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The no-wait flow shop scheduling problem (NWFSP) plays an essential role in the manufacturing indus-
try. Inspired by the overall process of biogeography theory, the standard biogeography-based optimization
(BBO) was constructed with migration and mutation operators. In this paper, a hybrid biogeography-based
optimization with variable neighborhood search (HBV) is implemented for solving the NWFSP with the
makespan criterion. The modified NEH and the nearest neighbor mechanism are employed to generate a
potential initial population. A hybrid migration operator, which combines the path relink technique and
the block-based self-improvement strategy, is designed to accelerate the convergence speed of HBV. The
iterated greedy (IG) algorithm is introduced into the mutation operator to obtain a promising solution
in exploitation phase. A variable neighbor search strategy, which is based on the block neighborhood
structure and the insert neighborhood structure, is designed to perform the local search around the cur-
rent best solution in each generation. Furthermore, the global convergence performance of the HBV is
analyzed with the Markov model. The computational results and comparisons with other state-of-art al-
gorithms based on Taillard and VRF benchmark show that the efficiency and performance of HBV for

solving NWFSP.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Shop scheduling plays an important role in manufacturing
scheduling since an excellent scheduling planning improves the
productivity of the company effectively. The shop scheduling prob-
lem is classified into single machine scheduling problem with sin-
gle processor, single machine scheduling problem with parallel
processors, flow shop scheduling problem, job shop scheduling
problem (Van Laarhoven, Aarts, & Lenstra, 1992). The flow shop
scheduling problem (FSP) seems to be a common problem in the
field of industrial production. The FSP is divided into the following
categories: permutation FSP (PFSP), no-wait FSP (NWFSP), block-
ing FSP (BFSP) (Riahi, Khorramizadeh, Newton, & Sattar, 2017), no-
idle FSP (NIFSP) (Shao, Pi, & Shao, 2018), non-smooth FSP (Ferrer,
Guimarans, Ramalhinho, & Juan, 2016) and hybrid FSP (HFSP) (Lei,
Liang, & Zheng, 2018), etc.
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The NWFSP, which is an extension of the FSP, has been widely
applied in various industries, such as the electronics, metals,
chemicals and food-processing industries. As the technological rea-
sons, n jobs are processed in the same order on m machines with-
out waiting time between consecutive operations until the whole
process is done in NWFSP. Therefore, the starting time of a job on
a machine have to be delayed to satisfy the no-wait constraints.
The NWFSP with three or more machines was proved by Garey
and Johnson (1979) to be one of the strongly NP-hard problems.
It is difficult to solve the problems by branch-and-bound or mixed
integer programming methods as the problem size increases. It is
necessary to try more efficient algorithms for solving the NWESP.

Evolutionary algorithms (EAs) have gained wide popularity as
they solve the complex optimization problems without any gra-
dient information. Various EAs and variants of classical EAs, such
as particle swarm optimization (Clerc & Kennedy, 2002), har-
mony search (Geem, Kim, & Loganathan, 2001), water wave op-
timization (Zheng, 2015), gravitational search algorithm (Rashedi,
Nezamabadi-Pour, & Saryazdi, 2009), have been proposed. In recent
years, various heuristics are proposed to solve the NWFSP since
they in general obtain high-quality solutions within a reasonable
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time limit. The heuristic algorithms are classified into two main
categories: constructive heuristics and meta-heuristics.

Inspired by the migration of species in natural biogeogra-
phy, the biogeography-based optimization (BBO) was proposed by
Simon (2008). In the last decade, the BBO algorithm and its vari-
ants have been successfully employed to solve complex prob-
lems. A hybrid algorithm which comprises PSO and BBO was pre-
sented by Yogesh et al. (2017) for emotion and stress recogni-
tion from the speech signal. A learning mechanism for radial ba-
sis function networks, which is based on biogeography-based op-
timization with population competition (BBOPC) algorithm, was
proposed by Aljarah, Faris, Mirjalili, and Al-Madi (2018) to im-
prove the economics of electric power planning. A two-stage
differential biogeography-based optimization (TDBBO) algorithm,
which combines the Gaussian mutation operator, the two-stage
migration model and BBO/current-to-select/1, was proposed by
Zhao et al. (2019) for solving the global continuous optimization
problem. The convergence performance of TDBBO was analyzed
with Markov model.

The BBO algorithm and the variants of BBO have been widely
applied to scheduling problems. An HBBO algorithm, which is com-
bined with the chaos theory and BBO, was proposed by Wang and
Duan (2014) to solve the job shop scheduling problem. The BBO
algorithm was combined with some heuristics by Lin (2015) to
construct a hybrid algorithm for solving the fuzzy flexible JSP. The
BBO was also developed by Rabiee, Jolai, Asefi, Fattahi, and Lim
(2016) to address the realistic no-wait hybrid flow shop (NWHFSP)
with unrelated parallel machines to minimize mean tardiness.
The hybrid discrete biogeography-based (HDBBO) was proposed by
Lin (2016) for solving the permutation FSP. For solving the block-
ing flow shop scheduling problem (BFSP) with maximum comple-
tion time criterion, an improved biogeography-based optimization
(BBO) was proposed by Liu, Wang, and Zhang (2018).

However, although the BBO algorithm and its variants were
widely applied to solve the combinational optimization problems,
little attention has been paid to the NWFSP. In this paper, a
hybrid biogeography-based optimization with variable neighbor-
hood search is proposed to be an alternative scheme for solving
NWESP. The experimental results based on Reeve’s, Taillard’s and
VRF benchmark show the effectiveness and robustness of HBV. The
contributions of this paper are summarized as follows.

o The standard framework of BBO is retained. The NN+MNEH
is introduced to init potential population. The iterated greedy
mechanism is employed by the mutation operator to improve
the exploitation ability of HBV.

The path relink technique is embedded into the migration op-
erator to improve the exploration ability of HBV. The self-
improvement strategy which is based on the block neighbor-
hood structure is designed to improve the quality of solution.
A modified variable neighborhood search, which is based on
the block neighborhood structure and the insert neighborhood
structure, is designed to search around the current best solu-
tions in each generation.

The convergence performance of HBV is analyzed with the
Markov model. The convergence process of the candidate so-
lutions is mapped to the state transition process in the Markov
chain.

The remainder of this paper is organized as follows:
Section 2 describes the background. Section 3 provides the
description of NWFSP. A brief description of the standard BBO
algorithm is given in Section 4. In Section 5, the proposed HBV
algorithm is introduced in detail for NWFSP. In Section 6, the
computational evaluation is provided. Section 7 summarizes the
conclusion and future work.

2. Background

The heuristic algorithms, which are available for solving the
NWEFSP, are classified into two main categories, constructive
heuristics and meta-heuristics. Several noteworthy constructive
heuristics have been proposed for solving the NWFSP over the last
few decades. A slope matching (S/M) method, which employs geo-
metrical relationships between the cumulative process times, was
designed by Bonney and Gundry (1976). The RAJ, which is based
on heuristic preference relations and job insertion, was presented
by Rajendran (1994). The average departure time (ADT) heuristic
was proposed by Ye, Wei, and Miao (2016). Based on the com-
putational experiment with a large number of instances of vari-
ous sizes, the ADT performed than compared algorithms. An aver-
age idle time (AIT) heuristic was proposed by Ye, Li, and Abedini
(2017) to minimize makespan in NWFSP. Compared with the exist-
ing heuristics, the AIT achieved the smaller deviations in the same
computational complexity. In addition, several other constructive
heuristics for the regular flowshop were used to solve the NWFSP,
such as the NEH which was proposed by Nawaz, EEE, and Ham
(1983).

Various remarkable meta-heuristics have also been developed
for solving the NWFSP. The discrete particle swarm optimiza-
tion (DPSO) was proposed by Pan, Tasgetiren, and Liang (2008a),
Pan, Wang, and Zhao (2008b) for solving the NWFSP with both
makespan and total flowtime criteria. Several speed-up methods
were proposed for the swap and insert neighborhood structure.
The improved iterated greedy algorithm (IIGA) was proposed by
Pan et al. (2008a,b) for solving the NWFSP. Three speed-up meth-
ods, which includes the insertion of a new job into a partial se-
quence, the insertion and exchange neighborhood moves, were de-
signed by Wang, Li, and Wang (2010) to reduce the time com-
plexity of evaluating the candidate. A composite heuristic which
consists of the standard deviation heuristic with double-job in-
sert operator and the iteration operator was proposed by Gao, Xie,
Hua, and Li (2012) to improve the quality of solutions. An im-
proved NEH heuristic was presented to construct the initial pop-
ulation. A local search algorithm was also proposed to perform
exploitation. A tabu-mechanism improved iterated greedy (TMIIG)
was proposed by Ding et al. (2015a,b). In TMIIG, the tabu-based
construction strategy is employed to enhance the exploration abil-
ity and several neighborhood structures are applied to improve the
quality of solutions. In the same year, the block-shifting simulated
annealing (BSA) was introduced by Ding et al. (2015a,b). In BSA,
the block neighborhood structure was embedded into the frame-
work of simulated annealing. The NWFSP was formulated as the
ATSP by Lin and Ying (2016). Two meta-heuristics were proposed
to solve the NWFSP problem. Later on, an extended framework of
meta-heuristic based on teaching-learning process was developed
by Shao, Pi, and Shao (2017a,b). The DWWO algorithm was intro-
duced by Zhao, Liu, Zhang, Ma, and Zhang (2018) for solving the
NWESP. In DWWO, the operators of the original water wave algo-
rithm were redefined to adapt to the NWFSP. The computational
results demonstrate that the DWWO outperforms other compared
algorithms. A flower pollination algorithm, which is based on the
hormone modulation mechanism, was proposed by Qu, Fu, Yi, and
Tan (2018) for solving the NWFSP.

