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Abstract: A theoretical investigation on the evolution of multidimensional nonlinear shock structures has been carried out

in magnetized dusty plasmas with nonadiabatic charge fluctuation and arbitrary dust size distribution in present work.

A Korteweg–de Vries (KdV) Burgers equation for the multidimensional shock structures is obtained by Reductive Per-

turbation Method, and the effects of arbitrary dust size distribution, nonadiabatic charge fluctuation and external magnetic

field on the multidimensional shock structures’ evolution are illustrated. The results show that there are two types of shock

structures, namely, oscillatory shock structures and monotone shock structures. Furthermore, the boundary condition

between oscillatory shock structures and monotone shock structures is discussed in great detail.

Keywords: Nonlinear multidimensional shock structures; Magnetized dusty plasmas; Charge fluctuation; Dust size

distribution
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1. Introduction

Nonlinear structures have received significant attention and

excited many research activities in dusty plasmas, where

the mass and the charge of dust grains are variant due to

collisions with ions and electrons in this system. The dif-

ferent collective motion of the plasma and some new eigen

modes will be introduced [1–4] in the scope of low fre-

quency and very low frequency oscillations due to the

exiting of charged dust grains. Its dynamic characteristic is

very important in investigating linear and nonlinear struc-

tures in dusty plasmas. In the linear theory, the non-adia-

batic (sch=sd is small but finite, where sch represents the

charging time scale, and sd represents the hydrodynamical

time scale.) charge fluctuation leads to the damping of the

linear structures [5–9]. However, in the nonlinear theory,

the non-adiabatic charge fluctuation results in an abnormal

dissipation which leads to the emergence of nonlinear

shock structures in dusty plasmas [10–12]. The nonlinear

shock structures with dust charge fluctuation have been

investigated by some researchers. Wang investigated the

nonlinear propagation of shock structures in dusty plasma

with the strongly coupled dust particles and nonadiabatic

dust charge fluctuation [13]. Dissipative shock structures

with trapped electrons and an oblique magnetic field in a

varying charge electronegative magnetized dusty plasma

are examined and it is shown that the shock structures are

more dispersive by a decrease of its magnitude or an

increase of the magnetic field obliqueness [14]. The

propagations of dust ion acoustic shock structures with

varying charge have been investigated due to nonextensive

electrons and the results show that both steepness and

strength of shock waves emergence by the electrons evolve

that is remote from their thermodynamic equilibrium with

parameter ranges which are consistent with Saturn’s rings

[15]. Shah investigated propagation of spherical and

cylindrical shock structures in a multispecies plasma with

consisting of Boltzmann light ions, adiabatic positively

charged inertial heavy ions, and inertialess kappa-dis-

tributed superthermal electrons [16].

Furthermore, the sizes of dust particles are different in a

real circumstance such as space plasmas, laboratory

experiments, gas-discharge plasmas, and so on. For space

plasmas in cometary environments, F and G rings of

Saturn, the dust grains are distributed by power law and for

laboratory dusty plasmas they have a Gaussian distribution.
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In general, the dust size distribution can be an arbitrary

function which depends on the experimental conditions and

the environment in the laboratory plasmas or in space

plasmas. Since the dust size distribution is an arbitrary

function in the laboratory, even in the space plasma, the

size of the dust particles are asymmetrical. For an arbitrary

dust size distribution dusty plasma, Ma et al. [17] observed

the propagation of dust negative ion acoustic solitary

waves in a magnetized multi-ion dusty plasma containing

hot isothermal electron, ions (light positive ions and heavy

negative ions) and extremely massive charge fluctuating

dust grains by employing the reductive perturbation

method. The research results can be applied to dusty

plasmas with these asymmetric dust size distribution both

in the laboratory and in space plasmas. It has been found

that there has been of great interest in study of the propa-

gation of plasma waves in dusty plasmas with dust size

distribution. Recently, the transportation of mass, heat and

charges of dust grains in a weakly ionized plasma has been

investigated [18]. Banerjee [19] studied the properties of

dust acoustic solitary waves in dusty plasmas with dust

grains having power law size distribution and kappa-dis-

tributed ions. The dust particles with different size play an

important role in plasma collective behavior. It is necessary

to study the effect of dust size distribution on the propa-

gation of waves in dusty plasmas, either in the space or

laboratory plasmas. The research results can be applied to

these asymmetric dust size distribution dusty plasmas both

in the laboratory and in space plasmas.

