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Chimera state in neuronal network means the coexistence of synchronized and desynchronized firing patterns. It attracts much
attention recently due to its possible relevance to the phenomenon of unihemispheric sleep in mammals. In this paper, we search
for chimera state in a noisy small-world neuronal network, in which the neurons are delayed coupled. We found both transient
and permanent chimera state when time delay is close to a critical value. The chimera state occurs due to the competition between
the synchronized and desynchronized patterns in the neuronal network. On the other hand, intermediate intensity of noise
facilitates the occurrence of delay-sustained chimera states. Comparison between noise and delay shows that time delay is the
key factor determining the chimera state, whereas noise is a subordinate one.

delay, noise, chimera state, neuronal network

Citation: Tang J, Zhang J, Ma J, et al. Noise and delay sustained chimera state in small world neuronal network. Sci China Tech Sci, 2019, 62: 1134–1140,
https://doi.org/10.1007/s11431-017-9282-x

1 Introduction

Recently, chimera state has attracted much attention in the
field of nonlinear dynamics. Chimera states arise in en-
sembles of identical oscillators when the oscillators exhibit
radically different dynamics, within which one group of
oscillators exhibit synchronized oscillations whereas the
others exhibit desynchronized behavior. Chimera state was
first reported by Kuramoto and his colleagues [1] in a ring of
simple oscillators. After the first finding, chimera state has
been extensively studied in varies of computational models,
such as simple phase oscillators [2–11], pendulum-like
model [12], Stuart-Landau oscillators [13], Josephson junc-
tion model [14], chaotic oscillators [15–17], and FitzHugh-
Nagumo (FHN) type models [18–21], etc. On the other hand,
the experimental verification of chimera states was demon-

strated in mechanical [22], optical [23], chemical [24], and
electronic systems [25].
Chimera behavior is of particular importance in neuron

system, given that synchronized firing of neurons plays key
role in pathological states such as seizures [26], Parkinson’s
disease [27]. Due to the potential application of chimera
states in the phenomenon of unihemispheric sleep, which has
been reported in birds, dolphins [28] and human beings [29],
many theoretical work have been performed based on nu-
merical simulation [2–21] and bifurcation analysis [30].
Omelchenko et al. [19] have studied the robustness of chi-
mera states in systems of nonlocally coupled FitzHugh-Na-
gumo (FHN) neurons. They find different multichimera
states arising in a transition from classical chimera states,
depending on the coupling strength.
Glaze et al. [31] demonstrate chimera-like behaviors in a

Hodgkin-Huxley-type model of thermally sensitive neurons.
They identified the regions of parameter space for which
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chimera behavior occurs for different coupling schemes.
Schmidt et al. [18] discuss chimera pattern in a two-dimen-
sional networks of coupled neuron oscillators. The network
models support hybrid states composed of coherent and in-
coherent regions, and a number of chimera patterns including
spots, grids, rings, and stripes are identified.
Inhomogeneity in the dynamics of oscillators and coupling

topology were widely assumed to be the necessary in-
gredients for chimera states. Recent studies show that chi-
mera states can be found also when the elements of the
system are nonidentical [32] or when the topology is not
regular [33,34] or even global [35]. Omelchenko et al. [36]
demonstrate that chimera states are robust with respect to
inhomogeneity both in the dynamics of oscillators and cou-
pling topology.
In reality, the dynamics of a neuronal network often in-

volves time delay due to the finite signal propagation time in
biological networks [37]. Recently, neuronal networks with
time delay have received considerable attention [38–47]. Fan
and Wang [46] reported that the interplay between delay and
coupling strength in a Hindmarsh-Rose neuronal system can
not only enhance or destroy the synchronizations but also can
induce the regular transitions of bursting firing patterns. Our
former work has studied delay induced synchronization
transitions in a small-world (SW) neuronal network [47]. We
found that the neuronal network may transit from a desyn-
chronized pattern to a synchronized one when the time delay
increase across a critical value, and the synchronized pattern
depends on the noise intensity sensitively. Noise effect is also
a hot topic in the study of neural network [48–53]. It has been
confirmed that noise could determine the synchronization or
coherence through the mechanism of stochastic resonance or
coherence resonance in neuronal systems [48–51]. Our for-
mer work found that noise could change the firing patterns of
coupled neurons during neuronal information transmission,
and noise facilitates the occurrence of episodic spikes of
neurons [52]. Based on a sleep-wake-cycling neuronal
model, Jin et al. [53] found noise could trigger transitions
between sleep and awake states.
Motivated by the above consideration and based on the

