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a b s t r a c t

A new alcoholism model on scale-free networks with community structure and voluntary
drinking is introduced. Local and global stability of all the equilibria of our model with
two communities for some special cases are investigated. Numerical simulations are also
conducted to explain and extend our analytic results. Our results show that the effects
of voluntary drinking and transmission rate between different community structure on
dynamics of our model are important.
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1. Introduction

US surveys indicate approximately 90% of college students have consumed alcohol at least once, and more than 40% of
college students have engaged in binge drinking [1,2]. The people who drink a large amount of alcohol are likely to exhibit
antisocial behavior [3]. About 3.8% deaths and 4.6% disability are caused by alcohol all over the world [4]. Alcoholism has
become more severe, especially among college students [5]. Between 1998–2001, the number of deaths and injuries per
100000 college students increased by 6% [6]. Thus, it is very important to study and prevent alcoholism.

Many researchers studied the binge drinking by establishing mathematical models to find some way to control the
drinking behavior [7–10]. Huo and Song [11] investigated a more realistic binge drinking model with two stages, in which
the youths with alcohol problems were divided into those who admitted the problem and those who did not admit it. Huo,
Wang and Kong [12] proposed an objective functional which considered not only alcohol quitting effects but also the cost of
controlling alcohol, and studied optimal control strategies in an alcoholismmodel with themethod of PontryaginMaximum
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Fig. 1. Illustration of the modeling substrate.

Principle. Huo, Chen andXiang [13]made amore realistic binge drinkingmodelwith time delay.Wang, Huo, Hattaf, et al. [14]
formulated an alcohol quitting model in which they considered the impact of distributed time delay between contact and
infection process by characterizing dynamic nature of alcoholism behaviors, and considered two different control strategies.
Xiang, Song and Xiang [15] dealt with the global property of a drinking model with public health educational campaigns.
Huo and Zhang [16] constructed a novel alcoholismmodel which involved impact of Twitter, and studied complex dynamics
of their model. Other models about drinking or epidemic can be found in Refs. [17–23].

Complex networks are often applied to deal with the effect of contact heterogeneity on the disease transmission
dynamics. A node denotes a corresponding state and an edge between two nodes represents an interaction or expression
the disease transmission. Many people have studied epidemic models or drinking models on complex networks, please
see [24–29] and references cited therein.

To study the effect of the community structure on the model with network is of great significance in theory and
practical application. The impact of community structure on dynamics of networks causes a great deal of concern recently.
Many networks have the property of community structure, such as WWW network [30], protein networks [31,32],
genetic networks [33], metabolic network [34], the network financial market [35], the United States congress relationship
network [36], scientists cooperation network [37], as well as a large number of social network or biological network [38–40]
and so on. Pan, Sun and Jin [41] developed a complex network susceptible–infected–susceptible (SIS) model which captures
the transmission between communities by short-time travelers to investigate the impact of demographic factors on disease
spread. Zhang and Jin [42] studied an SEAIR epidemic network model with community structure. Other papers about the
impact of community structure on dynamics of networks, please see Yan and Fu [43] and references cited therein.

Motivated by the above, we not only incorporate community structure into our model, but also consider the effect of
voluntary drinking on ourmodel. Furthermore,we study the stability of all the equilibria of ourmodelwith two communities
for some special cases. The paper is organized as follows. The new alcoholism model on scale-free networks and some
preliminary theorems are constructed in Section 2. In Section 3, dynamics of our alcoholism model with two communities
for the special case is studied and some numerical simulations are also presented. Some conclusions and discussions are
given in last section.

2. Mathematical model

2.1. System description

In this section,we propose an SIS alcoholismmodel on complex networkswith community and voluntary drinking. Nodes
represent individuals and edges (connections) represent their contacts. As shown in Fig. 1, the two-way arrow indicates
that individuals can convert at different rates. The blue line indicates the individual intra-community transmission within
community. The black line represents the inter-community transmission between the community 1 and the community
2, and the red line indicates the inter-community transmission between community 1, community 2 and the random
community i.

