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Abstract: The welding tool is the key of micro friction stir welding (µFSW), which affects the heat input
and the plastic forming of weld metal. In this paper, 0.8-mm-thick ultra-thin 1060-H24 aluminum
sheets µFSW butt joints were used to compare and analyze the influence of the conventional tool and
shoulderless tool on weld shaping, microstructure and mechanical properties. Besides, by measuring
the axial force, transverse force and weld temperature in µFSW process, the influence of these two
different tools on the heat input and metal flow mechanism of the weld were analyzed. The results
show that the weld generated by the shoulderless tool has narrower width, less heat input and metal
involved in plastic forming resulting in smaller HAZ (heat affected zone). The hardness of NZ (nugget
zone) is obviously increased compared with that of the base metal. The highest tensile strength can
reach 108.6 MPa, accounting for 78.6% of the base metal and 117.3% of the joint by the conventional
tool. But the welding defects have to be overcome for industrial application of the shoulderless tool.

Keywords: ultra-thin aluminum sheet; micro friction stir welding; shoulderless tool; microstructure;
mechanical properties

1. Introduction

Friction stir welding (FSW) is an advanced solid-state joining technique invented by The Welding
Institute (TWI) in 1991, with advantages of no dust, no splash, no wire filling, high joint quality,
small deformation, etc. [1–5]. With the development of this technology and the growing need in
industry, the research on FSW technology is further developed in the direction of high-speed friction
stir welding and ultra-thin precision welding [6]. The butt welding of ultra-thin sheets is wildly used
in the field of precision manufacturing such as aviation, aerospace, microelectronics, etc. Therefore,
micro friction stir welding (µFSW), as a breakthrough technology in precision manufacturing, has broad
application prospects.

In 2004, Nishihara and Nagasaka proposed friction stir welding for thin-plate structural materials
less than 1 mm, and named it as micro friction stir welding (µFSW) [7]. Because of the limited
heat and load carried by the sheet, TWI is exploring a low temperature and load µFSW solution.
Nee Joo Teh et al. conducted a detailed study on the balanced input of welding force and heat in µFSW
process and successfully obtained butt and lap joints with excellent weld formation by using the
welding fixture and conical welding tool they developed [8]. In this way, the weld is good for sealed
packaging of aluminum alloy, copper alloy and thermoplastic materials. For ultra-thin plate friction
stir welding, the rotation speed is more than ten times higher than that of conventional friction stir
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welding [9]. The high rotation speed can increase the heat input and generates low axial force [10].
Therefore, welded joints with excellent mechanical properties can be more easily obtained. Cerri et al.
studied properties of the joint at different temperatures, using 0.8-mm-thick 6082-T6 sheets as base
metal, and found that the flow stress decreased with the increasing of temperature [11]. Based on the
experiments, Elangovan et al. noted that different rotation speeds lead to different heat input and
plastic metal flow in metal forming, finally influence the mechanical properties of the joint [12].

The tool producing high-density heat input is more suitable for ultra-thin sheets µFSW [13,14].
Lammlein et al. successfully conducted closed profile welding on 3.2-mm-thick aluminum sheets by
using a shoulderless tool and studied the microstructure and plastic fluidity of the weld metal [15].
However, for now, there have been insufficient studies on the influence mechanism of microstructure
and mechanical properties of the ultra-thin aluminum sheets welded by the shoulderless tool. In µFSW
process with the shoulderless tool, less heat input and base metal is involved in the plastic flow [16,17].
Thus, the energy is saved in this process. Besides, no tilt angle is needed, which can reduce the difficulty
of equipment control.

To further explore how welding parameters affect the microstructure and mechanical properties
of the joint, it is extremely necessary to measure the force and temperature variations experienced by
the test sheets under different welding parameters during the welding process. Papahn et al. designed
and developed a novel fixture for simultaneously measuring axial and transverse forces during friction
stir welding process [18]. There are still many researchers who have carried out this measurement
work, making significant contributions to understanding the impact of process parameters on the
microstructure and mechanical properties of the joint [19–27].

This paper explored the shoulderless tool’s influence on µFSW process of ultra-thin 1060-H24
aluminum sheets in contrast with that of the conventional tool. The influence mechanism of weld
surface appearance, microstructure and mechanical properties of µFSW joints are discussed, in order
to provide some reference information for the application of shoulderless µFSW.