Due to the above factors, the combined effects of dust

size distribution and the nonadibatic charge fluctuation on

the propagation of shock structures in dusty plasmas with

external magnetized field are investigated under the

assumption that sch=sd is small but finite in present study.

We obtain a Korteweg–de Vries (KdV) Burgers equation

by reductive perturbation methods. The propagation of dust

acoustic shock structures and the boundary condition

between the monotone shock structures and the oscillatory

shock structures are discussed with the dust charge varia-

tion, the external magnetized field and dust size distribu-

tion in great detail.

2. Theoretical model

We consider nonlinear multidimensional shock structures

in magnetized dusty plasmas with stationary dust particles

with N different species, nonthermal ions and Boltzmann

distributed electrons. The external static magnetic field

directed along z axis B0 k z0, where z0 is a unit vector along

z direction. The quasi neutrality equilibrant condition is

given by ni0 ¼
PN

j¼1 Zdj0ndj0 þ ne0, where ni0, ndj0 and ne0
are the unperturbed ion, jth dust grain, and electron

densities, respectively, and Zdj0 represents the jth dust

charge number. The basic set of equations governing the

dynamics of dust acoustic shock structures in dusty plas-

mas are

ondj

ot
þr� ðndjVdjÞ ¼ 0

oVdj

ot
þVdj �rVdj ¼

1

mdj

ðZdj0� qdjÞ r/�xcdðVdj� z0Þ
� �

r2/¼
XN

j¼1

ðZdj0� qdjÞndjþ ne� ni

8
>>>>>>>><

>>>>>>>>:

ð1Þ

where Vdj ¼ ðudj; vdj;wdjÞ is the jth dust grains’ velocity

nondimensionalize by the dust acoustic speed Cd ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Zd0Ti=md

p
(Ti is the ion-temperature), md ¼

PN
j¼1 mdjndj0=Ntot is the average dust grains’ mass, and

Zd0 ¼
PN

j¼1 Zdj0ndj0=Ntot is the average dust charged

number. ndj0 and ni0 are number densities of dust grain and

ions normalized by Ntot and ni0. / is the dimensionless

electrostatic plasma potential. The space x and time t co-

ordinates are normalized by the Debye length kDd ¼
Cd=xpd and the inverse of dust plasma period

x�1
pd ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

md=4pNtotZ
2

d0e
2

q

, respectively.

Because observation of space plasmas very often indi-

cates the existence of ion distribution that is far from

thermodynamic equilibrium, the occurrence of nonthermal

ions is considered to be a very common feature in such

environments. Nonthermal ions from the Earth’s bow-

shock have been observed by the Vela satellites [20]. The

research results show that the existence of non-thermal ions

provides a possibility for the coexistence of the large

amplitude and the compressional solitary waves, whereas

both of them are decoupled in the small amplitude limit

[21]. The effect of nonthermal ions on nonlinear structures

can also provide a guideline for interpreting the most recent

numerical simulation results, which exhibit the simultane-

ous presence of non-thermal ion distributions and associ-

ated dust acoustic localized wave packets. For the non-

thermal ions, the distribution function is:

ni ¼ 1
1�l ½1þ bð/þ /2Þ� exp ð�/Þ, where l ¼ ne0=ni0,

b ¼ 4a
1þ3a, a represents the number of nonthermal ions. The

Boltzmann distribution of electrons is: ne ¼ l
1�l exp ðri/Þ,

where ri ¼ Ti=Te, with Te being the temperature of

electrons.

When sch � sd, the dust charge is regarded as constant.