In the studies mentioned above, various algorithms were pro-
posed to solve the NWFSP. However, the existing algorithms still
struggle with large size problems. One key reason is that the
framework of algorithms and the neighborhood structure are in-
complete. Variable neighborhood search (VNS) is a popular meta-
heuristic proposed by Hansen and Mladenovic (1997) systemat-
ically exploiting the idea of neighborhood change. In the DPSO
which was proposed by Quan Ke Pan et al. (2008a,b) to solve
the NWFSP, a variable neighborhood descent (VND) method was
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employed to perform the exploitation. An approach based on vari-
able greedy algorithm was proposed by Framinan and Leisten
(2008) for solving the permutation flow shop problem with the
objective of minimizing the total tardiness. In this study, the VNS
concept of varying the neighborhood has been applied to the de-
struction and construction phases of iterated greed (IG) algorithm.
The refreshing VNS (RVNS) was designed by Perez-Gonzalez and
Framinan (2010) to solve the due date setting problem in a con-
strained flow shop with the objective of minimizing the makespan
of the new jobs. In the RVNS, the strict sequence which includes
the feasible solutions and the relaxed sequence which consists of
either feasible or unfeasible solutions are considered. An efficient
variable neighborhood search for the flow shop with many batch
processing machines (many-BPM) was proposed by Lei and Guo
(2011) to minimize total tardiness, maximum tardiness and num-
ber of tardy jobs, respectively. In this VNS, an insertion operation
and two swap operation are applied to improve the initial per-
mutation. The computational results showed the excellent perfor-
mance of the VNS on many-BPM flow shop problem. The differ-
ential evolution algorithm based on variable neighborhood search
(VNSDE) was presented by Zhou (2012) for solving the flow shop
problem with the makespan criterion. In VNSDE, the VNS is per-
formed after the basic operations of DE to enhance the global
search ability and accelerate the convergence speed. The compu-
tational results indicated that the VNSDE is superior to compared
algorithms.

Three local search methods with variable neighborhoods, which
employs a new neighborhood of exponential size along with the
well-known neighborhoods of polynomial size, were developed by
Kononova and Kochetov (2013) for obtaining upper bounds of the
two machine flow shop problem with passive prefetch. The com-
putational results showed the high efficiency of the developed
methods. The parallel VNS and the series VNS were proposed by
Ribas and Companys (2013) to solve the block flow shop prob-
lem. In the parallel VNS, the insertion and swap neighborhoods are
randomly chosen to improve the solution. In the serial VNS, the
neighborhoods are executed sequentially. The computational eval-
uation showed that the serial VNS is competitive. A general VNS
(GVNS) was presented by Tasgetiren, Buyukdagli, Pan, and Sugan-
than (2013) to solve the no-idle permutation flow shop problem.
In the GVNS, the VND is employed by the inner loop. The iterated
greedy algorithm and iterated local search algorithm are employed
in the VND as neighborhood structures. The insert and swap oper-
ations are used by the outer loop. The experimental results showed
that GVNS outperforms other algorithms on the Ruben Ruiz bench-
mark. A hybrid variable neighborhood search (HVNS), which com-
bines the VNS and simulated annealing algorithm, was presented
by Moslehi and Khorasanian (2014) to solve the limited-buffer per-
mutation flow shop problem (LBPFSP) with the makespan criterion.
The computational results demonstrated that the HVNS algorithm
is competitive with the algorithms for the blocking flow shop prob-
lem. The VNSSA, which incorporates the SA into the framework of
VNS, was proposed by Xie, Zhang, Shao, and Yin (2014) to solve the
blocking flow shop problem with the total flow time minimization.
In the VNSSA, the SA is employed as the local search method in
the third stage of VNS, and the best-insert operator is introduced
to generate the neighbors in SA. The computational results validate
the effectiveness of VNSSA on Taillard’s benchmark.

The flow shop problem with two agents was studied by Lei
(2015), and the feasibility model was also considered to minimize
the makespan of the first agent and the total tardiness of the sec-
ond agent simultaneously. In this study, a learning neighborhood
structure, which combines part of a randomly chosen member and
the most parts of current solution, was constructed to produce
new solutions in VNS. Besides, the replacement principle is ap-
plied to decide if the current solution can be replaced with the

new solution. The hybrid harmony search (HHS) was proposed by
Zhao et al. (2017) to solve the permutation flow shop problem.
In the HHS, a novel VNS which is based on the efficient insert
and swap operations was designed to emphasize the local exploita-
tion ability. Experimental simulations demonstrated that the HHS
outperforms the compared algorithms in term of solution quality
and stability. Four neighborhood structures, which are based on
the factory assignment and job sequence adjustment, were incor-
porated into the framework of VNS by Shao et al. (2017a,b) for
solving the distributed NWFSP. The comparisons with the state-
of-the-art algorithms demonstrated the effectiveness of proposed
algorithms for solving DNWEFESP. The iterated local search method
and the iterated greedy method were combined with VNS by Ribas,
Companys, and Tort-Martorell (2017) for solving the parallel block-
ing flow shop problem (PBFSP) with the makespan criterion min-
imization. The computational results demonstrated that the pro-
posed two algorithms are superior to the compared algorithms for
solving the PBFSP. The multi-objective parallel variable neighbor-
hood search (MPVNS) was proposed by F. Wang, Deng, Jiang, and
Zhang (2018) to solve the blocking flow shop problem. The VNS
was designed to explore the initial solutions in parallel. The exper-
imental results illustrated that the MPVNS is superior to the com-
pared multi-objective meta-heuristics.

Although the VNS and its variants have been widely applied to
flow shop problems, little attention has been paid to construct VNS
with block neighborhood structure for solving the NWFSP. In this
paper, a modified VNS based on the block neighborhood structure
and insert neighborhood structure is designed to perform exploita-
tion around the current best solutions.

3. No-wait flow shop scheduling problem (NWFSP)

The NWESP is described as follows: There are n jobs to be pro-
cessed through m machines, and all jobs have the same process-
ing routes. Every job j (j=1, 2, ..., n) has the predefined processing
time on every machinei(i=1, 2, ..., m). At any moment, a job is
only processed at most by one machine and each machine executes
no more than one job. Each job is processed without waiting time
between consecutive operations. The start of a job is delayed on
the first machine to satisfy the no-wait constraint. In this paper,
the goal is to find a feasible schedule = which has the minimum
makespan for the n jobs.

Assume that 7 =[n (1), 7 (2), ..., w(n)] represents a schedule se-
quence. Let Cpgx denotes the makespan of m, p(m (i), k) is the pro-
cessing time of the ith job on the kth machine. Then the no wait
constraint of problem ensures that the completion time distance
between adjacent jobs just related to the processing time of the
two jobs. Thus, it can be calculated between each pair of jobs. The
completion time distance D(i, j) from job i to job jis calculated as
follow.

m
D(i. j) = max {Z (PG h) = p(i. h) + (i k) (M
=l.m =
Then the makespan of the sequence 7 is obtained as Eq. (2).

n m
Crax(1) = Y D( (j — 1), w(j)) + Y P(r(1). k) (2)
i=2 k=1
A virtual job, whose processing time is set to zero, is in-
troduced to simplify the calculation process. Sequencem is re-
placed by the n/=[mn(0), 7(1), 7#(2), ..., 7w(n)]. Then, the
D(m (0), (1)) = Y pr ;1 P(w (1), k). Therefore, the computational
formula of makespan is simplified as follows.

Cnax () = ) D (j = 1), w(j)) + ) _P(m(1).k)

i=2 k=1
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Algorithm 1 The main procedure of original BBO.

1. Generate the initial population H.
2. Evaluate the fitness of each individual in H.
3. While the halting criterion is not satisfied do

if rndreal(0, 1) < A; then /[ rndreal(0, 1) is a uniform random number on the interval (0,1).

4. Calculate A;, u; and m; for each individual H;.
5 for i=1 to NP do

6. for j=1to D do

7.

