CHEMICAL CONSTITUENTS OF Zanthoxylum armatum. I

Tao Guo,^{1*} Tong-tong Song,¹ Xiao-feng Tang,¹ Su-bei Tan,¹ Ya Wang,¹ and Yin-Quan Wang²

The genus *Zanthoxylum* (Rutaceae) is a common medicinal and edible plant and comprises 250 species distributed in the tropical and subtropical zones of Asia, Africa, America, and Oceania [1]. *Zanthoxylum armatum* DC., a common wild species in the genus, is cultivated in some areas of China [2, 3]. *Z. armatum* is very well known for its diversified chemistry, particularly by the presence of alkaloids, aromatic and aliphatic amides, and phenylpropanoids [4]. Most of the previous phytochemical investigations have focused on petroleum ether, ethyl acetate, and *n*-butanol fractions of *Z. armatum* extract, while the water fraction of its extract was rarely reported. As part of our systematic investigations on the chemical constituents of *Z. armatum*, the present study investigated the water fraction of the ethanol extract of *Z. armatum*, resulting in the isolation of seven compounds.

The roots and stems of *Z. armatum* were collected from Nanning, Guangxi Province of China in 2014. Dried stems of *Z. armatum* (20 kg) were extracted with 95% ethanol (50 L \times 3) at room temperature. The combined EtOH extract was filtered and concentrated under reduced pressure to give 680 g of residue. The residue was then suspended in water and partitioned successively with petroleum ether, EtOAc, and *n*-BuOH. The phytochemical investigation of the water-soluble extract (83 g) has resulted in the isolation of seven compounds (1–7), among which compound **5** was firstly isolated from Rutaceae. Compounds **2**, **4**, and **6** were obtained from the genus *Zanthoxylum* for the first time. Compounds **1**, **3**, and **7** were isolated from *Z. armatum* for the first time. The structures of all isolated compounds were determined by a combination of spectroscopic methods (MS, ¹H NMR and ¹³C NMR) and comparison with literature data.

Candicine (1), white needle crystals, $C_{11}H_{18}NO^+$ [5].

2-Methoxyhydroquinone-4- β -D-glucopyranoside (2), white powder, C₁₃H₁₈O₈ [6].

2,6-Dimethoxy-4-hydroxyphenol-1-O-glucoside (3), white powder, $C_{14}H_{20}O_{9}$ [7].

Adenosine (4), white powder, $C_{10}H_{13}N_5O_4$ [8].

8'-Hydroxyabscisic acid β-**D-glucoside (5)**, white powder, $C_{21}H_{30}O_{10}$. ¹H NMR (400 MHz, D_2O , δ, ppm, J/Hz): 7.16 (1H, d, J = 16.1, H-4), 6.05 (1H, s, H-3'), 5.97 (1H, d, J = 16.2, H-5), 5.81 (1H, s, H-2), 4.25 (1H, d, J = 7.9, H-1"), 3.91 (1H, d, J = 10.3, H-8'b), 3.85 (1H, dd, J = 11.3, 2.0, H-6"b), 3.67 (1H, dd, J = 11.3, 5.6, H-6"a), 3.59 (1H, d, J = 10.3, H-8'a), 3.43–3.28 (3H, m, H-3", 4", 5"), 3.19 (1H, dd, J = 9.2, 8.0, H-2"), 2.60 (1H, d, J = 17.8, H-5'a), 2.50 (1H, d, J = 17.7, H-5'b), 1.91 (3H, s, H-6), 1.87 (3H, s, H-7'), 1.05 (3H, s, H-9'). ¹³C NMR (100 MHz, D_2O , δ, ppm): 202.4 (C-4'), 166.9 (C-1), 139.8 (C-2'), 130.9 (C-3), 129.4 (C-5), 126.8 (C-4), 126.3 (C-3'), 102.8 (C-2), 79.5 (C-1"), 75.8 (C-1'), 75.5 (C-4"), 73.6 (C-5"), 73.1 (C-2"), 69.6 (C-8'), 60.6 (C-3"), 60.4 (C-6"), 45.3 (C-6'), 43.5 (C-5'), 19.4 (C-6'), 18.9 (C-9'), 18.8 (C-7'). ESI-MS *m*/z 465.2 [M + Na]⁺ (calcd for $C_{21}H_{30}O_{10}Na$ [9].

Guanosine (6), white powder, $C_{10}H_{12}N_4O_5$ [10]. **Chlorogenic acid (7)**, white crystrals, $C_{16}H_{18}O_9$ [11].

¹⁾ School of Life Science and Engineering, Lanzhou University of Technology, 730050, Lanzhou, P. R. China, fax: +86931 2973727, e-mail: gt010010@163.com; 2) School of Pharmacy, Gansu University of Chinese medicine, 730050, Lanzhou, P. R. China. Published in *Khimiya Prirodnykh Soedinenii*, No. 5, September–October, 2018, p. 847. Original article submitted March 22, 2017.

ACKNOWLEDGMENT

This research was supported by the National Science Foundation of China (Grant No. 81360476) and Plan of Collaborative Innovation Technology Team in Gansu Province (Grant No. 2016C-05FF09).

REFERENCES

- C. F. Wang, W. J. Zhang, C. V. You, S. S. Guo, Z. F. Geng, L. Fan, S. S. Du, Z. W. Deng, and Y. Y. Wang, J. Oleo Sci., 64, 861 (2015).
- 2. T. Guo, H. Xie, Y. X. Deng, and S. L. Pan, *Nat. Prod. Res.*, **29**, 859 (2012).
- 3. T. Guo, Y. X. Deng, H. Xie, C. Y. Yao, C. C. Cai, S. L. Pan, and Y. L. Wang, Fitoterapia, 82, 347 (2011).
- 4. T. Guo, L. P. Dai, X. F. Tang, T. T. Song, Y. Wang, A. H. Zhao, Y. Y. Cao, and J. Chang, *Nat. Prod. Res.*, **31**, 2335 (2017).
- 5. M. Shabana, M. Gonaid, M. M. Salama, and E. Abdel-Sattar, Nat. Prod. Res., 20, 710 (2006).
- 6. J. L. Sun, A. J. Deng, Z. H. Li, and H. L. Qing, J. Chin. Med. Mater., 34, 718 (2009).
- 7. K. Ishimaru, H. Sudo, M. Satake, and K. Shimomurat, *Phytochemistry*, 29, 3823 (1990).
- 8. Z. R. Xu, X. Y. Chai, C. C. Bai, H. Y. Ren, Y. N. Lu, H. M. Shi, and P. F. Tu, *Helv. Chim. Acta*, **91**, 1346 (2008).
- 9. M. D. Ramos, G. Jerz, S. Villanueva, F. Lopez-Dellamary, R. Waibel, and P. Winterhalter, *Phytochemistry*, **65**, 955 (2004).
- C. Y. Gong, D. J. Zhang, H. G. Wei, S. L. Li, G. M. Shen, and G. Y. Li, *Nat. Prod. Res. Dev.* [in Chinese], 21, 379 (2009).
- 11. Y. R. Sun, J. X. Dong, and S. G. Wu, J. Chin. Med. Mater., 27, 341 (2004).