However, when sch ’ sd , the dust charge variation will be

considered. The dust charge Qdj ¼ �Zdj0eþ qdj, where qdj
is the dimensionless dust charge variation of the the jth dust

grain. In order to calculate the dimensionless charge
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variable qdj, the dimensionless orbital motion-limited [22]

charge current balance equation is

sch
sd

oqdj

ot
þ Vdjrqdj

� �

¼ sch
Zdj0e

ðIe þ IiÞ ð2Þ

where Ie and Ii are the electron and ion current,

respectively. For spherical dust particles with radius a,

the dimensionless expressions of the electron and

nonthermal ion currents are [23]

Ie ¼� pa2e

ffiffiffiffiffiffiffiffi
8Te

pme

r

ne0ðxÞ exp ðri/Þ exp ½zðqdj � Zdj0Þ�

ð3Þ

Ii ¼pa2e

ffiffiffiffiffiffiffiffi
8Ti

pmi

r
ni0

ð1þ 3aÞ 1þ 24a
5

� �

þ 16a
3

/þ 4a/2

� ��

� zðqdj � Zdj0Þ
ri

1þ 8a
5

� �

þ 8a
3
/þ 4a/2

� ��

exp ð�/Þ

ð4Þ

where z ¼ Zdj0e
2=4pe0aTe, 4pe0a is the spherical dust

particles’ capacitance. The charging time scale sch½�
ðdQd=dtÞ�1� is

sch ¼
a
ffiffiffiffiffiffi
2p

p
x2

pi

Vthi

5þ 8a
5þ 15a

1þ zþ 5þ 24a
5þ 8a

ri

� �" #�1

ð5Þ

where Vthi and xpi are the ion thermal velocity and the ion

plasma frequency, respectively.

3. Weakly nonlinear theory

The KdV Burgers equation is obtained using the standard

reductive perturbation technique [24] in order to study the

propagation of shock structures in dusty plasma. The

stretched coordinates are n ¼ �1=2ðlxxþ lyyþ lzz� v0tÞ
and s ¼ �3=2t, where � is a small parameter determining the

intensity of non-linearity, v0 is the unknown phase velocity,

lx, ly and lz are the directional cosines of the wave vector k

along x�, y�, and z�axes, respectively, so that

l2x þ l2y þ l2z ¼ 1. Substituting ndj ¼ ndj0 þ �ndj1 þ �2ndj2 þ

� � � ; udj ¼ �3=2udj1 þ �2udj2 þ � � � ; vdj ¼ �3=2vdj1 þ �2vdj2
þ � � � ;wdj ¼ �wdj1 þ �2wdj2 þ � � � ;/ ¼ �/1 þ �2/2 þ � � � ;
qdj ¼ �qdj1 þ �2qdj2 þ � � �, sch=sd ¼ m�1=2(For nonadiabatic
charge fluctuation, sch=sd is small but finite [25]) into

Eqs. (1) and (2) and gathering the terms in the different

powers of �, we obtain at the lowest order: vdj1 ¼ lx
xcd

o/1

on ,

udj1 ¼ ly
xcd

o/1

on , wdj1 ¼ v0
ndj0lz

ndj1,
PN

j¼1 ndj1 ¼ B
Zdj0

/1, qdj1 ¼

b1/1, v
2
0 ¼ �l2z

PN
j¼1

ndj0Z
2
dj0

mdj
=B, where B ¼ b1

PN
j¼1 ndj0 þ

b�lri�1
1�l and b1 ¼

40a
15þ24að2riþzZdj0Þ�ðdriþzZdj0Þð1þriÞ

zZdj0ð1þzZdj0þdriÞ (d ¼ 5þ24a
5þ8a ).