8. Select H, with probability o 1.

9. Hi(j) =Hk(j).

10. end if

11. end for

12. end for

13. fori=1 to NP do
14. for j=1to D do

15. if rndreal(0, 1) < m; then

16. Replace H;(j) with a randomly generated SIV.
17. end if

18. end for

19. end for

20. end while

=Y D((j-1).7(j)) +D(mw (0), 7 (1))
i=2

=Y D@(-1),7(j)) (3)

i=1

Let IT denotes the set of all possible permutation. The mini-
mum makespan is described as follows.

Crnax(T*) = min{Cpax ()| € T} (4)
Symbols used mostly in this paper are summarized as follows:

N number of jobs

M number of machines

T the sequence of all jobs

T the ith sequence in population

7(j) thejth job in sequence &

7(j) thejth job in ith sequence r;

Cmax(T) the makespan of

p(m (i), k) the processing time for the 7 (i) on the kth ma-

chine

D(m(i—1), m(i)) the delay time between job 7 (i—1) and job (i)

NP the population size

I1 the set of all possible permutation sequence

I the maximum immigration rate

E the maximum emigration rate

m; the mutation rate of ith sequence

Ai the immigration rate of ith sequence

i the emigration rate of ith sequence

rmax the maximum length of the block

pmutate the maximum mutation rate

4. Biogeography-based optimization

As a novel population-based optimization algorithm,
biogeography-based optimization (Simon, 2008) takes inspira-
tion from the science of biogeography. In BBO algorithm, the
solution space analogous to habitats in biogeography. The good-
ness of each habitat is measured by the habitat suitability index
(HSI). The habitats with a high HSI tend to accommodate a large
number of species, whereas the habitats with a low HSI maintain
a few species. New candidates are generated by using migration
and mutation. The primary step of the standard BBO is described
in Algorithm 1. The leading operators of BBO are briefly described
as follows.

4.1. Migration operator

Migration operator is the leading operator in BBO. Features are
mixed among habitats based on the immigration rate A and the
emigration rate p. For the habitats which have a vast number
of species, the immigration rate is low because they are already
nearly saturated with species. The high HSI habitats have a high
emigration rate because the species on high HSI habitats have
more opportunities to migrate to other habitats. On the contrary,
poor habitats tend to improve their HSI by accepting new features
from more attractive habitats in the evolution process. In the stan-
dard BBO algorithm, the immigration rate A; and emigration rate
Wi are linear functions of the number of species. The linear migra-
tion model is calculated using Egs. (5) and (6).

Aizl.(l—;) (5)
m=E~<;) (6)

where I and E are the maximum immigration rate and emigration
rate respectively. i is the rank of habitat. n represents the max-
imum number of species which the habitats accommodated. For
convenience, n is equal to population size.

4.2. Mutation operator

As a result of cataclysmic events can drastically change the HSI
of a habitat, a mutation operator is employed to modify the fea-
tures of solutions. Differ from other EAs, the mutation probability
is dynamically calculated by Eq. (7).

) ™

ml - mmax . (1 B pmax
where mpqy is the user-defined maximum mutation probability. p;
represents a priori existence probability. pmex =max{p;, i=1, 2, ...,

ps}.
5. The proposed HBV algorithm

In this section, the HBV algorithm for solving the NWFSP
with a makespan criterion is presented. In this paper, the job-
permutation-based representation, which has been widely used in
the literature for the flow shop, is adapted to encode and decode
in the mapping process. The HBV consists of the following five
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C Initialize the parameters of HBV algorithm >

| Generate and evaluate initial populaiton |

N

migration operator |

self-improvement strategy

| mutation operator

|

| Variable neighborhood structure |

|

| Evaluate and update the population |

Termination condition met?

C Output the best solution >

Fig. 1. workflow of HBV for NWFSP.
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pmutate rmax NP

Fig. 2. The trend of parameters.

phases: initial population based on the NN and NEH, the migra-
tion operator which is based on the path relink and block-based
self-improvement strategy, the mutation operator which is based
on the iterated greedy algorithm, the modified variable neighbor-
hood search, and elitism strategy. The details of each phase are
fully described in the following sub-sections. The workflow of HBV
is also given in Fig. 1.

5.1. Initial population

The nearest neighbor (NN) and the NEH mechanism are two ef-
fective constructive heuristics for initial population. The NN and
NEH method was combined by Pan et al. (2008a,b) to construct
the initial population in the discrete particle swarm optimiza-
tion algorithm (DPSO). The modified NEH was designed by Gao,
Xie, Hua, and Li (2011). The NN+MNEH method was designed by
Zhao et al. (2018) to make the initial population. The experimen-
tal results show that the NN+MNEH method outperforms NN+NEH

and MNEH. In this paper, the NN+MNEH method is employed to
construct the initial population.

The detail of NN+MNEH method is described as follows. Firstly,
pick out NP jobs randomly from a set Sy ={J1, J2,..., Jn}, Which con-
tains all the jobs, to construct a sequence JF; = {JFy, JF5,...JFy}. Then
the ith jobs of JFs is taken as the first job of ith candidate se-
quence. Secondly, NN is employed to find the second job. Thirdly,
the MNEH is applied to construct a partial sequence with other
(n—2) jobs. The partial sequence is appended to the first sched-
uled jobs to construct the final permutation. The pseudo code of
initial population is given in Algorithm 2.

5.2. Migration operator

The migration strategy, which is the most significant operator
in BBO, is similar to the global combination approach of other
evolutionary algorithms. The migration operator is employed to
modify existing solutions instead of creating new solutions. The
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Algorithm 2 Initial population.

1. Pick up NP jobs from a set Sy and construct a sequence JFs
2. for k=1: NP

3 (1) =JF,

4. m(2)=NN(m (1))

5. S1=S0 —{mi(1), m(2)}

6. mp=[m(1), w(2)]+ MNEH(S)

7. H(k)=m
8. end for

Algorithm 3 Path relink technique.

1. for k=1: NP do
2. if H; # H, do
find the position s of H.(k) in H;
swap (H;(k), Hi(s)) and generate intermediate solution H’
end if
find the solution Hy,;; with lowest makespan
Hi = Hbest
. end for

PN G AW

migration characteristics of sinusoidal migration model are closer
to natural law as Ma (2010) analyzed. Therefore, the sinusoidal mi-
gration model outperforms the linear migration model in the stan-
dard BBO algorithms. In this paper, the sinusoidal migration model
is employed to calculate the immigrate rate and the emigrate rate
of each in population. The sinusoidal model is given in Egs. (8)
and (9).

I km
M= 5 (cos -+ 1) (8)

E k
Mk=2<—am:?+l> (9)

The immigration rate and the emigration rate of each solution
are employed to share information between habitats probabilisti-
cally. In this paper, if a given solution is selected to be modified,
the corresponding immigration rate A is used to decide whether
or not to perform the migration operator probabilistically. If the
solution is selected to immigrate, another solution is employed to
share features with the immigration solution by the emigration
rate. Otherwise, the self-improvement strategy, which is based on
the block neighborhood structure, is designed to improve the qual-
ity of the solution.

Path relink technique is employed to perform the migration op-
erator in HBV. The detail of the migration operator, which is based
on the path relink technique, is described as follows. For the em-
igration habitat He and the immigrate habitat H;, a series of swap
operator are performed to transform H; to H. Thus, an interme-
diate solution is obtained through each swap operator. If the in-
termediate solution is different from both the immigrate habitat
H; and the emigrate habitat H., the intermediate solution is put
into a set S. After all the solution in S are evaluated, immigrate
habitat H; is replaced by the intermediate solution with the low-
est makespan. The pseudo code of path relink technique is given
in Algorithm 3.

The block neighborhood structure is a simple and effective
neighborhood structure which is proposed by Ding et al. (2015a,b).
In this paper, the block neighborhood structure is integrated
into the self-improvement strategy. The self-improvement strat-
egy is performed while a solution is not selected to immigrate.
The main procedure of self-improvement strategy is described in
Algorithm 4.

Algorithm 4 Self-improvement strategy.

1. SetbestFit =inf and bestSeq =
2. for k=1: (n—r) do

3. remove a block from H;(k) to H;(k+1)

4. find the sequence H’ by inserting the block in any possible position
5. if f(H') < bestFit do

6. bestFit=f(H")

7. bestSeq =H'

8. end if

9. end for

10. H;= bestSeq

5.3. Mutation operator

Mutation operator, which is employed to expand the search
space and escape from the local optimum solutions, is the main
operator in the BBO. In standard BBO, the mutation operator is
performed by simply replacing the solution with a new solution
which is generating randomly. In this paper, the iterated greedy
(IG) algorithm is integrated into the mutation operator to obtain a
promising solution in exploitation phase.