Population in community i is divided into two compartments Ski (t) and Iki (t), where i denotes the ith community,
i = 1, 2, . . . ,m. Ski (t) represents the number of susceptible vertices of degree k at time t on community i; Iki (t) represents
the number of the problem alcoholic vertices of degree k at time t on community i. Nk

i (t) represents the total number of
vertices of degree k at time t on community i, and Nk

i (t) = Ski (t) + Iki (t) , (k = 1, 2 . . . , n; i = 1, 2 . . .m), where n is the
maximal degree of the complex network.When susceptible individuals contact the problemalcoholic for a certain time, some
susceptible individuals can become the problem alcoholic. The problem alcoholic can recover to susceptible individuals.
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Furthermore, we assume that individuals among different communities can transfer whatever they want. Then we have the
following model,
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(2.1)

where k = 1, 2 . . . , n; i = 1, 2 . . .m. It is assumed that all the parameters are positive constants. The explanation of
model (2.1) are as follows: αk

i is the ratio that susceptible people in community i with degree k who do not get the
influence of alcoholics and transfer to the problem alcoholics voluntarily, so the term αk

i S
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where N is a constant, and represents the total number of nodes of the system (2.1), namely N =
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2.2. Positivity and boundedness of solutions

To show that the model (2.4) is meaningful, we will prove that all solutions of the system (2.4) with initial conditions
Ski (0) > 0, Iki (0) > 0 are positive and bounded for t ≥ 0. Thus, we have the following theorems

Theorem 2.2.1. Let
(
Ski (t) , Iki (t)

)
be the solution of system (2.4)with Ski (0) > 0, Iki (0) > 0, then for k = 1, 2, . . . , n, we have

Ski (t) > 0 and Iki (t) > 0 for all t > 0.

Proof. If the conclusion does not hold, then at least one of Ski (t) and Iki (t) are not always positive. Without loss of generality,
we can assume that Ski (t) is not always positive when t > 0. Notice that Ski (0) > 0 and Iki (0) > 0. By the first equation of

the system (2.4) and the continuity of Ski (t) and Iki (t), there exists a first time t1 > 0 such that Ski (t1) = 0, dSki (t1)
dt < 0 and

Ski (t) ≥ 0, Iki (t) ≥ 0 for t ∈ (0, t1). Combining with the first equation of the system (2.4), we have dSki (t1)
dt > 0, which is a

contradiction with dSki (t1)
dt < 0. Thus, the solutions
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3. Mathematical model with two communities

3.1. The basic reproduction number
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The jacobian matrix of the F(y) and V(y) in the alcohol free equilibrium E0 can be expressed respectively,
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and
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Remark 3.1.1. When α2 ̸= 0 and σ21 ̸= 0, system (3.2) does not have the alcohol free equilibrium.

According to the Theorem 2 of [44], we obtain the local stability of the alcohol free equilibrium.

Theorem 3.1.1. For the model (3.2), if α2 = 0, σ21 = 0 and R0 < 1, then the alcohol free equilibrium E0 is locally asymptotically
stable.

3.2. Global stability of the alcohol free equilibrium

Using the comparison principle,we can further prove the global stability of alcohol free equilibriumwhenα2 = 0, σ21 = 0
and R0 < 1.

Theorem3.2.1. For themodel (3.2), if α2 = 0, σ21 = 0 and R0 < 1, then the alcohol free equilibrium E0 is globally asymptotically
stable.

Proof. It follows from (3.2) that

dSk2
dt

≤ −α2Sk2 + γ2Ik2 − σ21Sk2 + σ12 − kσ21Sk2θ1 + γ2σ12Ik1 − kSk2θ2,
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dIk2
dt

≤ kSk2θ2 + α2Sk2 − γ2Ik2 − σ21Ik2 + σ12Ik1 + kσ12θ2 − γ1σ21Ik2 .