The dust charge fluctuation is determined by the variable

parameterb1.
We gain a set of equations in the second lowest order:

where b2¼
riðdriþzZdj0Þ�15�16a

15þ24a
1þzZdj0þdri

, b3¼
ðzZdj0þdriÞðr2i �1Þþ 40a

15þ24aðri�zZdj0Þ
2Zdj0ð1þzZdj0þdriÞ ,

b4¼
zZdj0ðdriþzZdj0Þ
2ð1þzZdj0þdriÞ. Now, the KdV Burgers equation is

obtained

o/1

os
þ A/1

o/1

on
þ C

o3/1

on3
� D

o2/1

on2
¼ 0 ð7Þ

where / � /1 and

A ¼
3l4z
2Bv30

XN

j¼1

Z3
dj0ndj0

mdj

þ
3b1l

2
z

2Bv0

XN

j¼1

Zdj0ndj0

mdj

þ v0

B

lr2i � 1

1� l
þ v0

B

XN

j¼1

ndj0ðb3 þ b1b2 þ b21b4Þ
ð8Þ

C ¼ � v0

2B
� v0ð1� l2z Þ

2Bx2
cd

XN

j¼1

Z2
dj0ndj0

mdj
ð9Þ

D ¼
v20b1m

PN
j¼1 ndj0

2B
ð10Þ

The KdV Burgers equation (7) contains both dispersive and

dissipative terms. The KdV Burgers equation has a specific

solution representing the monotonic shock structures.

ondj1
os � v0

ondj2
on þ lxndj0

oudj2
on þ lyndj0

ovdj2
on þ lzndj0

owdj2

on þ lz
ondj1udj1

on ¼ 0

owdj1

os � v0
owdj2

on þ lzwdj1
owdj1

on � Zdj0
mdj

lz
o/2

on þ lz
mdj

qdj1
o/1

on ¼ 0

o2/1

on2
�
PN

j¼1 Zdj0ndj2 þ
PN

j¼1 ndj1qdj1 þ
PN

j¼1 ndj0qdj2 �
lr2i �1

2ð1�lÞ/
2
1 þ

b�lri�1
1�l /2 ¼ 0

�b1/2 þ qdj2 þ b2qdj1/1 þ b3/
2
1 þ b4q

2
dj1 � mv0

oqdj1
on ¼ 0

8
>>>>>><

>>>>>>:

ð6Þ
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Whereas, when the combined action of dispersion and

dissipation balance the nonlinear effects resulting in wave

breaking a dispersive shock wave appears in plasma. If

dissipation disappear, the KdV Burgers equation reduce to

the KdV equation exhibiting soliton structures. From

Eq. (7), it is seen that the Burgers term is proportional to the

term m, arising due to the nonadiabatic dust charge variation.
D is also modified by dust size distribution. We can expect

that the shock structures will be modified by the dust charge

variation, the external magnetized field, the presence of

nonthermally distributed ions, the dust size distribution, the

temperature of ion, and the ration of electron to ion density.

Due to the nonadiabatic dust charge fluctuation, the

Burgers term in (7) indicates probability of the existence of

shock structures. From the KdV Burgers equation (7), a

second-order equation can be obtained by the transforming

to wave frame: g ¼ Vs� n

d2/
dg2

¼ V

C
/� A

2C
/2 � D

C

d/
dg

ð11Þ

From the second-order equation (11), a set of two first-

order equations can be obtained

d/
dg

¼ U ð12Þ

dU
dg

¼ V

C
/� A

2C
/2 � D

C
U ð13Þ

The system governed by Eqs. (12) and (13) has two fixed

points (/	
1;U

	
1) ¼ (0, 0) and (/	

2;U
	
2) ¼ (2V

A
; 0). It is clear

that the first singular point (/	
1;U

	
1) is a saddle point but the

second singular point (/	
2;U

	
2) is a stable focus or a

stable node on the basis of D2\4VC or D2 [ 4VC.