IG is a simple and effective algorithm for solving the combina-
torial optimization problem. The new solution is obtained by iter-
ated applying destruction operation and construction operation in
IG. In the destruction phase, d jobs are selected randomly and re-
moved from the candidate solution . Therefore, 7 is divided into
two parts 4 and .. 7y contains d jobs and m, contains (n-d)
jobs. In the construction phase, each job in 7, is inserted into 7,
sequentially. The pseudo code of IG is given in Algorithm 5.

5.4. Variable neighborhood search

Variable neighborhood search (VNS) is a popular meta-heuristic
proposed by Hansen and Mladenovic (1997) systematically exploit-
ing the idea of neighborhood change. The principle can be de-
scribed as follows.

e A local minimum concerning one neighborhood structure is not
necessarily so for another.

e A global minimum is a local minimum concerning all possible
neighborhood structures.

o For many problems, local minima concerning one or several
neighborhoods are relatively close to each other.

The VND, which is a variant of VNS, is embedded as a local
search algorithm in the DPSO algorithm to obtain better results by
Pan et al. (2008a,b). The insert + swap neighborhood structure is in-
tegrated into VND in DPSO. As Ding et al. (2015a,b) pointed out,
the block-based operator explores a lager neighborhood solution
space than traditional insert and swap operators. In this paper, a
modified VNS which is presented by slightly modifying is only ap-
plied to the global best solution G!. The swap neighborhood is re-
placed by the block neighborhood. The modified VNS is described
as Algorithm 6.

5.5. Elitism strategy

BBO with only migration and mutation does not converge to a
global optimal as Ma, Dan, and Fei (2014) analyzed. In this paper,
the elitism strategy is adapted to retain the best solution in the
population. If the fitness value of the current optimal solution is
larger than the fitness value of the global optimal solution of the
previous generation at the end of each generation, the inferior so-
lution in population is replaced by the global optimal solution of
the previous generation.
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Algorithm 5 Iterated greedy algorithm.

1. m,=m
. for k=1: d do

. end for
. for k=1: d do

N@uswN

end for

remove one job from s, and put it into 4

insert job 7 4(k) into the optimal location with the minimum makespan in 7,

Algorithm 6 Variable neighborhood search.

1. 59=G*

2. s = perturbation (sg)

3. 57 = insert (s)

4. s, = block neighborhood search (s1)
5. if fisy) < f(sp) do

6. Gl=s,

7. end if

Algorithm 7 The main procedure of HBV.

1. Generate the initial population H.
2. Evaluate the HSI for each habitat in H.
3. While the halting criterion is not satisfied do

4. For each individual map the fitness to the number of species.

5. fori = 1: NP do

6. Calculate the immigration rate A; and the emigration rate w;.
7. if rand <A; do

8. Select H, with the emigration rate j;.

9. U;=Path relink (H;He).

10. else

11 U;=Block neighborhood search (H;).

12. end if

13. if rand<m; do

14. Modify the population U with IG shown in Algorithm 5.
15. end if

16. end for

17. Evaluate the fitness of each individual in U.

18. H=U.

19. Sort H with the HSI.
20. if f(H;) > bestFit do

21. H; = bestSeq.
22. end if
23. H; = VNS(bestSeq).

24. end while

5.6. The framework of HBV

This paper presents a hybrid biogeography-based optimization
with variable neighborhood search (HBV) for the NWFSP. The HBV
has five phases: (i) initial population, (ii) migration operator, (iii)
mutation operator, (iv) variable neighborhood search, (v) elitism
strategy. The pseudo-code of HBV is summarized in Algorithm 7.
Suppose that there are n jobs and m machines in the NWFSP, the
population size is NP, the mutation probability is p. Since the pop-
ulation initialization is based on the NEH mechanism, the compu-
tational complexity of population initialization is given as O(n2).
The migration operator consists of two parts: path relink and self-
improvement strategy. The migration operator executes Np times
fitness evaluations in each generation. The mutation operator prob-
ably employs the IG mechanism to search around the potential so-
lutions. The VNS employs the insert and block neighborhood struc-
ture to search around the best solution. As the speed-up method,
the complexity of fitness evaluation is O(1) when a sequence is
generated by insert, swap or block operator. In each generation,
the computational complexity of migration operator is O(mn). The
computational complexity of mutation operator is O(n?). The com-
putational complexity of variable neighborhood search is 0(2n2).
The computational complexity of elitism strategy is O(1). Suppose

the number of generations is k, the computational complexity of
HBV algorithm is calculated as follows.

O(NP, p,n,m) = 0(n?) + 0(k)
x [0(mn) + 0(n?) +0(2n%) + O(1)]
~ 0(n?) +0(k) x 0(2n?)
~ 0(2kn?)
5.7. Convergence analysis of HBV

In this section, the convergence behavior of HBV is analyzed
with Markov model.

According to the definition of NWFSP, the search space of the
problem is represented as I=n!. The HBV algorithm with popula-
tion size NP consists of migration, mutation, elitism and VNS. Some
definitions are given as follows.

Theorem 1. (Convergence in probability) (Burton, 1985) {A(t),
t=0, 1, 2...} is a population sequence generated by a population-
based stochastic algorithm, the stochastic sequence {A(t)} weakly con-
verges in Probability to the global optimum. If and only if:

lim PA@) NI # 9} =1 (10)
where I* is the set of global optimal of a problem.
Theorem 2. P is a stochastic matrix with the structure P = [I(; 3],

where C is a primitive stochastic matrix and R, Q # 0. Pk converges
to a stochastic matrix as k — oo,. That is,

b

0 . (k) .

P = Jim (py)" = | : ()
T/ rxr

where & =(mq,...7Tm, 0, ..., 0), and m; # 0 forl1<j<m=<T

Definition 1. A(t)={a;(t)li < [1, N], a;(t) € I} is the population
at the generation t. a;(t) is a candidate solution in search space
I. Then let I* denote a set of global optimal of an optimization
problem. The best individuals in the population at generation t are
a*(t). Due to A(t) may contain duplicate elements, let I*(t) repre-
sent the set of a*(t).

Obviously, a*(t) changes randomly over time. As t — oo, the con-
vergence of a*(t) indicates the globally convergent of HBV algo-
rithm. That is, HBV is said to converge if

P(tlim a*(t) e 1*) “le P(a* e lim A(t)) -1 (12)

Thus, the evolution of a*(t) is a homogeneous finite Markov
chain, namely, a*(t)-chain.

Definition 2. Let P =(j;;) be the transition matrix of an a*(t)-
chain, where p;; is the probability that a*(t)=I; transition to
a*(t+1)=I;. The HBV algorithm converges to global optimum if
a*(t) transition from any state i e Itol* as t— oo with probability
1, that is, if

lim Y (Pf)ij =1 Vi Lel (13)

tﬁ:’oljel*
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Theorem 3. If the transition probability P = (Pij) of an a*(t)-chain
c 0
R Q
a positive stochastic matrix, and R, Q # 0, then the HBV algorithm
converges to one or more of global optima.

Proof. From Theorem 3, for any i € S,

is a stochastic matrix with the structure P = , where C is

|
. A . ’\[
Jim > (P); = 3 lim (P) ;=D m; =1 (14)
ljel liel j=1
Theorem 4. In HBV algorithm, the transition probability of a*(t)-
chain satisfied the following conditions: Vk > i, p;=0 and Vk < i,
pj = 0.

Proof. As above definition, A(t) denotes the population at the
generation t, a*(t) is the best individual in the population genera-
tion t. In each generation of HBV, the migration operator, mutation
operator, elitism strategy and VNS are performed conditionally.
Then let Fp, denotes the current best solution after the migra-
tion mutation operator. If Fyoy < fla*(t—1)), The elitism strategy
is not implemented and a*(t)=Fy,s, Otherwise the elitism strat-
egy is performed,a*(t)=a*(t— 1). In the VNS operator, the a*(t) will
be replaced by one with better fitness, otherwise it will remain
unchanged. Obviously, the a*(t)-chain is monotonous and Vk > i,
p;j=0. Apart from this, the new solution can be obtained by mi-
gration operator and mutation operator. After migrate and mutate
t (t— oo) generations, (Pr)t > 0. That is, the probability of searching
for any state k in the space from the initial state i after t genera-
tion is py > (P)t > 0. Then, Yk < i, p; > 0.

If the best individual in HBV is equal to global optimum, it is an
absorbing state of the a*(t)-chain, According to Theorem 4, the best
individual can only be replaced by one with better fitness. Then,
the a*(t)-chain of HBV contains three classes of states:

(1) At least one absorbing state.

(2) Non-absorbing states which transition to absorbing states in
one step.

(3) Non-absorbing states which transition to non-absorbing
states in one step.

Thus, the transition matrix P is given as P = (g 8) C is the

matrix corresponding to optimal individuals. R is a matrix cor-
responding to the non-absorbing states which transition to ab-
sorbing states in one step. Q is the matrix corresponding to the
non-absorbing states which transition to non-absorbing states. The
HBV algorithm converges to one or more global optima as the
Theorem 3.