(3.3)
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Consider the auxiliary system

dSk2
dt

= −α2Sk2 + γ2Ik2 − σ21Sk2 + σ12 − kσ21Sk2θ1 + γ2σ
k
12I

k
1 − kSk2θ2,

dIk1
dt

= kθ1 + α1 − γ1Ik1 − σ12Ik1 + σ21Ik2 + kσ21Sk2θ1 − γ2σ12Ik1,

dIk2
dt

= kSk2θ2 + α2Sk2 − γ2Ik2 − σ21Ik2 + σ12Ik1 + kσ12θ2 − γ1σ21Ik2 .

(3.4)

Which can be expressed concisely as
dy
dt

= (F − V )y.

Since R0 < 1, then the eigenvalues of the matrix (F − V ) all have negative real parts, then every non-negative solution of
(3.3) tends to 0 as t → ∞. According to the comparison principle [45], we know that every non-negative solution of (3.2)
also tend to 0 as t → ∞. So the disease-free equilibrium E0 is globally asymptotically stable and the proof is completed. □

Remark 3.2.1.
Let Sk2 = 1 − Sk1 − Ik1 − Ik2 , then system (3.1) can be written as

dSk1
dt

= −α1Sk1 + γ1Ik1 − σ12Sk1 + σ21(1 − Sk1 − Ik1 − Ik2) − kσ12Sk1θ2 + γ1σ21Ik2 − kSk1θ1,

dIk1
dt

= kSk1θ1 + α1Sk1 − γ1Ik1 − σ12Ik1 + σ21Ik2 + kσ21(1 − Sk1 − Ik1 − Ik2)θ1 − γ2σ12Ik1,

dIk2
dt

= k(1 − Sk1 − Ik1 − Ik2)θ2 + α2(1 − Sk1 − Ik1 − Ik2) − γ2Ik2 − σ21Ik2 + σ12Ik1 + kσ12Sk1θ2 − γ1σ21Ik2 .

(3.5)

For system (3.5), when α1 = 0 and σ12 = 0, similarly, we can obtain the following basic reproduction number R′

0

R′

0 =
−α2σ21γ1 ⟨k⟩N + γ1

[
α2γ1(γ2 + σ21 + γ1σ21)

2
+ α2σ21

]
⟨k⟩N

[
α2γ1(γ2 + σ21 + γ1σ21)

2
+ α2σ21

] .

and we can obtain the following theorems.

Theorem 3.2.2. For the model (3.5), if α1 = 0, σ12 = 0 and R′

0 < 1, then the alcohol free equilibrium E ′

0 = ( ⃗Sk1, 0⃗, 0⃗) is locally
asymptotically stable.

Theorem3.2.3. For themodel (3.5), if α1 = 0, σ12 = 0 and R′

0 < 1, then the alcohol free equilibrium E ′

0 is globally asymptotically
stable.

When α1 ̸= 0 and σ12 ̸= 0, we also know that system (3.5) does not have the alcohol free equilibrium.

3.3. The existence of equilibria

First, we will discuss the existence of equilibria of system (3.2).

Theorem 3.3.1. If σ12 = 0 and R1 =
(α1+γ1)2

γ1

⟨k⟩
⟨k2⟩

> 1, where ⟨k2⟩ =
∑

kk
2p(k), then system (3.2) exists a unique alcohol-

present-in-community 1-only-equilibrium Ê1
(
0⃗, Îk1, 0⃗

)
.

Proof. By (3.2), the alcohol-present-in-community 1-only-equilibrium Ê1
(
0⃗, Îk1, 0⃗

)
satisfies the following equation

k
(
1 − Îk1

)
θ1 + α1

(
1 − Îk1

)
− γ1 Îk1 = 0, (3.6)

then,

Îk1 =
kθ1 + α1

kθ1 + α1 + γ1
.

According to the expressions of θ1, we have the following equation about θ1,

θ1 = f1 (θ1) =
1

N ⟨k⟩

n∑
k=1

kÎk1 =
1

N ⟨k⟩

n∑
k=1

k
(

kθ1 + α1

kθ1 + α1 + γ1

)
.
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Let F1(θ1) = θ1 − f1 (θ1), we have

F1′ (θ1) = 1 −
1

N ⟨k⟩

n∑
k=1

k
k (kθ1 + α1 + γ1) − k (kθ1 + α1)

(kθ1 + α1 + γ1)
2

= 1 −
1

N ⟨k⟩

n∑
k=1

k2
γ1

(kθ1 + α1 + γ1)
2 ,

then,

F1′ (0) = 1 −
1

N ⟨k⟩

n∑
k=1

k2
γ1

(α1 + γ1)
2 = 1 −

γ1

(α1 + γ1)
2

⟨
k2
⟩

⟨k⟩
> 0.