This means that the system governed by Eqs. (12), (13)

has a heteroclinic orbit interconnecting the saddle-node or

(a) (b)Fig. 1 The boundary condition

between oscillatory structures

and monotone structures

((a) solid line (m ¼ 5), Dash line

(m ¼ 10), dot line (m ¼ 15);

(b) solid line (xcd ¼ 0:3), Dash
line (xcd ¼ 0:4), dot line
(xcd ¼ 0:5))

(a) (b)

(d)(c)

Fig. 2 Profile of the shock

structures for different lz, xcd ,

a0 and m
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saddle-focus point. Furthermore, oscillatory shock struc-

tures always corresponds to the stable focus but monotone

shock structures corresponds to the stable node. To explore

the nonlinear shock structures clearly, we integrate Eq. (11)

with respect to g subject to the boundary conditions / ! 0

at g ! �1, then /ðgÞ is obtained. Therefore, the potential
/ increases from zero value t ! 1ðg ! 1Þ to a

stable value 2V / A at long past at any x.

When we chose that all dust grain radius a 
 kDd, the
dust grains’ mass is mdj ¼ kma

3
j and the dust grains’ charge

is Qdj0 ¼ kqa
c
j or Zdj0 ¼ kza

c
j [26], where km � 4=3pqd,

kq � 4pe0U0, kz � 4pe0U0=e, are approximately equal to

constants. qd is the dust grains’ mass density (considered to

be equal and constant for all particles), e0 is the vacuum

permittivity, U0 is the electric balance surface potential.

4. Results and discussion

We consider a polynomial expressed distribution function

in dusty plasmas. For dust particles with radius r in a given

scope [rmin; rmax], the form of the differential polynomial

expressed distribution function is [27],

ndðrÞdr ¼ ða0 þ a1r þ a2r
2 þ a3r

3 þ � � �Þdr ð14Þ

where r is the radius of the dust grains, a0, a1, a2, a3, � � � are
all constants which should be decided by the following

equation:

Ntot ¼
Z rmax

rmin

nðrÞdr ð15Þ

where Ntot is the total number density of dust grains. Then

we can obtain

(a) (b)Fig. 3 The boundary condition

between oscillatory structures

and monotone structures

((a) solid line (m ¼ 5), Dash line

(m ¼ 10), dot line (m ¼ 15);

(b) solid line (xcd ¼ 0:2), Dash
line (xcd ¼ 0:3), dot line
(xcd ¼ 0:4))

(a) (b)

(d)(c)

Fig. 4 Profile of the shock

structures for different lz, xcd ,

a1 and m
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XN

j¼1

ndj0 ¼ a0 rmax � rminð Þ þ a1

2
r2max � r2min
	 


þ a2

3
r3max � r3min
	 


þ a3

4
r4max � r4min
	 


þ � � �

XN

j¼1

Z3
dj0ndj0

mdj

¼
k3z
k2m

a0

3c� 5
r3c�5
max � r

3c�5
min

� �
þ a1

3c� 4
r3c�4
max � r

3c�4
min

� �
þ a2

3c� 3
r3c�3
max � r

3c�3
min

� ��

þ a3
3c�2

r3c�2
max � r

3c�2
min

� �
þ � � �

i

XN

j¼1

Z2
dj0ndj0

mdj

¼
k2z
km

a0

2c� 2
r2c�2
max � r

2c�2
min

� �
þ a1

2c� 1
r2c�1
max � r

2c�1
min

� �
þ a2

2c
r2cmax � r

2c
min

� ��

þ a3
2cþ1

r2cþ1
max � r

2cþ1
min

� �
þ � � �

i

XN

j¼1

Zdj0ndj0

mdj

¼ kz

km

a0

c� 2
rc�2
max � r

c�2
min

� �
þ a1

c� 1
rc�1
max � r

c�1
min

� �
þ a2

c
rcmax � r

c
min

	 

�

þ a3
cþ1

rcþ1
max � r

cþ1
min

� �
þ � � �

i

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð16Þ

(a) (b)Fig. 5 The boundary condition

between oscillatory structures

and monotone structures

((a) solid line (m ¼ 5), Dash line

(m ¼ 25), dot line (m ¼ 45);

(b) solid line(xcd ¼ 0:2), Dash
line (xcd ¼ 0:3), dot line
(xcd ¼ 0:4))

(a) (b)

(d)(c)

Fig. 6 Profile of the shock

structures for different lz, xcd ,

a2 and m
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We study the following special circumstances:

1. ndðrÞ ¼ a0
It is clear that a0 represents the value of total number

density of dust grains and is positive. Now, we explore the

nonlinear propagation of the shock structures in dusty

plasmas with external magnetized field, nonadiabatic

charge fluctuation and dust size distribution numerically.