6. Numerical result

In this section, the HBV algorithm is compared with the state-
of-the-art algorithms to test the performance for solving the
NWEFSP with minimization of makespan. 600 instances are em-
ployed to test the considered algorithms: (i) The 120 Taillard’s in-
stances provided by Taillard (1993). Ta001 -Ta120 consists of 12
subsets of different size which is ranging from 20 jobs and 5 ma-
chines to 500 jobs and 20 machines. (ii) 480 instances provided by
Vallada, Ruiz, and Framinan (2015). This benchmark problem set
consists of 240 large instances and 240 small instances. The small
instances include 24 combinations of n={10, 20, 30, 40, 50, 60}
jobs with m={5, 10, 15, 20} machines. The large instances include
24 combinations of n= {100, 200, 300, 400, 500, 600, 700, 800}
jobs with m={20, 40, 60} machines. For each size of problems,
ten instances are provided. The optimal solutions are provided by
Lin and Ying (2016). In order to make a fair comparison, all the al-
gorithms were coded using MATLAB. The simulation experiments

Table 1
The parameters for different levels.
Parameters  Levels
1 2 3 4
pmutate 0.001 0005 0.01 0.05
rmax n/5 n/4 n/3 n/2
NP n/5 nj4 n3  nf2

were carried out on a personal computer (PC) with Intel (R) Core
(TM) i7-6700 CPU 3.4GHz and 8.00GB memory with a Windows
Server 2012 Operating System.

The average relative percentage deviation (ARPD) is applied to
measure the quality of the experimental results and compare the
performance of HBV with other algorithms visually. The value of
ARPD is calculated as follows:

186G -G
ARPD_E;: &

where Cj is the best solution found so far, C; is the solution of
the rth experiment and R is the number of runs. The less value of
ARPD is, the better the performance of algorithm is. The standard
deviation (SD) is also applied to indicate the robust of the algo-
rithms. The value of SD is calculated as follows:

x 100 (15)

where C is the mean value of Rsolutions.

This experimental section consists of five parts. Section 6.1 pro-
vides the analysis of parameters. The effectiveness of the compo-
nents is analyzed in Section 6.2. In Section 6.3, the proposed HBV
algorithm is compared with existing state-of-the-art algorithms on
Taillard’s instances. The comparisons of the considered algorithms
on the VRF_hard instances are given in Section 6.4. The experimen-
tal results are analyzed in Section 6.5.

6.1. Analysis of parameters

The appropriate design of parameters plays an essential role in
the performance of HBV. In HBV, the maximum migration rate is
set to 1. There are three crucial parameters: the maximum proba-
bility of mutation pmutate, the maximum length of block rmax and
the population size NP. The Taguchi method (Montgomery, 1976)
of design for the experiments is introduced to investigate the
best parameter setting for HBV. 240 small-scale instances and
48 large scale instances in VRF benchmark which is provided by
Vallada et al. (2015) were employed to calibrate parameters. The
various values of parameters are listed in Table 1. n is the job
size. The different parameter combinations and ARPD are given in
Table 2.

From Table 3, the NP is the most significant parameter of HBV
as the HBV is a population-based algorithm. The parameter pmu-
tate ranks the second place, which illustrates that pmutate is also
an important factor in HBV. A large pmutate diversifies the popula-
tion significantly, and a small pmutate accelerate the convergence
speed of HBV. The rmax ranks the third place, which demonstrates
that the parameter rmax has slight effect on the performance of
HBV. According to the above analysis, the parameters in HBV are
suggested as follows. pmutate =0.005, rmax=n/5, NP=n/4.

6.2. Effectiveness of algorithm components

The HBV without VNS and HBV without self-improvement were
compared with the HBV algorithm to test the effectiveness of the
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Table 2
Parameter combinations and average makespan.

No. Parameter combination =~ ARPD

pmutate rmax NP

1 1 1 1 0.304608
2 1 2 2 0.298258
3 1 3 3 0.289861
4 1 4 4 0.277049
5 2 1 2 0.166872
6 2 2 1 0.297946
7 2 3 4 0.279021
8 2 4 3 0.27391
9 3 1 3 0.299111
10 3 2 4 0.296481
1 3 3 1 0.294051
12 3 4 2 0.275929
13 4 1 4 0.284951
14 4 2 3 0.293834
15 4 3 2 0.289608
16 4 4 1 0.287131
Table 3
Parameter rank and response value.
Levels pmutate rmax NP
1 0.2924 0.2639  0.2959
2 0.2544 02966  0.2577
3 0.2914 0.2881  0.2892
4 0.2889 02785  0.2844
Response value  0.038 0.0327 0.0383
Rank 2 3 1

Table 4
Computational result of HBV without VNS, HBV without self-
improvement and HBV.

HBV_NV HBV_NS HBV
ARPD  SD ARPD  SD ARPD  SD

nxm

20 x 5 0.02 0.19 0.00 0.12 0.00 0.00
20x 10 0.08 0.35 0.00 0.09 0.00 0.06
20 x 20 0.02 0.74 0.00 0.00 0.00 0.00
50x5 0.19 192 0.49 1.39 0.15 1.02
50x 10 0.12 11 0.34 215 0.10 0.96
50 x 20 0.11 239 0.27 244 0.06 045
100 x5 0.30 3.37 1.56 3.84 0.28 1.67
100 x 10 0.25 3.07 0.99 4.00 0.24 2.27
100x20  0.25 3.03 0.84 6.61 0.21 2.58
200x10  0.58 4.07 2.46 7.96 0.57 3.88
200x20  0.56 7.04 1.89 1394 047 545
500x20 120 1034  3.67 26.58  1.04 10.13
Average 0.31 313 1.04 5.76 0.26 2.37

algorithm components. Table 4 lists the computational results ob-
tained in the three variants. ARPD and SD denote the average rela-
tive percentage deviation and standard deviation for 30 times run-
ning respectively.

From Table 4, the HBV outperforms HBV algorithm without
VNS (HBV_NV) and the HBV without self-improvement (HBV_NS),
which illustrates that the VNS and the self-improvement signif-
icantly improve the performance of HBV. In addition, the per-
formance of HBV without VNS is superior to HBV without self-
improvement strategy. The reason may be that self-improvement
enhances the exploration ability of HBV to avoid falling into local
optimal. From Table 4, the HBV obtains better results than other
variants. As above analysis, the HBV balance exploration and ex-
ploitation ability effectively.

6.3. Results and comparisons for Taillard’s benchmark

For the Taillard’s instances, the proposed HBV algorithm was
compared with five existing state-of-the-art algorithms including

[IGA (Pan et al, 2008a,b), TMIIG (Ding et al., 2015a,b) DWWO
(Zhao et al., 2018), mPTLM (Shao et al., 2017a,b) and CGLS (Riahi,
Newton, Su, & Sattar, 2019). The compared algorithms are chosen
as the HBV is a population-based algorithm which is directly ap-
plied to solve the NWFSP. Among the compared algorithms, the
mPTLM is a population-based algorithm which employs the large-
order-value (LOV) rule to build the mapping from the continu-
ous variables to the job sequence. Compared with the mPTLM, the
advantage of job-permutation-based representation which is em-
ployed by HBV is shown. Besides, the DWWO is also a population-
based algorithm which employs the job-permutation-based rep-
resentation. The performance of HBV algorithms is demonstrated
by comparing with DWWO. The TMIIG and IIGA are also com-
pared with HBV to indicate the difference between the population-
based algorithms and the adaptable algorithms. In addition, the
CGLS, which is an objectively adapted algorithm for the BFSP, is
also carried to compare with HBV. The compared algorithms are
re-implemented as all the details given in the original papers to
make a fair comparison. Meanwhile, all the algorithms were de-
pendently run with the maximum running time (n/2) xm x p ms,
where p ={5, 15, 30}. Each instance was run for 30 times. The
computational results are summarized in Tables 5-7 respectively
where the best results are given in bold.

Several conclusions are contained by the results of experiment
which shown in Tables 5-7. The proposed HBV performs less aver-
age value of ARPD on most of the Taillard’s instances p ={5, 15,
30}. For the short running times p=5 and p =15, the value of
ARPD obtained by HBV are 0.58 and 0.34 respectively, which is sig-
nificantly smaller than the other compared algorithm. The smaller
ARPD indicates that the HBV obtain better solutions within a small
range of time. The larger value of SD, which is larger than the
mPTLM, demonstrated that the population diversity is controlled
effectively. For the running time p =30, the ARPD value obtained
by HBV is 0.27, which is less than 0.95, 0.6, 0.92, 1.77 obtained
by other compared algorithms respectively. The Fig. 3 shows the
interval plot for the interaction between the algorithms and the
maximum running time. From Fig. 3, the result obtained by HBV
significantly better than the other compared algorithms.