Similarly, we obtain

F1′′ (θ1) = −
1

N ⟨k⟩

N∑
k=1

k3
(

γ1

(kθ1 + α1 + γ1)
3

)
< 0.

It is easy to know that F1 (0) < 0 and F1 (1) > 0, then F1(θ1) = 0 has a unique root θ∗

1 > 0. So there exists a unique
alcohol-present-in-community 1-only-equilibrium Ê1

(
0⃗, Îk1, 0⃗

)
. The proof is completed. □

By the symmetry of system (3.1), we also have the following theorem.

Theorem 3.3.2. If σ21 = 0 and R2 =
(α2+γ2)2

γ2

⟨k⟩
⟨k2⟩

> 1, where ⟨k2⟩ =
∑

kk
2p(k), then system (3.2) exists a unique alcohol-

present-in-community 2-only-equilibrium Ê2
(
Ŝk2, 0⃗,

ˆIk2
)
.

We know that the alcohol present equilibrium E∗
(
S∗

2 , I
∗

1 , I
∗

2

)
of system (3.2) must satisfy the following equations

A1Sk2 − B1Ik1 − C1Ik2 + D1 = 0,

A2Sk2 − B2Ik1 + C2Ik2 + D2 = 0,

A3Sk2 + B3Ik1 + C3Ik2 + D3 = 0,

(3.7)

where A1 = −kθ1 − α1 + kσ21θ1, B1 = kθ1 + α1 + γ1 + σ12 + γ2σ12, C1 = kθ1 + α1 − σ12, D1 = kθ1 + α1,
A2 = − (α2 + σ21 + σ12 + kσ21θ1 + kθ2), B2 = σ12−γ2σ12, C2 = γ2−σ12,D2 = σ12,A3 = α2+kθ2−kσ12θ2, B3 = σ12−kσ12θ2,
C3 = −γ2 − σ21 − kσ12θ2 − γ1σ21 and D3 = kσ12θ2.

So,

S∗

2 =
B1 [(A2D1 − A1D2) (A3C1 + A1C3) − (A2C1 + A1C2) (A3D1 − A1D3)]
A1 [(A2B1 − B2A1) (A3C1 + A1C3) − (A3B1 − B3A1) (A2C1 + A1C2)]

−
C1 [(A2B1 − A1B2) (A3D1 − A1D3) − (A2D1 − A1D2) (A3B1 − A1B3)]
A1 [(A2B1 − B2A1) (A3C1 + A1C3) − (A3B1 − B3A1) (A2C1 + A1C2)]

−
D1 [(A2B1 − B2A1) (A3C1 + A1C3) − (A3B1 − B3A1) (A2C1 + A1C2)]
A1 [(A2B1 − B2A1) (A3C1 + A1C3) − (A3B1 − B3A1) (A2C1 + A1C2)]

,

(3.8)

I∗1 =
(A2D1 − A1D2) (A3C1 + A1C3) − (A2C1 + A1C2) (A3D1 − A1D3)

(A2B1 − B2A1) (A3C1 + A1C3) − (A3B1 − B3A1) (A2C1 + A1C2)
, (3.9)

I∗2 =
(A2B1 − A1B2) (A3D1 − A1D3) − (A2D1 − A1D2) (A3B1 − A1B3)

(A2B1 − B2A1) (A3C1 + A1C3) − (A3B1 − B3A1) (A2C1 + A1C2)
. (3.10)

Since the existence of the alcohol present equilibrium E∗
(
S∗

2 , I
∗

1 , I
∗

2

)
of system (3.2) and global stability of boundary and

positive equilibria are very difficult to prove, we only present the numerical results directly in next section.