There are oscillatory shock structures and monotone shock

structures in this system according to theoretical analysis.

Furthermore, when dissipation dominates, the shock front

exhibits a monotonic transition of the plasma density, while

the shock transition is of oscillatory nature when the dis-

sipation is weak. Figure 1 indicates two regions of mono-

tone shock structures and oscillatory shock structures for

different wcd and m in (a0, lz) plane for amin ¼ 0:01,

amax ¼ 1:0, kz ¼ 2, km ¼ 4, z ¼ 2, ri ¼ 0:1, a ¼ 0:5,

l ¼ 0:3, c ¼ 1:7. It is clear from Fig. 1 that the region of

monotone shock structures increases with xcd and m, that is,
the dissipation induced by the external magnetized field

and the dust change fluctuation weakens the oscillation of

shock structures results in the transition from oscillatory

shock structures to monotone shock structures. It is also

indicated in Fig. 1 that for a fixed lz, when a0 increases

there is a transition from the monotone shock structures to

the oscillatory shock structures, in turn, for a fixed a0, when

lz increases there is a transition from the monotone shock

structures to the oscillatory shock structures. In order to

determine the influence of nonadiabatic charge fluctuation,

dust size distribution and the external magnetized field on

the propagation of shock structures, we have simulated the

behavior of shock structures with different values of a0,

(a) (b)
Fig. 7 The boundary condition

between oscillatory structures

and monotone structures

((a) solid line (m ¼ 5), Dash line

(m ¼ 15), dot line (m ¼ 25);

(b) solid line (xcd ¼ 0:2), Dash
line (xcd ¼ 0:3), dot line
(xcd ¼ 0:4))

(a) (b)

(d)(c)

Fig. 8 Profile of the shock

structures for different lz, xcd ,

a3 and m
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xcd, lz and m by numerical simulation of the Eqs. (12) and

(13). Figures 2 (a) and (c) show that the amplitude of the

oscillatory waves decreases with the value of total number

density of dust grains and the obliqueness of the magnetic

field. Furthermore, Fig. 2(b) shows that the amplitude does

not vary with the values of the external magnetized field,

xcd. It is shown from Fig. 2(d) that when the values of m
increase, oscillatory wave structure decreases and com-

pletely disappears at m ¼ 14:6 leaving only laminar shock

front, namely, the oscillatory shock structures are turned

into the monotone shock structures.

2. ndðrÞ ¼ a0 þ a1r

In this case, it is noted that the properties of shock

structures are dependent of a1. He and Duan suggested that

a1 [ 0 represents that the larger dust grains’ number den-

sity is greater than the smaller dust grains’ number density,

which is the unfrequent condition of dusty plasma. For

another, a1\0 represents that the larger dust grains’

number density is smaller than the smaller dust grains’

number density, which is the widespread condition of dusty

plasma. Here, we discuss the characteristics of the shock

structures in the widespread condition of dusty plasma with

amin ¼ 0:01, amax ¼ 1:0, kz ¼ 2, km ¼ 4, z ¼ 2, a0 ¼ 0:8,

ri ¼ 0:1, a ¼ 0:8, l ¼ 0:2, c ¼ 1:8. Fig. 3 illustrates the

boundary condition between the monotone shock structures

and the oscillatory shock structures in this case. It can be

seen from Fig. 3 that the effect of the external magnetized

field and the dust charge fluctuation on the boundary

condition is the same as that in Fig. 1. As also shown in

Fig. 3 that for a fixed lz, when a1 increases there is a

transition from the monotone shock structures to the

oscillatory shock structures. The effect of a1, lz, xcd and m
on the characteristics of shock structures is shown in Fig. 4.