Two rigorous statistical studies based on the ARPD value for 120
Taillard’s instances are employed to investigate whether the results
of algorithms are rather significant for solving NWFSP with the ob-
jective of minimization makespan criterion. The multiple-problem
Wilcoxon’s test is performed to demonstrate the performance of
the above six algorithms. As the statistical analysis results listed in
Table 8, the HBV provides higher R+ values than R— values in all
cases. The result demonstrates that the HBV is significantly better
among the compared algorithms for solving NWFSP problems with
o =0.05, ¢ =0.01.

The Friedman’s test is carried out to further detect the sig-
nificant differences between HBV and other compared algorithms.
Table 9 summarizes the average ranking of the five algorithms ob-
tained by the Friedman’s test. HBV has the best ranking among
the six algorithms. Therefore, the Bonferroni-Dunn’s method is ap-
plied as a post hoc procedure to calculate the critical difference for
comparing the differences of compared algorithms with o =0.05,
o =0.01. From Fig. 4, the solutions obtained by HBV algorithm are
significantly better than the solutions obtained by other compared
algorithms with o =0.05 and « =0.01 on Taillard’s benchmark.

For the running time p = 30, the values of SD obtained by the
six algorithms are also calculated to demonstrate the robustness of
the HBV algorithm. The average value of SD obtained by HBV is
10.4, which is less than the 15.51, 17.99, 18.58 and 33.88 obtained
by DWWO, TMIIG, IIGA and CGLS respectively. The value of SD ob-
tained by HBV is slightly larger than the value of SD obtained by
mPTLM. The boxplots of Ta057, Ta067, Ta097 and Ta117 are given in
Fig. 6. The robust of HBV is better than DWWO, TMIIG, IIGA, CGLS
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Table 5
Computational results of Taillard’s benchmark with p = 5.
Instance nxm HBV DWWO mPTLM TMIIG IIGA CGLS
ARPD SD ARPD SD ARPD SD ARPD SD ARPD SD ARPD SD
Ta01-10 20x5 0.00 0.09 0.06 1.21 0.01 0.25 0.02 0.51 0.02 0.34 0.17 1.21
Tal1-20 20x 10 0.01 0.14 0.09 2.26 0.00 0.09 0.02 0.60 0.01 0.39 0.26 1.31
Ta21-30 20x20 0.00 0.00 0.03 0.22 0.01 0.39 0.03 0.38 0.02 0.32 0.19 1.37
Ta31-40 50 x5 0.30 4.86 0.81 6.13 0.42 4.76 0.74 777 1.72 6.71 148 11.04
Ta41-50 50 x 10 0.19 4.81 0.55 8.08 0.22 5.94 0.47 8.87 0.81 727 0.86 10.89
Ta51-60 50 x 20 01 5.36 0.49 13.09 036 12.78 043 9.81 0.60 9.89 0.82 17.06
Ta61-70 100 x 5 0.65 8.63 333 13.81 1.66 7.96 2.02 1460  3.51 12.78 252 23.22
Ta71-80 100x10 045 11.81 1.20 17.43 0.64 8.89 145 1898 210 1623 2.02 36.08
Ta81-90 100x20 035 1270 0.83 16.13 0.50 1262 118 2359  1.80 17.89 215 36.96
Ta91-100 200x10 137 26.67 3.26 31.04 177 1826 3.7 3745  3.62 2575 3.61 62.10
Ta101-110 200x20  0.88 2932 183 3125 097 2220 225 3578 295 36.78 276 71.86
Tall1-120  500x20  2.62 6498 3.64 6413  2.08 55.02 433 66.72  4.61 8525 467 7719
Avg 0.58 14.12 1.34 1706  0.72 1243 134 18.75 1.82 1830 179 29.19
Table 6
Computational results of Taillard’s benchmark with p=15.
Instance nxm HBV DWWO mPTLM TMIIG IIGA CGLS
ARPD  SD ARPD  SD ARPD  SD ARPD  SD ARPD  SD ARPD  SD
Ta01-10 20x5 0.00 0.03 0.02 0.67 0.00 0.12 0.00 0.17 0.00 0.14 0.14 1.00
Ta11-20 20x 10 0.01 0.13 0.03 0.62 0.01 0.44 0.00 0.09 0.00 0.21 0.19 110
Ta21-30 20 x 20 0.00 0.00 0.02 0.38 0.02 0.39 0.02 0.44 0.02 0.37 0.15 1.50
Ta31-40 50x5 0.21 3.80 0.60 5.92 0.35 3.67 0.52 5.42 1.60 7.82 1.26 11.26
Ta41-50 50 x 10 0.13 4.01 0.44 793 0.16 3.77 0.31 6.39 0.79 6.78 0.71 10.09
Ta51-60 50 x 20 0.08 3.95 0.31 1054  0.27 1154  0.29 9.44 0.60 9.66 0.74 16.00
Ta61-70 100 x5 0.37 6.97 294 1569 153 8.01 1.53 13.70 339 13.12 213 18.86
Ta71-80 100x10  0.28 8.72 0.86 1280  0.55 7.29 1.08 17.70 2.09 15.18 1.67 27.07
Ta81-90 100x20  0.26 1089  0.64 1542 042 1254 093 1997 174 21.56 1.84 41.71
Ta91-100 200x10 0.74 1965 264 28.08 167 1713 2.60 3212 359 2430  3.07 66.90
Tal01-110 200x20  0.58 23.00 140 2836  0.90 18.15 1.80 3130 2.96 3884 236 65.51
Tal11-120 500 x 20 142 49.47 291 66.95 1.94 44.51 3.75 73.22 4.57 90.51 4.38 125.47
Avg 0.34 10.88 1.07 16.11 0.65 1063 107 17.50 1.78 19.04 155 32.21
Table 7
Computational results of Taillard’s benchmark with p = 30.
Instance nxm HBV DWWO mPTLM TMIIG IIGA CGLS
ARPD  SD ARPD  SD ARPD  SD ARPD  SD ARPD  SD ARPD  SD
Ta01-10 20x5 0.00 0.00 0.01 0.09 0.00 0.03 0.00 0.00 0.00 0.15 0.11 118
Ta11-20 20 x 10 0.00 0.00 0.01 0.15 0.00 0.06 0.00 0.06 0.00 0.15 0.14 1.32
Ta21-30 20 x 20 0.00 0.00 0.01 0.45 0.00 0.24 0.01 0.39 0.02 0.32 0.13 2.23
Ta31-40 50x5 0.16 3.66 0.50 5.26 0.29 418 0.37 4.64 153 6.99 1.01 11.06
Ta41-50 50 x 10 0.07 2.62 0.39 5.56 0.13 3.67 0.22 4.70 0.75 8.69 0.58 10.13
Ta51-60 50 x 20 0.06 313 0.31 1088  0.19 8.61 0.22 7.95 0.59 9.30 0.65 1738
Ta61-70 100 x 5 0.29 6.68 2.65 1280 142 8.15 1.26 12.18 3.44 1096  1.83 16.68
Ta71-80 100x10  0.23 7.76 0.74 11.62 0.48 5.79 0.86 15.11 2.04 1458 148 25.93
Ta81-90 100x20 0.21 10.21 0.56 13.91 0.37 8.80 0.81 19.51 178 19.67 163 40.54
Ta91-100 200x10  0.55 17.72 2.34 3055  1.62 1593 218 2842 356 3155 2.77 70.86
Ta101-110 200x20  0.49 2265 122 2457  0.80 14.68 160 30.86 298 3280 211 67.39
Tall1-120 500x20 112 5035  2.69 70.20  1.87 3856 3.46 9198 451 8782 414 141.87
Avg 0.27 1040  0.95 1550  0.60 9.06 0.92 17.99 177 18.58 138 33.88
Table 8

Results of the multiple-problem Wilcoxon’s test on Ta instances at o =0.05 and

o =0.01 significance level.

HBV vs. R+ R— V4 p-value a=005 «a=0.01
DWWO  4656.00 0.00 -8.51 178E-17  Yes Yes
mPTLM  4252.00 2600 -837 190E-16  Yes Yes
TMIIG 4276.00  2.00 —-832  869E-17  Yes Yes
[IGA 4560.00  0.00 —-846  2.60E-17  Yes Yes
CGLS 5883.00  3.00 -9.01 2.03E-19  Yes Yes

and similar to mPTLM for Taillard’s benchmark. The convergence
curves of the above algorithms for solving Ta057, Ta067, Ta097 and

Tall7 are also given in Fig. 5. Compared with the convergence
speed of DWWO, TMIIG, IIGA and mPTLM, the convergence speed
of HBV is fastest on Taillard’s benchmark.

6.4. Results and comparisons for VRF’s benchmark

In the above experiment, the Taillard’s benchmark has been
employed to evaluate the performance of compared algorithms for
solving the NWEFSP. Since the Taillard’s instances were tackled by
various researchers, the VRF benchmark which was proposed by
Vallada et al. (2015) for PFSP is carried out to test the performance
of the proposed HBV in this paper. The VRF's benchmark consists
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Fig. 4. Rankings obtained through the Friedman test and graphical representation.

