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Abstract Aiming at the problems of existing speech authentication algorithms, such as poor
robustness and discrimination, security vulnerability, low efficiency, poor ability of tamper
detection and localization, a high-performance speech perceptual hashing authentication
algorithm based on Discrete Wavelet Transform (DWT) and measurement matrix is proposed
in this paper. Firstly, the speech signal is conducted with DWT by applying preprocessing, and
the low-frequency wavelet coefficients are regarded as the perceptual feature value. Then the
measurement matrix controlled by chaos map is applied to reduce the dimension of feature
value. Finally, the feature value is used to generate the perceptual hash sequence by the process
of hashing structure. The measurement matrix is designed as the secret key to enhance the
security of the proposed algorithm. The experimental results demonstrates the proposed
algorithm has high efficiency in perceptual robustness, discrimination, time consumption
and security, as well as having a high accuracy of tampering detection and localization.
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1 Introduction

It is self-evident that the fundamental function of speech in human social activities is
important. For example, mobile voice communication is the most important and pervasive
way for telecommunication, telephone recording is an effective and powerful evidence
presented at court and news broadcasting is a popular medium for people to get essential
various news events. However, tampered or replaced critical speech clips in these cases will
result in a non-negligible impact on people, organizations and even countries. Especially, if the
content of news broadcasting was replaced, wrong information will be transmitted to the
public, which may have negative influence on society. Therefore, in order to guarantee the
reliable communication and content security of speech information, it is necessary to authen-
ticate the speech content and speech integrity [1, 18]. Traditional cryptographic hash function,
with the extreme sensitivity to speech content change, including noise and re-sampling, is not
suitable for speech content authentication anymore. Nevertheless, speech perceptual hash
function protects multimedia information by verifying the integrity of multimedia contents,
which makes multimedia information service safer and more reliable, also, introduces into
speech retrieval and speech content integrity certification [19].

The speech feature extraction methods based on perceptual hashing mainly include Log-
arithmic cepstral coefficients [15], Linear Spectrum Frequency (LSF) [14], Mel-Frequency
Cepstral Coefficients (MFCC) [7, 16], Linear Prediction Coefficients (LPC) [12], Hilbert
transform [20], temporal modulation [13] and bark-bands energy [17], etc. Nouri et al. [14]
proposed a speech authentication algorithm based on linear spectrum frequencies (LSF) and
DWT. Huang et al. proposed a speech perceptual hashing algorithm based on MFCC com-
bined with Linear Prediction Cepstral Coefficient (LPCC). The algorithm has good robustness
and accurate tamper localization, but it is not good at distinguishing different speech. Jiao et al.
[8] proposed a speech perceptual hashing algorithm which regarded the LSP parameterization
as the perceptual feature, and its hash structure depends on a secret key. Although the
algorithm has good security and collision resistance, strong robustness of content preserving
operations and good ability of detecting and locating malicious attack, the positional accuracy
of it remains to be improved. Chen et al. [2] proposed a speech hashing algorithm based on
LPCC and vector quantization. Kim et al. [9] proposed an audio fingerprint extraction
algorithm based on Modulated Complex Lapped Transform (MCLT) and adaptive
thresholding. It is robust for content preserving operations and its time consumption is low,
but the security is not under consideration. Chen et al. [4] proposed a novel audio perceptual
hashing algorithm which uses the Zernike matrix amplitude of audio signals and virtual
watermark detection to generate the perceptual hash sequence. The algorithm has good
robustness and discrimination no matter what the test object is, being it either music or speech.
While, its biggest disadvantage is that its running time is more than ten times of other
algorithms. Li et al. [10] proposed a speech perceptual hashing algorithm based on the
correlation coefficient of MFCC and a pseudo-random sequence. The algorithm has good
robustness and security. However, its discrimination is weak. Chen et al. [6] proposed a
perceptual hashing algorithm based on cochleagram and cross-recurrence analysis, the Non-
negative Matrix Factorization (NMF) is applied to reduce dimension. The algorithm has good
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robustness, but its efficiency is low. An audio perceptual hashing algorithm based on NMF and
Modified Discrete Cosine Transform (MDCT) coefficients are proposed by Li et al. [11]. It is
highly robust to content preserving operations, and its discrimination is good, but it needs more
time to generate hash sequences. Chen et al. [3] proposed a speech hash function based on NMF
and LPC, and the linear prediction analysis is applied to obtain LPCs, and the NMF is performed
on the LPCs to capture speech’s feature. However, the algorithm do not consider the security, and
the robustness against various types of content preserving operations is not up to the expected
standard. Chen et al. [5] proposed a perceptual hashing algorithm based on DWT and NMF, the
algorithm has good robustness and discrimination, but its time consumption is unsatisfied.