2. Materials and Methods

In the experiment, 0.8-mm-thick 1060-H24 aluminum sheets (150 mm × 25 mm × 0.8 mm) were
used for µFSW butt joints. Its chemical composition is listed in Table 1.

Table 1. Chemical composition of 1060-H24 aluminum (mass fraction/%).

Si Fe Cu Mg Mn Zn Ti V Al

0.15 0.20 0.05 0.03 0.03 0.05 0.03 0.03 margin

Two different types of the welding tool are shown in Figure 1. The tool was made of WC-Co
cemented carbide. The conventional tool is composed of a shoulder diameter of 6 mm and a conical
pin. The pin was tapered from 2 mm at root diameter to 0.5 mm at tip diameter with a length of 0.6 mm.
The shoulderless tool is only a conical pin with a 2-mm root diameter, 1-mm tip diameter and 0.8-mm
pin length. A fixed end was used to stabilize the tool pin, but just the pin actually participated in
the friction and stir effect of µFSW process. The welding process was performed with the different
welding tools, and the used welding parameters are listed in Table 2. Under each set of welding
parameters, welding tests were performed with one kind of the tools for three times. The conventional
tool was applied to the sheets under a 2◦ tilt angle, but no tilt angle was set in µFSW process by the
shoulderless tool.
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shoulderless tool. (BM-base metal, AS-advancing side of the weld, RS-retreating side of the weld, 
TMAZ-thermo-mechanically affected zone, NZ-nugget zone, HAZ-heat affected zone). 

Table 2. Welding parameters. 
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(mm/min) 

Conventional tool 
6000–12,000 140 

5 
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Shoulderless tool 
6000–12,000 140 
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Test sheets were cleaned with acetone to remove the oil and oxide on the surface before 
welding, and then were fixed on the self-made fixture showed in Figure 2. The fixture is also a force 
and temperature measuring device which is used for studying the force and temperature 
distribution of the sheets during μFSW process. For this, K-Type thermocouples were used and the 
probes on the root side of the weld were fixed on the backing plate surface through with high 
temperature glue. AS shown in Figure 3, points 1–4 were the probe location and the weld length not 
included the radius of tools was 30 mm. Points 2–4 were on the root side of the weld center and point 
1 beside point 2 was used to measure the ambient temperature of the weld. To reduce the heat loss, a 
titanium alloy with lower thermal conductivity was selected as the backing plate. The axial force was 
measured by three load cells fixed under the backing plate, meanwhile, the transverse force was 
measured by one load cell fixed on a wall perpendicular to the welding direction. NI (National 
Instruments Corporation, Austin, TX, USA) USB-6008 data acquisition card and LabVIEW 13.0 
Development System (National Instruments Corporation, Austin, TX, USA) were used to record the 
welding force and temperature data at a sampling rate of 1000 Hz. The collected data was 500 pts 
Savitzky–Golay smoothed in order to make the variation trend of the curve clearer. Then the impact 
of the different tools on the welding force and temperature of μFSW process were analyzed and 
contrasted. 
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Figure 1. Schematic of µFSW (micro friction stir welding) process by conventional tool and
shoulderless tool. (BM-base metal, AS-advancing side of the weld, RS-retreating side of the weld,
TMAZ-thermo-mechanically affected zone, NZ-nugget zone, HAZ-heat affected zone).

Table 2. Welding parameters.

Used Tools Rotation Speed
(rpm)

Welding Speed
(mm/min)

Plunging Rate
(mm/min)

Conventional tool
6000–12,000 140

511,000 80–200

Shoulderless tool
6000–12,000 140

511,000 80–200

Test sheets were cleaned with acetone to remove the oil and oxide on the surface before welding,
and then were fixed on the self-made fixture showed in Figure 2. The fixture is also a force and
temperature measuring device which is used for studying the force and temperature distribution of
the sheets during µFSW process. For this, K-Type thermocouples were used and the probes on the
root side of the weld were fixed on the backing plate surface through with high temperature glue.
AS shown in Figure 3, points 1–4 were the probe location and the weld length not included the radius
of tools was 30 mm. Points 2–4 were on the root side of the weld center and point 1 beside point 2 was
used to measure the ambient temperature of the weld. To reduce the heat loss, a titanium alloy with
lower thermal conductivity was selected as the backing plate. The axial force was measured by three
load cells fixed under the backing plate, meanwhile, the transverse force was measured by one load
cell fixed on a wall perpendicular to the welding direction. NI (National Instruments Corporation,
Austin, TX, USA) USB-6008 data acquisition card and LabVIEW 13.0 Development System (National
Instruments Corporation, Austin, TX, USA) were used to record the welding force and temperature
data at a sampling rate of 1000 Hz. The collected data was 500 pts Savitzky–Golay smoothed in order
to make the variation trend of the curve clearer. Then the impact of the different tools on the welding
force and temperature of µFSW process were analyzed and contrasted.
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Figure 3. Schematic of the temperature measuring position.

