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A B S T R A C T

In order to study whether tin doped CuS could be used as counter electrodes for dye-sensitized solar cells, first-
principles were used to calculate the electronic structure and optical properties of it. The calculated results show
that tin ions can substitute two different kinds of copper ions in the supercell of CuS, and they demonstrate
different properties. The calculated results of electronic structure indicate that the introduction of tin ions
change the conductive properties of CuS counter electrode. The calculated results of optical properties indicate
that the introduction of tin ions change the optical properties of CuS counter electrode, and tin doped CuS could
be excellent counter electrodes for dye-sensitized solar cells.

1. Introduction

Over the past few decades, great progress has been made in op-
toelectronic materials and devices (Ahmad et al., 2017; Zhang et al.,
2017; Shi et al., 2017; Wang et al., 2017; Lu et al., 2017). Dye-sensi-
tized solar cells (DSSC), which are electrochemical devices converting
solar energy into electricity, could offer a promising solution to utilize
renewable energy for substituting traditional fossl fuels (Nagarajan
et al., 2017; Ahmad et al., 2017; Taleb et al., 2016). DSSC typically
consist of three parts: a photoanode, an electrolyte and a counter
electrode (CE). Among these three parts, CE plays a very significant role
in collecting electric current from an external circuit and promoting the
reduction reaction of redox couple. Thus, CE directly affects the photo-
electric conversion efficiency of a DSSC (Wei et al., 2016; Duan et al.,
2016). So far, various materials have been explored to prepare CE, such
as Pt CE (Hsieh et al., 2015; Chen et al., 2017), conducting polymers
(Seo et al., 2016; Li et al., 2016), carbonaceous materials (Du et al.,
2016; Liu et al., 2016); alloys (Qian et al., 2016) and inorganic com-
pounds (Gopi et al., 2016; Liu et al., 2016). Pt has been considered as a
preferred CE material for its superior electrical conductivity and elec-
trocatalytic ability; conducting polymers have been studied intensively
mainly due to their easy synthesis and cost effectiveness; carbonaceous
materials can be used for potential CE catalysts mainly because they
display a low sheet resistance and good corrosion resistance; alloys
have attracted considerable interest recently years mainly due to the

simple preparation process, low cost and excellent catalytic properties.
Among these CE materials, inorganic compounds are preferred by more
and more researchers due to their stable properties, excellent electrical
conductivity and high catalytic activity. As available inorganic com-
pounds, metal sulfides (such as CuS, NiCo2S4 and CoNi2S4) are pre-
ferred by more and more researchers for their excellent conductivity
and easily synthesized property (Lu et al., 2016; Palve et al., 2017;
Krishnapriya et al., 2017; Chen et al., 2015).

To date, the investigations show that CuS has a hexagonal phase and
hole-conduction at room temperature (Lv et al., 2017). CuS has recently
become widely studied electrode materials for DSSC, QDSSC (quantum
dot-sensitized solar cells) and supercapacitors with excellent results.
Xuemin Shuai et al. prepared CuS low-cost counter electrodes for DSSC
and it demonstrated excellent performance in DSSC (Ramamoorthy and
Rajendran, 2017). Youngson Choe et al. prepared CuS counter electrode
for QDSSC and it showed that the CuS CE exhibited an inferior charge
transfer resistance of only 2.93Ω, which was 33 times lesser than that
of the Pt CE (Sunesh et al., 2017). This replacement of Pt by CuS CE
provides a low-cost DSSC device due to the Pt catalytic CE accounts for
more than 50% of the whole cost.

These performance of CuS CE across similar applications has been
mainly attributed to their excellent conductivity. Though CuS CE has
been heavily investigated by experiments (Buatong et al., 2017; Hessein
et al., 2017; Zhang et al., 2018; Liu et al., 2017); the influence of im-
purities on structure and properties has still poorly studied. Therefore,
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it is necessary to calculate the electronic structures, optical and elec-
trical properties of doped CuS CE via theoretical simulation study,
which could also offer internal microstructure change and calculate
different properties of CuS CE. In this work, First principles are adopted
to study the electronic structures, optical and electrical properties of tin
doped CuS. We introduce tin impurities in the CuS crystal cell to
complete simulation because CuS coatings are usually on FTO
(Fluorine-doped tin oxide) coating of conductive glass in experiments
(Diwate et al., 2018; Bhat et al., 2017), and the study results show that
tin changes the optical properties of CuS CE.