Aiming at the problems mentioned above, to improve authentication efficiency, achieve a
balance between robustness and discrimination, guarantee the security of the authentication
algorithm, realize high accuracy of tampering localization and meet the requirement of low
complexity, we present a high-performance speech perceptual hashing authentication algo-
rithm based on DWT and measurement matrix. The algorithm has better robustness and
discrimination, higher authentication efficiency based on speech content, good in security.
Furthermore, it can achieve a small range of tamper detection and localization. To assure the
security of the proposed algorithm, the measurement matrix is designed as a secret key to
encrypt the perceptual feature value, and the key consumption is reduced by combining the
measurement matrix with the logistic chaotic sequence.

The remaining part of this paper is organized as follows. Section 2 describes the discrete
wavelet transform. Section 3 introduces the details of the proposed algorithm. Section 4 gives
the experimental results and performance analysis as compared with other related methods.
Finally, we conclude our paper in Section 5.

2 Discrete wavelet transform

The discrete wavelet transform (DWT) is performed on discrete data sets to produce discrete
output. The time-frequency window can be adaptively transformed with the signal, and the
DWT can accurately express the local details of the speech signal.

For a given arbitrary function f(t) in the space of energy limited L2(R), and the expansion
that processed under the wavelet basis function φa,b(t) is called continuous wavelet transform
when a and b are continuous values. The function is represented as follows:

W f a; bð Þ ¼ ∫þ∞
−∞ f tð Þϕa;b tð Þdt ð1Þ

where ϕa;b tð Þ is the conjugate of φa,b(t), Wf (a, b) is called wavelet transform coefficients, t is
function variable, a and b are scale and translation parameters respectively.

The wavelet basis function φa, b(t) and wavelet transform coefficients Wf (a, b) are
processed with the discrete way against scale parameter a and translation parameter b.

Generally, the discrete formulas of scale parameter a, the translation parameter b are a ¼ a j
0

and b ¼ kaj
0b0, and the discrete wavelet basis function is represented as follows:

ϕ j;k ¼ a−1=20 ϕ a− j0 −kb0
� � ð2Þ

where j, k belong to integer set, the value of a0 and b0 depend on wavelet basis function φa, b(t)
and a0 > 0, b0 > 0.
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Therefore, the DWT transform of signal f (t) could be represented as follows:

W f j; kð Þ ¼ ∫þ∞
−∞ f tð Þϕ j;k tð Þdt ð3Þ

For the most of speech and images, the wavelet transform has good time–frequency
localization property, and low-frequency components contain the feature of the signal. The
high-frequency components contain the details of the signal. When processing the speech
signal s(t) using DWT, the speech signal s(t) is discretized firstly, and get the discrete signal
s(z). The DWT schematic of the speech signal is shown in Fig. 1.

In Fig. 1, H0(z) is the low-pass filter factor, and H1(z) is the high-pass filter factor. s(z) is
processed by down-sampling after filtered by low pass filter, and the coarse signal L(z) is
obtained whose scale and resolution are halved, which is called low-frequency components.
s(z) is processed by down-sampling after filtered by the high-pass filter, and the detail signal
H(z) is obtained whose scale and resolution are halved, which is called high-frequency
components.

3 The proposed algorithm

The processing flow of the proposed algorithm based on DWT and measurement matrix is
shown in Fig. 2. First, 3-level wavelet decomposition is performed on speech signal after the
pre-processing part, and then the low-frequency coefficients are processed by measurement
matrix to reduce the dimension. The hash vector is generated by using the feature value which
is extracted in the previous step. Finally, the speech signal is authenticated through matching
the corresponding hash sequences.