similar models used in refs. [39,47], we attempt to find
chimera states with the value of time delay close to the cri-
tical value, for which the synchronization transition occurs.
We focus on how the noise and time delay sustained the
chimera state cooperatively, and how long the transient
chimera state can exist for. The remainder of this paper is
organized as follows. In sect. 2, a noisy SW neuronal net-
work and corresponding equations are introduced. In sect. 3,
how the time delay determines the occurrence of chimera
state is studied, and the influence of noise on the delay-
sustained chimera state is investigated. The paper ends with
conclusions in sect. 4.

2 Model and simulation

The FitzHugh-Nagumo (FHN)-type equations are employed
to describe the electric activities of neurons since this neuron
model combines computational efficiency and the controll-
ability of excitability. The neuron coupling in the cortex and
other brain regions is mainly local, with relatively sparse
long distance projections, which suggests a SW topological
structure rather than regular one. A SW network is im-
plemented as in ref. [54]. At first, a regular network con-
sisting of N neurons is constructed, in which every neuron
connects to its k nearest neighbors. Then each link in the
regular network is selected and is removed and reconnected
to another randomly chosen neuron with probability p. The
rewiring parameter p, k, and N are important factors de-
termining the network topology. Following refs. [39,47], we
set N =100, p =0.2, and k =4 throughout this paper. The
equations of the model are as follows:
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where ui(t) represents the membrane potential of the ith
neuron, and vi(t) is the corresponding recovery variable. The
parameter gij is the coupling parameter between the i and jth
neuron. If the two neurons are coupled to each other, gij
=0.03, or else gij=0. τ denotes the information transmission
time delay. We set time scale separation ε=0.01. We set the
values of gij and ε following refs. [39,47,54], which guar-
antee the weak noise could not induce spontaneous firing in
single neuron and the firing in one neuron could be trans-
ferred to the adjacent one successfully. This FHN-type model
possesses two Hopf bifurcation points with bifurcation
parameter a=1, –1. If |a|>1, the system has one stable fixed
point that corresponds to its quiescent state, while for |a|<1, a
limit cycle represents the spontaneously and periodically
firing of the neuron. The quiescent neuron (|a| slightly larger
than 1) is excitable because it fires a spike when perturbed
away from the fixed point by external stimuli [55]. The value
of a is fixed at 1.1 throughout this paper, at which the neuron
model has a single stable fixed point and is excitable.
We suppose each neuron is subjected to an additive noise

ξi(t). The statistical properties of the Gaussian white noise are
given by

t t t D t t< ( ) 0,  ( ) ( ) = ( ), (2)i i j ij

where D is the corresponding noise intensity, δ is the Kro-
necker symbol, and δij denotes that the noise is spatial un-
correlated. We know that noise is able to induce coherent or
incoherent firing of excitable neurons, thus, noise is a critical
factors determining the synchronized firing patterns of
neuronal networks.
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Random selected initial values are allocated to all neurons.
We use a forward Euler integration scheme with a time step
10–3 time unit. Simulations verify further time step reduction
does not significantly improve accuracy. The numerical al-
gorithm presented by Sancho et al. [56] will be used to si-
mulate the noise.