2. Computational details

First principles simulation of CuS was implemented with the
Cambridge Serial Total Energy Package module (CASTP) of Material
Studio. The simulation adopted the super cell of hexagonal phase CuS
which consisted 24 ions, including 12 copper atoms and 12 sulfur
atoms, respectively. The core electrons were optimized by normal-
conserving pseudopotential and local density approximation (LDA)
functionals. And the PBE method was applied as the exchange-corre-
lation effects of valence electrons. The Monkhorste-Pack scheme k-
points grid sampling was set as 8× 8×2 for the irreducible Brillouin
zone. The energy cutoff was chosen 440 eV. The electronic configura-
tions are 3d104s1 for copper, 3s23p4 for sulfur and 5s25p2 for tin, re-
spectively.

3. Results and discussions

The space group of CuS is P63/mmc (space group #227) which is a
hexagonal crystal structure and the lattice constants are
a= b=3.794 Å and c=16.341 Å. The calculation adopts the super
cell of hexagonal phase CuS which contains 24 atoms, including 12
copper atoms and 12 sulfur atoms, respectively. The norm-conserving
pseudopotentials are choosen for the calculation results are more con-
sistent with the experimental results than ultrasoft pseudopotentials (Lv
et al., 2017; Ramamoorthy and Rajendran, 2017). The relaxed lattice
constants of hexagonal phase CuS are a=b=3.776 Å, and
c=16.291 Å and α= β= γ =90°, γ=120° which are consistent with
the experiment results (Ramamoorthy and Rajendran, 2017). The re-
laxed unit cell of pure hexagonal phase CuS is shown in Fig. 1. The

Wyckoff position of Cu (No.1) cation is (0.667, 0.333, 0.250) and Cu
(No.2) is (0.333, 0.667, 0.1073), while that of anion S (No.1) is (0.333,
0.667, 0.25) and S (No.2) is (0, 0, 0.0634).

The band structure and density of state (DOS) of hexagonal phase
CuS along the high symmetry directions in the Brillouin zone are cal-
culated based on the LDA and GGA functionals because only these two
functionals could be used to calculate the electronic structure of con-
ductors, but the results show that there is little difference between the
two methods. Therefore, we only exhibit the calculated results of LDA
functional here. The calculated results of electronic structure by LDA
functional are shown in Figs. 2 and 3, respectively. Fig. 2a shows the
band structure model of pure hexagonal phase CuS, and Fermi level
indicates by a red line is set to zero. Fermi level intersecting with
several energy bands indicate that pure hexagonal phase CuS is a
conductor, and the partial density of states (PDOS) shown in Fig. 3a
indicate that there are antibonding states of S-p at Fermi level (0 eV),
showing S-p is involved in the electrical conduction process of pure
hexagonal phase CuS. Fig. 2(b) and (c) show the band gap models of
hexagonal phase CuS with tin substituting Cu (No.1) and Cu (No.2),
respectively. The impurity levels bend across the Fermi level, which
shows the conductivity is changed. It can be seen from the PDOS of
Fig. 3(b) and (c) that the impurity levels are Sn-s and Sn-p orbitals,
respectively. Therefore, the calculation results show that the introduc-
tion of tin can change the conductivity of hexagonal phase CuS.

In order to obtain the detailed optical properties of tin doped CuS,
the optical absorption coefficient and the reflectivity are calculated as
shown in Fig. 4(a) and (b), respectively. From Fig. 4(a), it can be seen
that the sharp optical absorption peak of pure CuS is at about the wa-
velength of 120 nm, and the absorption coefficient at the visible region
(380–780 nm) is very small, which is about 2.5×104. But that of tin
doped CuS become obviously larger than that of pure CuS in UV–visible
region, and both the absorption coefficient of them are over the mag-
nitude of 5.0× 104. The results are similar with the reflectivity curves
of Fig. 4(b), the maximum sharp peak of which are at the same range,
indicating the maximum value of reflectivity is corresponding to that of
absorption. In the visible region, the reflectivity of pure CuS is about
0.2, and it is smaller than that of tin doped CuS, the reflectivity value of
which is about 0.4. Therefore, the calculated results indicate that the
introduction tin impurities increase light absorption coefficients and
reflectivity of CuS.

