical
values of the 3 wt % nano-Sb2O3 thermogravimetric data (Figure 3). Nano-Sb2O3 could also enhance
the formation of char by the polymer, as demonstrated in the SEM images of cone calorimeter residues
(Figure 5). The surface of the char residue of the neat PBT exhibited a continuous porous morphology,
which indicated that a non-compact char residue was formed. The decomposition gases easily passed
through the char layer into the flame zone to take part in the burning. When adding nano-Sb2O3

particles, the porous morphology of the composites obviously decreased. A more continuous and
compact char residue was formed, which could efficiently prevent the decomposition gases from
passing through the char layer. The compact char layers that formed could provide a thermally
insulating barrier on the surface of the matrix and reduce heat and oxygen transmission into
the material.

4. Conclusions

The incorporation of nano-Sb2O3 could improve the crystallization temperature, crystallinity,
and thermal stability of the PBT matrix. SEM observations showed that the nano-Sb2O3 particles
were more homogeneously distributed within the PBT matrix. The tensile strength of the PBT
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matrix was improved, as a result of the good dispersion and interfacial interactions between the
nano-Sb2O3particles and the PBT matrix. The HRR, PHRR, THR, PCO2P, and PCOP were significantly
reduced, with a maximum reduction of 57.6%, 75.5%, 43.7%, 76.7%, and 10.1% in the cone calorimeter
tests. There was more char residue left, and the composites residue was firmer, thicker, and more
compact. The limiting oxygen index and the flame-retardant grade were significantly improved.
These results indicate that nano-Sb2O3 exhibited good synergistic flame-retardant properties and could
effectively inhibit the rapid combustion of the PBT matrix.
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