3 Results and discussion

Chimera state in neuronal network means the coexistence of
synchronized and desynchronized groups. Our former work
had reported the SW neuronal network exhibits synchronized
firing pattern for special values of time delay, whereas de-
synchronized pattern for others [47]. It is reasonable for us to
expect the occurrence of Chimera state for delay value close
to the critical value, which is about τc=2.60. For examples,
the firing patterns for 3 typical τ values close to τc are plotted
in Figure 1. We can see that all neurons in the network start to
fire after about 40 time units in average. Obviously, the co-
existence of synchronized and desynchronized groups in-
dicates the occurrence of chimera state. Although the
synchronized (desynchronized) group in Figure 1(a) (Figure
1(c)) disappears rapidly, and the whole network approaches
toward a completely desynchronized (synchronized) state
finally, the transient chimera state occurs explicitly. On the
other hand, the persistent existence of synchronized and
desynchronized groups in Figure 1(b) indicates a persistent
chimera state, even a permanent one.
In fact, the chimera state occurs due to the competition

between the synchronized and desynchronized groups in the
neuronal network. Comparing the figures in Figure 1, the

proportion of synchronized group increases with time delay
τ. To illustrate this change, the average value of u is plotted
against time in Figure 2, in which the value of τ is same as
that in Figure 1. Obviously, the more the neurons are in the
synchronized group, the more average u oscillates co-
herently.
To our knowledge, chimera state are always reported in

regular network. Omelchenko et al. [36] found chimera state
in a regular network with few additional random links.
Herein this paper, the SW neuronal network without delay
could not sustain chimera state, but special time delay in the
coupling is able to support chimera state.
In ref. [46], we identified the parameter regions for syn-

chronization based on the final firing pattern, and transient
dynamics was ignored. As mentioned above, the transient
chimera state may imply in the transient dynamics of the
network. Thus, we anticipate chimera state could be found in
extended region of time delay. To identify the parameter
region of the chimera state, the time period tm, in which the
chimera state exists, are recorded for different value of time
delay (see Figure 3). It should be pointed out that the largest
simulated time in the paper is 6000 time units, thus peak
values of tm ≈6000 correspond to permanent chimera states.
The permanent-like chimera state only occurs in the region
τ∈(2.60, 2.70) time units. When τ<2.45 or τ>2.90, the system
reaches to the completely desynchronized or synchronized
state rapidly (tm≈0), i.e., the chimera state could not be
found. For other values of τ, although tm is small, the transient
chimera state occurs before the system reaches the final
desynchronized or synchronized patterns. We conclude sui-
table value of time delay allows the occurrence of chimera
state, and the chimera state could be found for parameter

Figure 1 Space-time plots of u for different τ. (a) τ=2.57; (b) τ=2.65; (c) τ=2.80. Noise intensity D=0.0003. The black-to-white gray scale represents the
lowest value –2.5 to the highest value 2. This gray scale will be used in all space-time plots throughout this paper.

Figure 2 Time-evolution of u averaging over the whole network. All values of parameters are same as that in Figure 1.
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region τ∈(2.45, 2.90) approximately.
It should be noted that the obvious fluctuation in tm may

due to the randomness originated from the noise term in eq.
(1) and the random rewiring when the SW network is
structured.
All above results are obtained for noise intensity

D=0.0003. Given that the synchronized pattern in neuronal
network depends on the noises sensitively, we investigate the
chimera state for varies of noise intensities. tm is plotted
against time delay τ in Figure 4 for different noise intensities.
The numerical simulation shows that the chimera state could
be found explicitly in broad region of noise intensity. Figure
4 tells us that the parameter region for the permanent chimera
state is shifted due to the change of noise intensity, but the
direction of shift is not certain. On the other hand, the
parameter region for the permanent chimera state is broa-
dened significantly by the enhancement of noise intensities.
It could be concluded that noise aids time delay in sustaining

chimera states.
Certainly, too weak or strong noise may prevent us from

obtaining reasonable synchronized pattern in the neuronal
network. In our network model, too weak noise (D<0.0002)
could not make the neurons fire, i.e., all neurons are in the
quiescent state. For examples, the firing pattern for
D=0.00005 are plotted in Figure 5(a), no any spike is found.
On the other hand, numerical simulation shows that too
strong noise (D>0.005) makes the synchronized groups
sporadic, which we could not define as chimera state or not
(see Figure 5(b) as an example). In the mathematical mod-
elling of biological system, extreme strong noise may drive
the system deviating from its stable behaviors, which make
the modelling results lost its biological meaning. Thus, we
will ignore the firing patterns shown in Figure 5.
To illustrate the influence of noise more clearly, we in-