It is clear that from Fig. 4 that the oscillatory structures’

amplitude decreases with a1 and lz. Figure 4(d) displays

that as the increase of values of m, the oscillation of shock

structures decreases and the oscillatory shock structures are

turn into the monotone shock structures at m ¼ 19.

3. ndðrÞ ¼ a0 þ a1r þ a2r
2

We show the characteristics of the shock structures with

amin ¼ 0:01, amax ¼ 1:0, kz ¼ 2, km ¼ 4, z ¼ 2, a0 ¼ 0:6,

a1 ¼ �0:4, ri ¼ 0:1, a ¼ 0:5, l ¼ 0:3, c ¼ 1:8 in this case.

In Fig. 5, we show the two regions of monotone shock

structures and oscillatory shock structures for different wcd

and m in (a2,lz) plane. From Fig. 5, it is observed that the

variation of boundary condition between monotone shock

structures and oscillatory shock structures with a2 and lz is

not obvious. Furthermore, compared with the front two

cases, the effect of the dissipation due to dust charge

fluctuation on this boundary condition is relatively weak. It

is clear from Fig. 6 that the oscillatory shock structures’

amplitude decrease with a2 and lz. Figure 6 tells that when

the values of m increase, the oscillatory shock structures’

amplitude decreases and the oscillatory shock structures

are turn into the monotone shock structures at m ¼ 39.

4. ndðrÞ ¼ a0 þ a1r þ a2r
2 þ a3r

3

In this case, we also investigate the dependence of

characteristics of the shock structures on the parameters

such as a0, a1, a2 , a3, and so on. In order to determine the

influence of the parameter a3, we let amin ¼ 0:01,

amax ¼ 1:0, kz ¼ 2, km ¼ 4, z ¼ 2, a0 ¼ 0:6, a1 ¼ �0:4,

a2 ¼ 0:4, ri ¼ 0:1, a ¼ 0:5, l ¼ 0:3, c ¼ 1:8. The

numerical results illustrate that the variation of boundary

condition between the oscillatory shock structures and the

monotone shock structures shown in Fig. 7 is the same as

that in Fig. 5. We have simulated the behavior of shock

structures for different values of a3, lz wcd and m in Fig. 8.

The results indicate that the variation of the oscillatory

shock structures’ amplitude with lz and xcd is same as in

case 3. When the values of a3 increase, the oscillatory

shock structures’ amplitude increases insignificantly. It is

observed from Fig. 8(d) that as m increase, the oscillatory

shock structures’ amplitude decreases and the oscillatory

shock structures are turn into the monotone shock struc-

tures at m ¼ 22.

5. Conclusion

In this paper, the nonlinear propagation characteristics of

shock structures descried by the KdV Burgers equation are

discussed in dusty plasmas with nonadiabatic charge fluc-

tuation, the external magnetized field and dust size distri-

bution. The correlation between the propagation of shock

structures and the dust size distribution, the magnetized

field and charge variation in four special cases is discussed

separately. The research results show the effect of different

relevant plasma parameters on propagation characteristics

of shock structures and how oscillatory shock structures

turns into monotonic shock structures. Numerical results

reveal that the transition from oscillatory shock structures

to monotonic shock structures occurs when the dissipation

effect due to the nonadiabatic charge fluctuation over-

whelms the dispersion effect exists. The existence of

external magnetized field weaken oscillatory of shock

structures, that is, the the shock front exhibits a monotonic

transition when the intensity of the magnetic field reaches a

certain value. However, the magnetic field has no effect on

the shock strength. It is also shown that the characteristics

of shock structures are changed significantly by dust size

distribution. The number of dust grains increases, the shock

strength and the oscillatory of shock front become weak by

dissipation. In accordance with the present study, we have

more profound understanding of the characteristics of

shock structures.
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