Fig. 1. Supercell of tin doped CuS. (a) supercell of pure hexagonal phase CuS; (b) supercell of hexagonal phase CuS the copper ion (No.1) of which is replaced by the
tin ion; (c) supercell of hexagonal phase CuS the copper ion (No.2) of which is replaced by the tin ion.
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Fig. 5(a) and (b) present the imaginary parts of dielectric coefficient
and real parts of the optical conductivity for tin doped CuS, respec-
tively. The dielectric property can be expressed by the complex per-
mittivity ε(ω)= ε1(ω)+ iε2(ω). The imaginary part ε2(ω) shows the
power loss, which is an very important parameter of optical property.
As can be seen from Fig. 5(a), the ε2(ω) of pure CuS is low in visible
region, the value of which is about 2.5. However, the ε2(ω) of tin doped
CuS is higher than that of pure CuS in visible region, the values of
which are greater than 5, and they also have wide peaks in the whole
visible region. As can be seen from Fig. 5(b) that the curve trend of
optical conductivity spectra is somewhat different with that of di-
electric coefficient spectra. All of the three curves have sharp peaks in

UV region and also they decline slowly in visible region, but the values
of tin doped CuS are obviously greater than that of pure CuS. Therefore,
the calculated results show the introduction of tin impurities could
increase the dielectric power loss and optical conductivity.

As one of the most important optical property parameter, the
complex refractive index, which is determined by the wavelength of
electromagnetic wave, is defined as N(ω)= n(ω)+ ik(ω), where n(ω)
is the refractive index and k(ω) is extinction coefficient, respectively.
Fig. 6 shows n(ω) and k(ω) as functions of the optical wavelength for
tin doped CuS, respectively. The variations of n(ω) and k(ω) in Fig. 6
are very similar to those of imaginary part ε2(ω) of the dielectric
function and the real part of dielectric coefficient in Fig. 6a,
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Fig. 2. The band structure maps of tin doped CuS. (a) the band structure maps of pure hexagonal phase CuS; (b) the band structure maps of hexagonal phase CuS the
copper ion (No.1) of which is replaced by the tin ion; (c) the band structure maps of hexagonal phase CuS the copper ion (No.2) of which is replaced by the tin ion.

Fig. 3. Density of state maps of tin doped CuS. (a) density of state maps of pure hexagonal phase CuS; (b) density of state maps of hexagonal phase CuS the copper ion
(No.1) of which is replaced by the tin ion; (c) density of state maps of hexagonal phase CuS the copper ion (No.2) of which is replaced by the tin ion.
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respectively. For pure CuS, as the wavelength increases, n(ω) decreases
slowly in the visible region, and the tin doped CuS of that is greater
than that of pure CuS in visible region. The behaviors of k(ω) is slightly
different with that of n(ω). In the visible region, both the curves of pure
CuS and the tin substituting Cu (No.2) CuS is slowly increasing with the
increasing of wavelength, but the tin substituting Cu (No.1) CuS is
slowly decreasing with the increasing of wavelength, respectively.
Therefore, the study results show that the introduction of tin impurities
lead to refractive index and extinction coefficients curves of CuS in-
creasing in visible region.

4. Conclusions

In this study, the electronic structures and optical properties of tin
doped CuS were investigated by first-principles DFT calculations. The
calculated results of electronic structures indicate that the introduction

of tin changes the conductivity of CuS, and Sn-s and Sn-p are involved
in the electrical conduction process. The calculated results of optical
properties indicate that the introduction of tin ions has increased ab-
sorption coefficient and reflectivity of CuS, and the photoconductive
study results indicate that tin doped CuS could be an excellent counter
electrode.
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Fig. 4. Calculated absorption coefficients (a) and reflectivities (b) of tin doped CuS.
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