Table 9

Ranking of algorithms obtained through Friedman'’s test.
Algorithm Mean rank  Chi-Square  p-value
HBV 1.52 416.59 7.88E—88
DWWO 3.61
mPTLM 2.39
TMIIG 332
[IGA 5.25
CGLS 491
Crit. Diff. « =0.05 0.6222
Crit. Diff. « = 0.01  0.7465

of a small benchmark set and a large benchmark set. The small
benchmark set, which is denoted by VRF_hard_small benchmark,
consists of 240 small instances with the combinations of n = {10,
20, 30, 40, 50, 60} and m = {5, 10, 15, 20}. The large benchmark
set, which is denoted by VRF_hard_large benchmark, consists of

240 large instances with combinations of n = {100, 200, 300, 400,
500, 600, 700, 800} and m = {20, 40, 60}. In this paper, the opti-
mal solutions, which is provided by Lin and Ying (2016), are em-
ployed to be the best makespan so far. All of the considered algo-
rithms are tested with maximum running time (n/2) xm x p ms,
where p ={5, 15, 30}. Each algorithm runs 30 times on each in-
stance. The following two subsections provide the computational
results and statistical results of VRF_hard_small benchmark and
VRF_hard_large benchmark respectively.

6.4.1. Results and comparisons for VRF_hard_small benchmark

The computational results for the VRF_hard_small benchmark
are listed in Tables 10-12 where the best results are given in bold.
As Tables 10 and 11, the average values of ARPD obtained by HBV
for short running time are significantly better than the ARPD value
obtained by compared algorithms. Besides, the SD value is also
smaller than the value of SD obtained by other algorithms. From
the Table 12, the average ARPD value obtained by HBV is 0.18,
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Table 10
Computational results of VRF_hard_small benchmark with p = 5.
Instance nxm HBV DWWO mPTLM TMIIG 1IGA CGLS
ARPD  SD ARPD  SD ARPD  SD ARPD  SD ARPD  SD ARPD  SD
10_5 10x5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
10_10 10x10  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
10_15 10x15  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
10_20 10x20  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
20_5 20x5 0.00 012 010 1.51 0.03 0.28 0.01 0.29 0.05 0.50 017 144
20_10 20x10  0.00 0.04 0.03 1.02 0.01 0.23 0.01 0.29 0.00 0.00 0.07 139
20_15 20x15  0.00 0.00 0.01 0.33 0.00 0.00 0.01 0.62 0.00 0.13 0.07 0.53
20_20 20x20  0.00 0.00 0.03 1.03 0.00 0.00 0.00 0.00 0.00 0.00 0.05 114
30_5 30 x5 0.10 237 044 4.83 0.15 1.88 0.25 2.81 0.70 3.67 0.66 5.97
30_10 30x10 0.05 1.55 032 5.86 0.13 2.82 0.14 3.60 0.17 2.61 0.45 6.80
30_15 30x15  0.04 1.69 017 4.59 0.05 2.45 0.04 2.55 0.04 2.24 0.21 7.69
30_20 30x20 0.03 1.66 0.20 5.90 0.07 3.84 0.07 315 0.08 2.37 0.30 8.34
40_5 40 x5 0.21 370 0.71 7.06 0.25 2.69 0.55 5.41 1.26 5.73 0.89 8.12
40_10 40x10 013 373 047 7.40 0.19 4.29 0.35 5.69 0.48 4.66 0.81 11.62
40_15 40x15  0.07 278 029 736 0.13 427 0.19 6.17 0.22 448 0.70 13.12
40_20 40x20 0.07 321 028 9.76 0.15 6.13 0.20 751 0.24 5.66 0.41 9.00
50_5 50 x5 0.23 436 081 7.66 0.37 3.69 0.74 7.65 1.83 8.51 133 14.36
50_10 50x10 0.19 559 0.63 10.63  0.24 5.54 0.47 8.10 0.85 7.67 0.99 15.31
50_15 50x15 0.14 561 044 10.31 0.25 757 0.39 8.66 0.67 717 0.71 12.78
50_20 50x20 013 532 045 8.41 0.30 1019 036 1095 058 7.56 0.74 19.24
60_5 60 x 5 0.33 596 118 9.24 0.59 5.53 1.08 1117 2.26 716 1.53 15.54
60_10 60x10 028 733 0.72 1057  0.28 7.20 0.84 12.19 1.24 9.39 1.50 18.40
60_15 60x15  0.20 823 0.69 11.77 0.42 9.95 0.56 1403  1.04 1135 139 22.76
60_20 60x20 015 772 0.56 1245 042 1333 052 1556  0.80 9.89 1.20 19.72
Avg 0.23 296 049 5.74 0.30 3.83 0.42 5.27 0.66 4.20 0.73 8.89

140
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Fig. 6. Boxplots for the instances of TA.

which is less than 0.34, 0.23, 0.28, 0.60 obtained by the DWWO,
mPTLM, TMIIG, IIGA and CGLS respectively. Fig. 8 shows the inter-
val plot for the interaction between the algorithms and the maxi-
mum running time. From Fig. 7, the result obtained by HBV signif-
icantly better than the other compared algorithms.

The multiple-problem Wilcoxon’s test and Friedman’s test are
also carried out to detect the significant differences between HBV
and other algorithms. As the results of Wilcoxon’s test which
listed in Table 13, the HBV provides higher R+ values than
R— values in all cases. The result shows that the HBV is signifi-
cantly better among the compared algorithms for solving NWEFSP
problems with o« =0.05, o =0.01. The result of Friedman’s test
is listed in Table 14, the HBV algorithm is the best ranking
among the six algorithms. From Fig. 8, the solutions obtained
by HBV algorithm are significantly better than the solutions ob-
tained by other compared algorithms with o =0.05 and o =0.01
on VRF_hard_small benchmark.

The values of SD obtained by the six algorithms are also pro-
vided in Tables 10-12 to show the robustness of the HBV algo-
rithm. The SD values obtained by HBV are smaller than other
algorithms in most instances with all the running times. For
p = 30, the average value of SD 0.18 obtained by HBV is less
than the 0.34, 0.23, 0.28, 0.60, 0.55 obtained by DWWO, mPTLM,

TMIIG, IIGA and CGLS respectively. The computational results
demonstrate that the HBV algorithm is robust on VRF_hard_small
benchmark.

6.4.2. Results and comparisons for VRF_hard_large benchmark

The Tables 15-17 lists the computational results for the
VRF_hard_large benchmark where the best results are given in
bold. From Tables 15 and 16, the values of ARPD obtained by HBV
are smaller than other algorithms on most of the instances with
short running time. However, the ARPD value of HBV is larger than
other algorithms in several instances. The reason is given as follow.
As the size of instance increase, it is difficult to find the optimal
solutions in short running time. From Table 17, the ARPD obtained
by HBV are smaller than other compared algorithms on the most
of instances. The average ARPD value 0.98 obtained by HBV is sig-
nificantly smaller than the 2.11, 1.41, 2.44, 3.81 and 3.15 obtained
by DWWO, mPTLM, TMIIG, IIGA respectively. The Fig. 9 shows the
interval plot for the interaction between the algorithms and the
maximum running time. From Fig. 9, the result obtained by HBV
significantly better than the other compared algorithms.