The measurement matrix is also used to encrypt data. If the entire measurement matrix is
regarded as a secret key, the key consumption will be large, in order to reduce the key
consumption while encrypting, the key-controlled measurement matrix [21] is introduced to
reduce the key consumption.

The processing steps are as follows:

Step 1: Pre-processing. The input speech signal s(t) needs to conduct a pre-emphasis
process to enhance the part of high frequency. The speech signal processed by pre-
emphasis is denoted as s′(t).
Step 2: DWT. 3-level wavelet decomposition is performed on speech signal s′(t), and
low-frequency coefficients are obtained, which are denoted as L = {Li | i = 1, 2, …, N},
and N is the length of low-frequency coefficients.
Step 3: Design the measurement matrix. A M × N Bernoulli matrix B is designed
according to Eq. 4, whose each element obeys Bernoulli distribution independently,

H0(z)

H1(z)

2

2

s(z)

L(z)

H(z)

Fig. 1 The DWT schematic of speech signal
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where P denotes the probability of the elements occurred.
When M = 4, N = 6, we will obtain a measurement matrix B as follows:

B ¼
0 0 0 0 −0:8660 0
0 0 0:8660 −0:8660 0 −0:8660
0 0 0 0 0 0:8660

−0:8660 0 0 −0:8660 0 0:8660

2
664

3
775

Generating a sequence with length M by logistic map with initial condition r =
0.11 should be generated, a = [a1, a2, …, aM], sorting the nature sequence n = [1, 2,
…, M] with the index sequence a, and noting the sorted sequence as a* = [a*1, a

*
2,

…, a*M], where a*i ∈ 1;M½ �,i ∈ [1,M], and then choosing the row vectors, B(a*1,:),
B(a*2,:), …, B(a*M,:) to group into the measurement matrix Φ.

Φ ¼
B a*1; :
� �

B a*2; :
� �

⋮
B a*M ; :
� �

2
664

3
775 ð5Þ
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Fig. 2 Schematic diagram of the proposed speech perceptual hashing authentication algorithm

Multimed Tools Appl (2018) 77:21653–21669 21657



Step 4: Feature matrix extraction. The speech feature values H = {H(i) | i = 1, 2, …, M}
are extracted by low frequency coefficients L = {Li | i = 1, 2, …, N} and measurement
matrix Φ. The detail is shown as follows:

Η ¼ Φ� L ð6Þ

Step 5: Hash structure. The hash sequence ph = {ph(i) | i = 1, 2,…,M} is decided by the
feature value vectorH. In the process of hash structure, the median value ofH is added to
vectorH and get a new vectorH = {H(i) | i = 1, 2,…,M+ 1},H(1) is the median value of
the original H. The hash sequence structure method is shown as follows:

ph ið Þ ¼ 1; if H iþ 1ð Þ > H ið Þ
0; else

i ¼ 1; 2;…;M
�

ð7Þ

where M is the dimension of row space of measurement matrix, its size is equal to the
length of the hash sequence.
Step 6: Hash digital distance and matching. For two different speech clips s1 and s2, and
the Hamming distance method is utilized to measure the distance between any two hash
vectors. The distance is measured by Bit Error Rate (BER), denoted as x:

x ¼ D PH s1ð Þ;PH s2ð Þð ¼ 1

M
∑
M

j¼1
phs1 jð Þ−phs2 jð Þj j ð8Þ

where phs1 and phs2 represent the hash sequence value of s1 and s2 respectively. PH(:)
represents speech hash function, which can make speech signal transform into the hash
sequence.

The problem of hash matching can be formulated as the hypothesis testing using the
hash function PH(:) and the distance measure D (:,:).