3.4. Numerical simulations

In this section, we will present some numerical simulations to illustrate and extend our theoretical results. Our
simulations take the scale-free networks with degree distribution is P (k) = 2k−2.

Let σ12 = 0.6, σ21 = 0, α1 = 0.4, α2 = 0, γ1 = 1, γ2 = 0.8, by Fig. 2, we know that alcohol-free equilibrium E0 of (3.2)
is globally asymptotically stable when R0 < 1.

Let σ12 = 0, α1 = 0.2, α2 = 0.4, γ1 = γ2 = 0.8, σ21 = 0.6, k = 10,N = 1000 000. By Fig. 3(a), we know that the unique
alcohol-present-in-community 1-only-equilibrium Ê1

(
0⃗, ˆIk1, 0⃗

)
is global asymptotically stable. Let σ21 = 0, α1 = 0.2, α2 =
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Fig. 2. The time series and orbits of system (3.2) with k = 10 when R0 < 1.

Fig. 3. The time series and orbits of system (3.2) with k = 10.

0.4, γ1 = γ2 = 0.8, σ21 = 0.6, k = 10,N = 1000 000. By Fig. 3(b), we know that the unique alcohol-present-in-community
2-only-equilibrium Ê2

(
Ŝk2, 0⃗,

ˆIk2
)
is global asymptotically stable.

To verify the existence and stability of alcohol present equilibrium, Let α2 = 0.2, σ21 = 0.6, α1 = 0.4, γ1 = 1, γ2 =

0.8, σ12 = 0.8, k = 10,N = 1000 000, by Fig. 4, we know that the alcohol present equilibrium of the system (3.2) is globally
asymptotically stable when α1 ̸= 0 and α2 ̸= 0.

In order to study the effect of transmission rates σ12 and σ21 on the system (3.2), we assume that σ12 = 0.8 and σ21 = 0.2,
that is to say, the transmission rate at which people leave from community 1 to community 2 is greater than that of from
community 2 to community 1, and let α2 = 0.4, α1 = 0.2, γ1 = 0.8, γ2 = 0.6, k = 10,N = 1000 000, we get Fig. 5(a).
On the contrary, let σ21 = 0.8 and σ12 = 0.2, we get Fig. 5(b). From Fig. 5(a) and (b), we know that the transmission rate of
people moving to another community is bigger, the risk of alcoholism in another community is greater.

In Fig. 6, the densities of alcoholics with different degree are presented. Let σ12 = 0.6, α1 = 0.2, α2 = 0.4, γ1 = γ2 =

0.8, σ21 = 0.6,N = 1000 000. It is easy to know that the larger degree leads to larger value of the alcoholism level.

4. Conclusions and discussions

A new alcoholism model on scale-free networks with community structure and voluntary drinking is introduced. Local
and global stability of the alcohol free equilibrium of our model with two communities when αk

1 = α1, α
k
2 = α2, γ

k
1 =

γ1, σ
k
12 = σ12, σ

k
21 = σ21 are investigated. Furthermore, we study the existence of all the equilibria of our model for some

special cases, numerical simulations are also conducted to explain and extend our analytic results.
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Fig. 4. The time series and orbits of system (3.2) with k = 10.

Fig. 5. The time series and orbits of system (3.2) with different parameter values σ21 and σ12 .

Fig. 6. The time series and orbits of system (3.2) with k = 10, 30, 50, 70, 90, 100.
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Since some people drink for their own reasons, we know that when α2 ̸= 0 and σ21 ̸= 0, system (3.2) does not have
the alcohol free equilibrium. When α1 ̸= 0 and σ12 ̸= 0, we also know that system (3.5) does not have the alcohol free
equilibrium. These results show that alcoholism as a social epidemic disease, is different from common epidemic diseases.
Furthermore, from our numerical simulations, we know that the transmission rate of people moving to another community
is bigger. The risk of alcoholism in another community is greater. These mean that the effect of transmission rates σ12 and
σ21 on the system (3.2) is very important.

It is very interesting to study our alcoholism model with n communities for more general cases. We leave these work in
the future.
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