Specimens for metallographic and mechanical properties tests were machined from the welded
sheets normal to the welding direction. Three samples for mechanical properties tests were taken
from each welded test sheets. After being ground by metallographic sandpapers and mechanically
polished, the samples were wiped with Keller reagent (2.5 mL HNO3, 1.5 mL HCl, 1 mL HF, and 95 mL
H2O). The grain size and microstructural features of the welded joint have been observed by light
microscopy Axio Scope A1 (Zeiss Corporation, Oberkochen, Baden-Württemberg, Germany), and the
tensile fracture morphology by a Quanta FEG450 SEM (FEI Corporation, Hillsboro, OR, USA). Tensile
strength tests of the joint were carried out at a tensile rate of 0.5 mm/min by using an Instron 3382
universal testing machine (Instron Corporation, Norwood, MA, USA). The Vickers microhardness was
measured with a microhardness tester along the middle line of transverse cross section with the load
of 1.96 N for 10 s at each point. The measuring position of the microhardness is shown in Figure 1,
it should be ensured that both the top, middle and bottom layers come across the nugget zone (NZ),
thermal-mechanical affected zone (TMAZ), heat affect zone (HAZ) and base metal (BM), including
the advancing side (AS) and retreating side (RS) of the joint. The top layer was 0.2 mm from the top
surface, and the bottom layer was 0.2 mm from the bottom surface. Each point was 0.2 mm away from
another one.

3. Results and Discussion

3.1. Weld Surface Appearance

The surface appearance of welds by the different tool is shown in Figure 4. It can be seen that both
two welds have good surface appearance without any defects such as grooves and cracks. The surface
appearance of welds by the conventional tool is smooth and delicate, but the weld is wide and the
thickness of sheets are cut down badly, flash defects also exists. Compared with the conventional tool,
the width of welds by shoulderless tool is narrower, because the stir zone is narrowed due to the small
diameter of the tool pin. Though heat input generated by the shoulderless tool is lower, but base metal
can also come to the plastic flow state of 1060-H24 aluminum because of the high-speed rotation of the
shoulderless tool. There is granular burr but no other defect on the weld surface. And the weld has a
low thickness reduction rate.
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3.2. Welding Force

The weld length was 30 mm. The rotation speed of the tool was set at 11,000 rpm and the welding
speed was 140 mm/min, with which weld shaped good. The dwell time at start of the weld was 5 s
after the plunge depth reached 0.06 mm when used the conventional tool, and then start the transverse
feeding process of µFSW. When used the shoulderless tool, the plunge depth should reach 0.7 mm and
the dwell time at start of the weld was 5 s either.

As shown in Figure 5, axial forces in welding process at the rotation speed of 11,000 rpm were
analyzed. According to the movement of the tool, the µFSW process could be divided into three stages,
namely, the plunging stage, the dwelling stage and the stable welding stage.
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In the plunging stage, the spindle feed rate was set to a small value, in order to analyze the change
of the axial force in detail. In this stage, axial forces generated by the conventional tool on the welded
sheet increased rapidly with slow plunging of the tool pin. At the moment when the shoulder touched
the sheet surface (I), the axial force reached the maximum value of 147 N. Meanwhile, a large amount
of heat was generated due to the friction effect between high-speed rotating shoulder and the sheet
surface. Therefore, the metal in the friction contact area softened and achieved the plasticizing state.
The axial force began to decrease in this softening process. Since the plunging of the tool was not
finished, the metal which had not been in contact with the tool yet in the vertical direction to the sheet
surface was heated in different extent, but it did not achieve the plasticizing state. Also, it had reaction
force on the tool. Therefore, the axial force was slowly decreased. When the plunge depth of the
shoulder reached 0.1 mm, plunging stage of the tool was finished. In the dwelling stage, under the
sufficient friction and stir effect of the tool, most of base metal below the tool softened and achieved the
plasticizing state (II). Thus, the axial force rapidly reduced to a lower level due to the disappearance of
the reaction force. In the initial welding stage, the axial force maintained at about 50 N for 2 s and
then began to drop to a lower level rapidly when the base metal softened seriously (III). Then in the
stable welding stage, it maintained at this level (about 28 N) until the end of the test sheet was welded.
Finally, when the tool rose and left the sheet surface, the whole welding process finished and the axial
force deceased sharply toward 0 N.