P0: if the perceptual content of the two speech clips s1 and s2 are the same:

D PH s1ð Þ;PH s2ð Þð Þ≤τ ð9Þ

P1: if the perceptual content of the two speech clips s1 and s2 are not the same:

D PH s1ð Þ;PH s2ð Þð Þ > τ ð10Þ
where τ represents the perceptual authentication threshold, PH(:) is called percep-
tual hashing function. By setting the size of matching threshold τ, and calculating
the digital distance between perceptual hashing sequences of the speech clips s1 and
s2, we can judge whether they are the same. If the digital distance D(:,:) ≤ τ, then
their perceptual content is treated as the same, and the authentication is passed,
otherwise it could not be passed.

21658 Multimed Tools Appl (2018) 77:21653–21669



In order to evaluate the performance of the authentication algorithm, the False Accept Rate
(FAR) and False Reject Rate (FRR) are defined as follows

RFAR τð Þ ¼ ∫τ−∞ f xjμ;σð Þ ¼ 1ffiffiffiffiffiffi
2π

p
σ
∫τ−∞e

− x−μð Þ2
2σ2 dx ð11Þ

RFRR τð Þ ¼ 1−∫τ−∞ f xjμ;σð Þ ¼ 1−
1ffiffiffiffiffiffi
2π

p
σ
∫τ−∞e

− x−μð Þ2
2σ2 dx ð12Þ

where RFAR and RFRR represent FAR and FRR respectively, μ and σ are the expected values
and the standard deviation of x, τ represents predetermined threshold. Generally speaking,
FAR and FRR are utilized to evaluate the robustness and discrimination of the authentication
algorithm. The lower FAR denotes the better discrimination, and the lower FRR denotes the
better robustness.

4 Experimental results and analysis

The speech data used in the experiment is from Texas Instruments and Massachusetts Institute
of Technology (TIMIT) and Text to Speech (TTS) speech library which composed of different
speech recorded by the Chinese men and women and English men and women. The library is
composed of 1280 speech clips that 16 bits signed, 16 kHz, mono, and 4 s long. Experimental
platform: Pentium® Dual-Core CPU E6700 @3.20GHz, 2G. Windows 7 SP1, MATLAB
R2013a. The parameters are set as measurement matrix of M ×N, where M = 360, N = 8002.

4.1 Robustness verification and analysis

In order to evaluate the robustness of the proposed algorithm, twelve common operations in
Table 1 are used to simulate the interference to the signal, including noise, volume, echo and
filter. On every speech in the speech data, twelve kinds of content preserving operations are
performed one by one. After that, the feature values of the processed speech are extracted, and
hash sequences are generated.

The BER mean values between the original speech and processed speech are obtained
according to their hash sequences. The BER mean values of the proposed algorithm and those
of algorithms in [3, 5, 11] are compared in Table 2.

It can be seen that the average BER values of the proposed algorithm are less than those of
the algorithms in [3, 5, 11], and the maximum value is 0.2189. Therefore it denotes that the
proposed algorithm has better robustness than the algorithms in [3, 5, 11].

For each speech clip in the speech data which composed of 1280 speech clips, the
BER between its hash vector and that of each of the remaining 1279 speech clips is
calculated, so a total amount of 818,560 BER values are obtained. According to the eight
content preserving operations in Group І, the corresponding FAR values and FRR values
are obtained, and the FAR-FRR curves of the proposed algorithm and the algorithms in
[3, 5, 11] are shown in Fig. 3.

In Fig. 3, the FAR-FRR curves of the proposed algorithm and the algorithm in [11] are not
cross, and the other two are cross. The threshold can be chosen in no crossing filed, if so, the
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FAR value and FRR value can be very small simultaneously. Therefore, the proposed
algorithm and the algorithm in [11] can distinguish the same processed speech and different
speech well. On the contrary, in Fig. 3(c) and Fig. 3(d), no matter what the threshold is, the
FAR and FRR cannot be very small simultaneously, so the algorithms in [3, 5] cannot be able
to distinguish the same processed speech and different speech well. Compared with the Ref.
[11], the obvious advantage of the proposed algorithm is that the threshold could be chosen in
a larger range 0.255–0.370, and the threshold of the algorithm [11] can only choose in 0.280–
0.315, which illustrates that the threshold could be adjusted more flexibly.