vestigated the firing pattern for varying noise with fixed time
delay. As an example, the firing patterns for different noise
with τ=2.40 are plotted in Figure 6. We can see that chimera
state could not be found for weak or strong noise (see Figure
6(a) and (c)). The transient chimera state occurs for inter-
mediate intensity of noise.
We also study the dependence of chimera state on noise for

other values of time delay. As shown in Figure 7, tm reaches a
peak value for the intermediate intensity of noise whatever
the time delay τ is. This kind of noise-sustained chimera state
is very similar to the noise-induced coherent behaviors in
many nonlinear system, which are called coherence or sto-
chastic resonance. On the other hand, we should note the
difference in the vertical axis of all subfigures in Figure 7. In
Figure 7(a), (e) and (f), the peak values of tm indicate the
transient chimera states, whereas, in Figure 7(b)–(d), the
peak values represent the permanent chimera states. The

Figure 3 The time period tm, in which the chimera state exists, as a
function of time delay τ. Noise intensity D=0.0003.

Figure 4 The time period tm, in which the chimera state exists, as a function of time delay τ for different noise intensity.

Figure 5 Space-time plots of u for different noise intensity. (a) D=0.00005; (b) D =0.006. Time delay τ=2.80.
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huge difference in the peak values tells us that the time delay
τ is the key factor determining the occurrence of chimera
state, although intermediate amount of noise facilitates the
enhancement of tm.

4 Conclusions

In summary, we investigate chimera state in a noisy delayed-
coupled SW neuronal network, in which FHN equations are
employed to model the single neuron dynamics. Our former
work reported that the neuronal network may transit from a
desynchronized pattern to a synchronized one when the time
delay increase across a critical value, and the synchronized
pattern depends on the noise intensity sensitively [47]. In this
paper, we find transient or permanent chimera states with the
value of time delay close to the critical value τc for which the
synchronization transition occurs. The chimera state occurs
due to the competition between the synchronized and de-
synchronized patterns in the neuronal network, which is not
similar to that has been reported in many theoretical works.
We focus on the effect of time delay on the occurrence of

chimera state. In other study about chimera state, time delay
is ignored mostly [10,13,14,17,20, 21,31,36]. The time per-
iod, during which the chimera state exists, is recorded to
illuminate the transient and permanent chimera states. The
transient or permanent chimera state could be found for
broad parameter region τ∈(2.45, 2.90). On the other hand,
intermediate amount of noise facilitates the occurrence of
chimera states, but time delay is the deterministic factor.
In the present study, the chimera state is originated from

the coexistence of synchronized and desynchronized. In fact,
it has been widely reported that there exist many other
synchronization states in neuronal network, such as, com-
plete synchronization, antiphase synchronization, phase
synchronization etc. The coexistence of other synchroniza-
tion states will be an interesting problem [57–61], which
motivates our future work.
It should be pointed out that there are a large number of

network realizations with the same values of all parameters.
Our results are obtained from only one network realization.
To test the generalization of the results, we perform parts of
the study on several other network realizations with the same
parameter values. The test shows that although the figures

Figure 6 Space-time plots of u for different noise intensity. (a) D=0.0004; (b) D=0.0008; (c) D=0.0015. Time delay τ=2.40.

Figure 7 The time period tm, in which the chimera state exists, as a function of noise intensity D for different time delay τ. (a) τ=2.4; (b) τ=2.5; (c) τ=2.6; (d)
τ=2.7; (e) τ=2.8; (f) τ=2.9.
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are not totally same, all the results about occurrence of chi-
mera state are similar for different network realizations. That
implies that the results in this paper are general and in-
dependent on the network realization.

This work was supported by the Fundamental Research Funds for the
Central Universities of China (Grant No. 2015XKMS080(JT)).
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