When the shoulderless tool was used in µFSW process, in the plunging stage, the axial force
increased rapidly until the plunge depth of the tool pin reached 0.7 mm. Then, the axial force decreased
dramatically, but it did not have the slow decline (from I to II) and the secondary descent (from III to
IV) because of the small pin diameter of the shoulderless tool. In the stable welding stage, the axial
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force fluctuated on the basis of 40 N. When the welding stage finished, there was also 2 s for the tool
dwelling which was included in the exiting stage, and then the tool began to leave the test sheets.
When the conventional tool was used, the base metal received the heat generated by the friction effect
of the shoulder in this 2 s and rapidly softened. This situation did not happen to the shoulderless tool.
So, the process (until forces were 0 again) with the shoulderless tool was about 2 s longer than that
with the conventional tool in Figure 5.

The transverse force generated by two types of welding tools in µFSW process are shown in
Figure 6. Frictional forces on the AS and RS were opposite during the rotation of the tool. Thus,
transverse forces were above or below 0, when the pre-tightening force was loaded. However, under the
rotation speed of 11,000 rpm, transverse forces of the conventional tool remained positive in the stable
welding stage (Figure 6a), while transverse forces of the shoulderless tool were above or below 0
(Figure 6b). It should be that the small diameter and high rotation speed of the shoulderless tool brought
extremely small thrust to the test sheet, which could not be identified by the load cell. And there were
some high frequency wave periods of the transverse force in µFSW process caused by vibration of
the fixture.
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3.3. Weld Temperature

The heat input during µFSW process with the conventional tool can be expressed by the
Equation (1) [28].

QF =
2
3
πτcontactω

(
R3

shoulder+3R2
probeHprobe

)
(1)

where QF is the heat input, τ is the material yield stress at some welding temperature, ω is the angular
velocity of welding tool, Rshoulder is the radius of conventional shoulder, Rprobe is the radius of tool pin,
and Hprobe is the height of tool pin.

When use the shoulderless tool, only the tool pin works, so the heat input can be expressed by the
Equation (2).

QF =
2
3
πτcontactω

(
3R2

probeHprobe

)
(2)

It can be seen from the Equation (1) that the heat input of µFSW process grows with the increase
of the shoulder diameter when the other parameters are unchanged. In this paper, the heat input of
µFSW process with the shoulderless tool is 7.3% of that with the conventional tool according to the
Equation (2), since it is only affected by the pin.

In order to verify the huge difference of heat input generated by the different tools, the dynamic
temperature curves of points 1–4 shown in Figure 3 at 11,000 rpm rotation speed and 140 mm/min



Metals 2019, 9, 507 7 of 13

welding speed are shown in Figure 7. When the conventional tool is used in µFSW process, the weld
temperature rises more quickly compared with the shoulderless tool. The weld temperature of the
conventional tool during µFSW process can reach up to 337 ◦C, which is enough to make the base
metal come to the plasticizing state. In Figure 7a,b, the weld temperature curve of the shoulderless tool
is found to be concave between 20–25 s, which may be caused by the vibration of the fixture during
µFSW process. The thermocouple probe of point 1 and 2 temporarily left its original position with the
vibration of the backing plate in the fixture and caused the measured temperature to drop. The highest
weld temperature of the shoulderless tool is 84 ◦C. This value is lower than the true temperature
of the weld because there is heat-transfer medium (high temperature glue) between the weld and
thermocouple probe causing heat loss. The same happens to the conventional tool. The temperature at
point 1 is much lower than that of points 2–4, because the point 2–4 were on the root side of the weld
center and the point 1 beside the point 2 was used to measure the ambient temperature of the weld.
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3.4. Macro Morphology and Microhardness