According to the all of the content-preserving operations in Table 1, all FAR values and
FRR values are obtained, and the FAR-FRR curves of the proposed algorithm and the
algorithms in [3, 5, 11] are shown in Fig. 4.

As shown in Fig. 4, when the other four kinds of content preserving operations in the Group
II are considered, the FAR-FRR curve of the proposed algorithm is still not cross which still
can distinguish the same processed speech and the different speech well. All the FAR-FRR
curves of the algorithms in [3, 5, 11] are cross, and no matter what is the threshold, the FAR
value and FRR value cannot be very small simultaneously, so they cannot distinguish the same
processed speech and the different speech well. Especially when the four content preserving

Table 1 Content-preserving operation

Group Operating means Level

І Volume adjustment І Volume up 50%
Volume adjustment II Volume down 50%
Echo addition Adding an echo signal with a delay of 300 ms and a decay to 25%
Noise addition SNR = 30 dB narrowband Gaussian noise, center frequency distribution

in 0 ~ 4 kHz
Noise reduction Noise reduction 75%
Re-quantization І Quantizing the audio clip to 8bits/sample and then back to 16bit /sample
Re-quantization II Quantizing the audio clip to 32bits/sample and then back to 16bit /sample
Re-sampling І The speech is conducted down-sampling to 8 kHz and then back to 16 kHz

II Re-sampling II The speech is conducted up-sampling to 32 kHz and then back to 16 kHz
FIR filter 12 order FIR low-pass filter with cutoff frequency of 3.4 kHz
MP3 compression І Compressing and decompressing the audio clip with MP3 at 48 kbps
MP3 compression II Compressing and decompressing the audio clip with MP3 at 128 kbps

Table 2 The average BER comparison results

Algorithm Proposed algorithm Algorithm [11] Algorithm [3] Algorithm [5]

Operating means Average BER
Volume Adjustment І 0.0264 0.0630 0.1761 0.0171
Volume Adjustment II 4.6 × 10−5 2.3 × 10−4 0.1469 5.9 × 10−4

Echo Addition 0.1427 0.1700 0.2132 0.1492
Noise addition 0.0063 0.0346 0.3883 0.0686
Noise reduction 0.0779 0.1137 0.3444 0.2492
Re-quantization І 0.0056 0.0296 0.3335 0.2065
Re-quantization II 0 8.6 × 10−6 4.3 × 10−6 0
Re-sampling І 0.0010 0.0217 0.1567 0.0034
Re-sampling II 0.0104 0.1280 0.3766 0.0364
FIR Filter 0.0136 0.1821 0.3668 0.2080
MP3 Compression І 0.0042 0.4851 0.4835 0.4520
MP3 Compression II 0.2189 0.4842 0.4817 0.4517
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operations in Group II are added, the FRR value is bigger, and it denotes that the robustness of
algorithm in [11] has become worse.

Comparing with other three algorithms on the robustness to content preserving operations
in Table 1, especially in the cases of re-sampling, low pass filtering, and MP3 compression,
when the threshold is small, the FRR value is still small enough. It demonstrates the proposed
algorithm has huge advantages on the robustness to different content preserving operations,
and its overall performance is superior to other three algorithms. When the threshold is chosen
in 0.345–0.370, the FAR value and FRR value are small enough simultaneously.

4.2 Discrimination analysis

The BER values of the different perceptual hashing sequence basically obey the normal
distribution. According to the BER values obtained in Section 4.1, the normal probability plot
distribution of the BER is shown in Fig. 5.

According to the DeMoivre-Laplace central limit theorem, the Hamming distance is similar

to a normal distribution (μ ¼ p;σ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p 1−pð Þp

=M , M is the number of bits in a hash
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Fig. 3 Comparison of the FAR-FRR curves between the proposed algorithm and the algorithms in [3, 5, 11]
according to content preserving operations in Group І: (a) the proposed algorithm (b) algorithm in [11] (c)
algorithm in [3] (d) algorithm in [5]
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sequence). In this paper, the Hamming distance is used to denote BER, μ is the mean value of
BER, σ denotes the standard deviation of BER, p represents the probability of B0^ and B1^,
and in the ideal situation p = 0.5. For M = 360 in the proposed algorithm, the mean and
standard deviation of the normal distribution are expected to be 0.5 and 0.0264 respectively.
Table 3 describes the mean and standard deviation of the normal distribution of theoretical
values and experimental values.

It can be seen in Table 3 that the normal distribution parameters obtained by the proposed
algorithm are very close to the theoretical ones. Therefore, the hash sequence generated by the
proposed algorithm has better randomness and collision resistance.

In order to assess the discrimination of the proposed algorithm in the different threshold, the
FAR value is obtained by Eq. 11. The comparison of the FAR curve according to experiment
and theoretical value is shown in Fig. 6, which can be seen that the FAR value of the proposed
algorithm is close to the theoretical value.

Table 4 describes the comparison of the FAR value of the proposed algorithm and the
algorithms in [3, 5, 10, 11].

As shown in Table 4, it shows the FAR values of different algorithms in different
thresholds. When the threshold τ=0.35, the FAR value of the proposed algorithm is smallest,
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Fig. 4 Comparison of the FAR-FRR curves between the proposed algorithm and the algorithms in [3, 5, 11]
according to content preserving operations in Table 1: (a) the proposed algorithm (b) algorithm in [11] (c)
algorithm in [3] (d) algorithm in [5]
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there are only 1.87 speech clips will be falsely accepted in 107 speech clips which is lower than
the FAR in [3, 5, 10, 11]. Therefore, we can conclude that the proposed algorithm achieves
better discrimination.

4.3 Security analysis

A key-controlled measurement matrix is introduced in the proposed algorithm to enhance the
security. The measurement matrix based on logistic chaos map is designed as the secret key to
encrypt speech feature value [21], due to the logistic chaotic sequence is combined with the
traditional measurement matrix, the key consumption is reduced. In this paper, speech feature
values are extracted by applying the measurement matrix, the measurement matrix is random
and satisfying Bernoulli distribution independently, and it could be regarded as one-time
encryption process if the speech features are extracted by applying measurement matrix.
Therefore, the security of the proposed algorithm is greatly improved by using measurement
matrix to extract speech feature.

4.4 Efficiency analysis

The computational efficiency of the algorithm is a very important evaluation criterion in the
speech content authentication system. To evaluate the complexity and computational efficien-
cy of the proposed algorithm, there are 400 speech clips were chosen randomly and the
average running time is recorded. Table 5 describes the comparison results of the proposed
algorithm and the algorithms in [3, 5, 6, 11].

Table 3 The parameters of normal
distribution Theoretical values Experimental values

μ σ μ σ
0.5 0.0264 0.4999 0.0295

0.4 0.45 0.5 0.55 0.6 0.65

0.001
0.003
0.01
0.02
0.05
0.10
0.25

0.50

0.75
0.90
0.95
0.98
0.99

0.997
0.999

Distance value

P
ro

b
ab

il
it

y

Fig. 5 The normal probability plot distribution of the BER
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As shown in Table 5, if the 4 s long speech clips were used to test, the efficiency of the
algorithm proposed in this paper is 10.6 times of that in [6], it is 2.7 times of that in [11], it is
1.9 times of that in [3], and it is 6.3 times of that in [5]. Because of the measurement matrix is
used to obtain speech feature values, the schedule is simple and the data is reduced obviously,
so the efficiency is improved. The calculation is large in [3, 5, 6, 11] because of the NMF is
used. What is more, the size of perceptual hash sequence of the proposed algorithm is 360
which is much shorter than the size (M = 64 × 8 × 4) in [8], and it is equal to the size in [3, 5,
11], it illustrates that the proposed algorithm has good ability of compactness and it is
beneficial for fast speech authentication. So the proposed algorithm can meet the requirements
of real-time authentication, and it has a big advantage to retrieve speech data on the cloud.

4.5 Tampering detection and localization

The small-scale malicious attack generally happened by cutting and pasting part of the speech
clip, the tampering range is small, and BER is low. If 10% of a speech clip is modified, the
BER is 0.1278. According to Table 2, it cannot distinguish the content preserving operations
and malicious attack.