Figure 8 indicates the cross-sectional macroscopic morphology of the two µFSW joints after being
etched by Keller reagent. The welded joint is divided into BM, HAZ, TMAZ and NZ. The grain size of
NZ is smaller than that of other areas because of stir action of the tool. Also, clear boundary between
TMAZ and NZ can be seen. Moreover, as shown in Figure 8a, µFSW joints by the conventional tool
(the diameter of NZ is 3.2 mm) have large HAZ and severe thickness reduction. While, as shown in
Figure 8b, joints by the shoulderless tool (the diameter of NZ is 0.8 mm) have small HAZ, less plastic
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metal involved in µFSW process, narrow weld width, and low thickness reduction rate, since it only
influenced by the tool pin. According to the limited heat input generated by the shoulderless tool,
a small amount of base material around the tool pin was extruded to weld edges in the welding process
because of the cutting action of the pin and the deficiency of material recovery could be achieved by
the shoulder, resulting in a more mild thickness reduction compared with that of the conventional tool.Metals 2019, 9, x FOR PEER REVIEW 8 of 13 
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In the µFSW process, HAZ of the joint is only subjected to the thermal cycling effect but no
mechanical action of the welding tool. So, the distortion energy in HAZ is low, and the microstructure
is composed of coarse grains. TMAZ is subjected to the stir and heat double effects, resulting in the
deformation of the microstructure. The grain in this area is elongated. NZ is mainly subjected to the
stir effect of the tool pin. The material in this area has good fluidity in the welding process and the
microstructure is composed of fine equiaxed grains.

When the conventional tool is used, the metal is mechanically affected by the shoulder. The heat
is easily transmitted to the bottom of the weld. The base metal covered by the entire shoulder is at a
higher temperature in the welding process [29]. TMAZ of the joint is larger, and the grain in this area
is stretched. Compared with the conventional tool, the metal is only affected by the tool pin when the
shoulderless tool is used, and the influence range of the tool is smaller. A lower heat input is generated
by the dual function of high-speed rotation and stir effect of the tool pin, and a smaller amount of base
metal undergoes the rapid temperature rising and crystallization process. The plastic metal flow has
an amply fluxion and the microstructure is homogeneous. Besides, the bonding zone between HAZ
and TMAZ of the joint is smaller and inconspicuous.

Figure 9 shows the average microhardness distribution curve of the weld cross section.
The measuring points are distributed in the top, middle and bottom layer shown in Figure 1. Because
microhardness of a zone is closely related to the microstructure the zone has, the top layer of the weld
has a higher dynamic recovery and recrystallization degree than that of the bottom layer because of
the stir effect of the tool. So, in this layer, the phenomenon of grain refining is the most obvious and the
microhardness is the highest. The bottom layer is strongly stirred under mechanical actions of the tool
pin. Since the less heat generated by the pin with small diameter and the heat dissipation caused by
the backing plate, the weld has a low-grade process of dynamic recovery and recrystallization.

Grains in the HAZ on the AS experience a rapid growth, where the hardness is the lowest. Because
the direction of the force loaded on the AS by the tool is different from that on the RS, the dispersion
strengthening phase is collected in the RS, resulting in a more serious tendency of hardening on the AS.
Therefore, the mechanical properties of HAZ on the AS is poor. It can be seen from Figure 9 that the
microhardness curve of the butt joint by the conventional tool shows ‘W’ type, which is similar to the
microhardness distribution of other aluminum alloy µFSW joints [30,31]. The microhardness of the
weld is lower than that of the base metal, and the lowest hardness zone appears in the bonding zone
between TMAZ and HAZ. Due to the high local temperature of the test sheets during the welding process
with the conventional tool, the annealing of the material occurs, the grain begins to coarsen, and shows
in macroscopic view that the mechanical properties of the material are lowered. For the weld by the
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shoulderless tool, the microhardness of NZ is obviously increased compared with that of the base metal.
Due to the low temperature shown in Figure 7 and strain hardening effect on the test sheets, the dislocation
energy around the processed area is increased, resulting in a hardness increase. Microstructure in TMAZ of
the joint is affected by the mechanical stir and heat input effects, and HAZ is only affected by the heat
input, so the hardness of the four zones is as following: NZ > TMAZ > BM > HAZ.
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3.5. Tensile Properties of the Joint