The errors generated by malicious attack usually cause a great impact, and the BER which
produced by content preserving operations is distributed evenly. To distinguish content
preserving operations and malicious attacks, the local detection is needed. The BER value
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Fig. 6 FAR curve of the proposed algorithm

Table 4 Comparison of FAR values of different algorithms in different predetermined threshold

Threshold Proposed algorithm Algorithm [10] Algorithm [11] Algorithm [3] Algorithm [5]

0.10 3.654 × 10−42 2.939 × 10−12 3.114 × 10−35 1.486 × 10−22 3.031 × 10−38

0.20 1.405 × 10−24 1.144 × 10−5 1.557 × 10−20 1.742 × 10−13 2.689 × 10−22

0.25 1.215 × 10−17 2.715 × 10−4 9.493 × 10−15 6.777 × 10−10 5.174 × 10−16

0.30 6.166 × 10−12 1.682 × 10−3 5.314 × 10−10 6.264 × 10−7 7.542 × 10−11

0.35 1.874 × 10−7 9.99 × 10−3 2.785 × 10−6 1.398 × 10−4 8.490 × 10−7
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of local speech clips is used to judge whether it is caused by content preserving operation or
malicious attacks.

The average English speaking rate is 125 words per minute, and Chinese character speaking
rate is 250 words per minute, every English word needs 480 ms, and a Chinese character needs
240 ms. In order to improve the precision of tampering detection, the 4 s speech clips are
divided into 60 small blocks to generate the hash sequence, and the malicious attack is judged
by that if there are 3 or more hash values are different in continuous six hash values. The
tampering detection takes the small block as the minimum detection unit, if multiple positions
are attacked, the related block will also be detected, so the proposed algorithm can be able to
detect multiple positions of the signal.

Tampering detection and localization are shown in Fig. 7, the area of the red, elliptic curve
are tamper areas. In Fig. 7, there are two positions of the speech signal is attacked, and the
attacked positions are detected successfully by the proposed algorithm. The tampering detec-
tion takes the block as the minimum detection unit, and a 4 s long speech clip is divided into 60
small blocks which is regarded as the granularity, so the granularity is G = 4 s/60≈67ms which

Table 5 Comparison of operating efficiency of algorithms (average running time)

Algorithm Platform working frequency Average running time

Algorithm [6] 3.30 GHz 0.9008 s
Algorithm [11] 3.20 GHz 0.2270 s
Algorithm [3] 2.27 GHz 0.1603 s
Algorithm [5] 3.20 GHz 0.5323 s
Proposed algorithm 3.20 GHz 0.0848 s
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Fig. 7 Tampering detection and localization
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could meet the requirement of tampering detection and localization for one word or one
Chinese character.

Generally, the malicious attack types include replacement and deletion, the speech content
is randomly replaced and deleted by an attacker, so the integrity of speech content is damaged.
In order to assess the efficient of tampering detection and localization, a speech database which
includes 1020 speech clips is applied, and 10% of all speech clips are replaced randomly. The
result is as follows:

As shown in Table 6, the accuracy of tampering detection and localization is 91.96%, it
demonstrates that the part of the tampered speech could be detected and localized successfully
by the algorithm.

5 Conclusions and future work

In this paper, we proposed a high-performance speech perceptual hashing authentication algo-
rithm based onDWTandmeasurementmatrix. The algorithm greatly solves the existing problems
of current speech authentication algorithms and it achieves good robustness, discrimination, high
computational efficiency, strong ability of tampering and localization as well as safety. Based on
experiment results, the proposed algorithm has excellent robustness on content preserving
operations, especially in the cases of re-sampling, low pass filtering, and MP3 compression.
Besides, the efficiency of authentication and security are greatly enhanced by applying measure-
ment matrix based on logistic chaos map and the granularity is reduced to one word.

Further research is planned to combine the proposed perceptual hashing algorithm with
speech retrieval technology to implement efficient speech retrieval and authentication from
tremendous speech contents.
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