The actual tensile strength of the base metal measured in the tensile test was 138.2 MPa. Figure 10a
shows the average tensile strength of µFSW joints by the different tool at different rotation speeds.
When the rotation speed was 11,000 rpm and the welding speed was 140 mm/min, the tensile strength
of the joint by the conventional tool reached the best value of 92.6 MPa, which was 67.0% of that the
base metal had. The best case of tensile properties was fractured in NZ, along the welding direction
extended to HAZ on the RS. Under the same parameters, the cracks initiated at the bottom of the
joint and propagated along the boundary between TMAZ and NZ on the RS, but part of the joint
was fractured in the upper layer of TMAZ on the AS. The highest tensile strength was 108.6 MPa,
accounting for 78.6% of the base metal and 117.3% of the joint by the conventional tool. Figure 10a
reflects two important regular features of the strength variation at different rotation speeds. Firstly,
when the welding speed is fixed, whether the conventional or the shoulderless tool is used, the tensile
strength increases first and then decreases with the growth of rotation speed. Secondly, when the
rotation speed is less than 10,000 rpm, the tensile strength of the joint by the conventional tool is higher
than that of the joint by the shoulderless tool. This should be that there is insufficient heat input when
the rotation speed of the shoulderless tool is less than 10,000 rpm, resulting in a poor metal fluidity in
the weld and weak connection between two test sheets.

As shown in Figure 10b, when the rotation speed is fixed, whether the conventional tool or the
shoulderless tool is used, the tensile strength increases first and then decreases with the growth of
the welding speed. In addition, no matter how the rotation speed changes among 80–200 mm/min,
the tensile strength of the joint by the shoulderless tool is higher than that of the joint by the conventional
tool but lower than that of the base metal either, which has a certain relationship with the heat input
during µFSW process and defects possibly appear in the welded joint. So, the fracture surface analysis
must be done. Without the optimum welding parameters, the joint by the conventional tool was
fractured in NZ when the rotation speed was 11,000 rpm and the welding speed was 160 mm/min.
Under the same parameters, the joint by the shoulderless tool was fractured along the boundary
between TMAZ and NZ on the RS.
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3.6. Morphology of The Tensile Fracture Surface

The tensile fracture surface of the sheets welded by the different welding tools are shown in
Figure 11. For the joint by the conventional tool, the fracture surface morphology presented at low
magnification power is shown in Figure 11a. The characteristics of the upper and lower layer of
fractures are significantly different. The region A (the upper layer) and B (the lower layer) in Figure 11a
presented at high magnification are shown in Figure 11b,c respectively. The deformation degree of
region A is very low. Many large and deep dimples with tearing edges associated with micropores
appear on the fracture surface of region A. The joint comes to be ineffective before the dimple is
completely opened. Besides, as shown in Figure 11c, the dimple in region B is homogeneously
distributed in this area and has a high degree of deformation, indicating the typical ductile fracture.

For the joint welded by the shoulderless tool, the fracture surface morphology presented at low
magnification is shown in Figure 11d, region C and D in Figure 11d presented at high magnification
are shown in Figure 11e,f respectively. Layered fracture also occurs after the tensile test of the joint by
the shoulderless tool. As shown in Figure 11f, the fractures of region D change from dimple to ductile
slip-band fracture because of the welding defect above the bottom layer of the joint as a result of the
heat input and the axial force, which easily becomes the initiation of crack. The upper layer is strongly
stirred by the pin, which resulting in grain refinement in this area. While, because of heat loss of the
ultra-thin sheet, insufficient material flow is easy to take place. Moreover, because forces brought
by the pin are different between the upper and lower layer in the welding process, the mechanical
properties of the upper and lower layers are different either, resulting in a stratification phenomenon.
Therefore, the fracture occurs in the combination zone between these two layers.
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Figure 11. Fracture surface morphologies of the joints by the conventional tool (a) and the shoulderless
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4. Conclusions

The main results of this investigation are:

1. Compared with the conventional tool, µFSW process with the shoulderless tool has advantages
of low heat input, simple process as well as excellent mechanical properties. Thus, it has bright
prospects for industrial application.

2. The µFSW process of 0.8-mm-thick ultra-thin 1060-H24 aluminum sheets with the shoulderless
tool is achieved in this thesis. The joint by the shoulderless tool has small heat input and HAZ
because it is only influenced by the tool pin. Among the four zones, the microhardness is as
following: NZ > TMAZ > BM > HAZ.

3. The µFSW joint of 0.8-mm-thick ultra-thin 1060-H24 aluminum sheets by the shoulderless tool has
the best mechanical properties with the welding speed of 140 mm/min and the rotation speed of
11,000 rpm. The highest tensile strength of the joint by the shoulderless tool can reach 108.6 MPa,
accounting for 78.6% of the base metal and 117.3% of the joint by the conventional tool. Also,
the fracture mode of the joint is ductile fracture. The welding defects have to be overcome for
industrial application of the shoulderless tool.
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