The multiple-problem Wilcoxon’s test and Friedman’s test are
also carried out to detect the significant differences between HBV
and other compared algorithms. As the results of Wilcoxon’s test
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Table 11
Computational results of VRF_hard_small benchmark with p = 15.
Instance  nxm HBV DWWO mPTLM TMIIG 1IGA CGLS
ARPD  SD ARPD  SD ARPD  SD ARPD  SD ARPD  SD ARPD  SD
10_5 10x5 000 000 000 000 000 000 000 000 000 000 000 0.00
10_10 10x10 000 000 000 000 000 000 000 000 000 000 000 0.0
10_15 10x15 000 000 000 000 000 000 000 000 000 000 000 0.00
10_20 10x20 000 000 000 000 000 000 000 000 000 000 000 000
20_5 20x5 000 000 003 0.72 0.02 0.23 0.00 0.03 004 0.46 0.11 1.00
20_10 20x10 000  0.00 001 0.39 000 000 000 000 000 000 004 145
20_15 20x 15 0.00 0.00 0.01 0.09 0.00 0.00 0.00 0.05 0.01 0.14 0.06 0.18
20_20 20x20 000 000 000 000 000 000 000 000 000 000 003 111
30.5 30x5 0.04 128 026 364 008 135 0.11 194 051 3.40 0.49 5.12
30_10 30x10  0.01 077 0.8 4,08 0.07 1.87 0.09 158 015 239 0.35 4,62
30_15 30x15 000 024 012 3.52 0.02 096  0.03 141 004 1.84 0.20 5.68
30_20 30x20  0.02 074  0.09 3.68 0.03 1.87 0.05 239 006 2.36 0.23 6.80
40_5 40 x5 0.12 227 047 500 018 286 028 324 108 6.33 0.63 6.10
40_10 40x10  0.08 260 038 7.59 013 369 022 514 044 5.92 0.63 9.84
40_15 40x15  0.02 174 019 7.00 0.08 295 011 353 021 476 0.49 11.62
40_20 40%x20 004 206 022 7.80 012 491 0.11 400  0.22 6.31 0.32 8.18
50_5 50x5 0.14 3.37 0.57 6.51 0.28 3.73 0.48 5.35 1.61 7.08 1.01 9.68
50_10 50x10 0.2 3.82 040 7.08 0.17 372 033 657 0.76 7.38 0.76 11.31
50_15 50x15  0.10 355 035 9.83 0.17 5.16 0.27 735 063 6.96 0.57 9.97
50_20 50x20  0.09 365 037 6.71 0.27 899  0.18 652 053 9.04 065 1718
60_5 60 x 5 0.20 426 0.76 8.18 0.49 534  0.72 728 210 8.90 116 12.39
60_10 60x10 017 547 055 1045 024 6.16 0.55 939 122 9.84 115 13.72
60_15 60x15 011 552  0.60 1116 033 9.14 0.42 825 103 1063 114 20.32
60_20 60x20 0.10 6.07 044 1094 037 1291 035 937 081 13.08 097 15.25
Avg 0.19 197 038 477 0.26 3.16 0.31 347 061 445 0.59 715
Table 12
Computational results of VRF_hard_small benchmark with p=30.
Instance nxm HBV DWWO mPTLM TMIIG [IGA CGLS
ARPD  SD ARPD  SD ARPD  SD ARPD  SD ARPD  SD ARPD  SD
10_5 10x5 000 000 000 000 000 000 000 000 000 000 000 0.00
10_10 10x10 000 000 000 000 000 000 000 000 000 000 000 0.00
10_15 10x15 000 000 000 000 000 000 000 000 000 000 000 0.00
10_20 10 x 20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
20_5 20x5 000 000 002 0.41 0.01 017 0.00 0.03 004 032 012 133
20_10 20x10 000 000 0.0 0.05 000 000 000 000 000 000 002 0.58
20_15 20x15 000 000 0.0 0.09 0.00 0.03 0.00 0.03 001 0.14 0.06 0.22
20_20 20x20 000 000 000 000 000 000 000 000 000 000 0.5 122
30.5 30x5 0.01 096 0.08 291 0.03 1.45 0.05 139 019 389 038 5.09
30_10 30x10  0.01 048 011 380 005 1.86 0.05 116 015 298 035 427
30_15 30x15  0.00 033  0.07 225 000 0.09 002 118 0.04 1.31 0.14 4,69
30_20 30x20 0.1 0.78 0.08 234 0.02 1.94 0.04 184 005 1.85 0.21 6.99
40_5 40 x5 0.07 164 035 448 013 2.08 0.23 353 100 5.71 0.61 6.02
40_10 40 x 10 0.06 1.79 0.34 6.44 0.11 312 0.21 4.22 0.43 4,92 0.55 9.09
40_15 40x15  0.01 094 015 5.16 0.05 227 0.09 271 022 512 0.45 12.16
40_20 40x20  0.03 129 015 520  0.08 3.59 0.10 422 023 533 029 7.40
50_5 50 x5 011 259 044 5.09 0.21 259 038 471 157 7.88 0.88 9.45
50_10 50x10  0.09 395 036 7.03 0.12 3.33 0.25 485 081 699 077 9.26
50_15 50x15  0.08 346 029 8.45 015 6.28 0.21 691  0.62 9.01 0.56 10.05
50_20 50x20  0.07 347 029 9.21 019 8.20 0.18 637 055 898 055 13.29
60_5 60 x 5 0.16 369 064 7.01 0.39 4,08 0.56 659  2.03 890 108 12.43
60_10 60x10 013 507 051 9.39 0.18 4.76 0.42 861 121 976  0.99 14.42
60_15 60x15  0.08 453 051 1207 025 8.28 0.34 791 101 1158 110 19.69
60_20 60x20 008 457 038 974 032 1030 032 994 078 1144 088 1551
Avg 0.18 1.65 034 421 0.23 2.68 0.28 318 0.60 442 055 6.80
Table 13 listed in Table 18, the HBV provides higher R+ values than R— val-
Results of the multiple-problem Wilcoxon’s test at & = 0.05 and & = 0.01 signifi- ues in all cases. The result shows that the HBV is significantly bet-
cance level. ter among the compared algorithms for solving NWFSP problems
HBV vs. R+ R— z p-value ®=005 =001 with a =0.05, @ =0.01. The result of Friedman'’s test is listed in
DWWO 123935 95 10853 193E—27  Yes Yes Table_ 19, the HBV_ algorithm is the best rgnkmg among the. five
mPTLM 8987 743 _8.67044 430E—18  Yes Yes algorithms. From Fig. 10, the solutions obtained by HBV algorithm
TMIIG 10,344 96 -10.22 161E-24  Yes Yes are significantly better than the solutions obtained by other com-
lIGA 13,0115 295  -109562  6.20E-28  Yes Yes pared algorithms with o =0.05 and «=0.01 on VRF_hard_large
CGLS 15,040.0 11.0 —11.3905 4.66E-30  Yes Yes

benchmark. As the Table 17, the average SD value 54.64 obtained
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Fig. 8. Rankings obtained through the Friedman test and graphical representation.

Table 14
Ranking of algorithms obtained through Friedman’s test.

Algorithm Mean rank  Chi-Square  p-value
HBV 2.04 628.31 1.5419E-133
DWWO 3.78

mPTLM 2.58

TMIIG 3.09

IGA 4.64

CGLS 4.85

Crit. Diff. «=0.05  0.4399

Crit. Diff. «=0.01 0.5279

by HBV is smaller than the 69.48, 59.67, 69.55, 89.22 and 183.71
obtained by DWWO, mPTLM, TMIIG, IIGA and CGLS respectively.
Therefore, the HBV is robust on VRF_hard_large benchmark.

6.5. Analysis of experimental results

As above experimental series, the proposed HBV algorithm is
an effective and robust algorithm for solving the NWFSP with
makespan criterion. The reasons are concluded as follows.

Firstly, the BBO algorithm, which is a classical population-based
algorithm, has been proven to be an effective framework in var-
ious fields. Although the population-based algorithms are sensi-
tive to the parameters of algorithms such as the population size,
mutation probability, they in general provide excellent results on
large-scale problems. In this paper, the parameters combinations
of HBV have been analyzed by experiment. From the above exper-
imental results, the population-based algorithms HBV, DWWO and
mPTLM significantly outperform the TMIIG, IIGA and CGLS on the
VRF_hard_large benchmark.
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Fig. 10. Rankings obtained through the Friedman test and graphical representation.

Secondly, the performance of algorithm is affected by the dif-
ferent coding scheme. For mPTLM, the LOV scheme extends the
search space of NWFSP. However, the proposed HBV algorithm only
searches in the job-permutation search space. Therefore, the search
efficiency of HBV outperforms the search efficiency of mPTLM.

Thirdly, the neighborhood search is a significant factor which
affects the performance of algorithms. In the existing researches,
the insert and swap are the most common neighborhood structure
for solving the NWFSP. However, the different neighborhood struc-
tures have a gap in various instances. The block is also an effective
neighborhood structure. In the HBV algorithm, the block neigh-
borhood structure is employed to construct the self-improvement
strategy and the variable neighbor search.

Finally, although the CGLS is an excellent algorithm for
the mixed blocking permutation flow shop scheduling problem,

the proposed HBV outperforms the CGLS as the no-free-launch
theorem.

It is worth noting that the HBV seems to be similar to the
DWWO which was proposed by us earlier. However, the difference
between HBV and DWWO has been proven by the above exper-
imental results. For all the benchmarks, the performance of HBV
significantly outperforms the performance of DWWO. The main
difference between the two algorithms is described as follows.
Firstly, the optimization process of HBV mainly depends on the in-
teraction of individuals in the population. In this paper, the path
relink technique is introduced to perform the migration operator of
HBV. In DWWQO, the individuals search in parallel but rarely share
information. Therefore, the HBV has faster convergence speed than
DWWO. Secondly, the block neighborhood structure is employed
by HBV as the excellent solutions have certain similarities. The
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Table 15

Computational results of VRF_hard_large benchmark with p = 5.
Instance nxm HBV DWWO mPTLM TMIIG IIGA CGLS

ARPD SD ARPD SD ARPD SD ARPD SD ARPD SD ARPD SD

100_20_1 100x20 0.34 14.92 0.84 16.06 1.02 31.87 1.21 2740 178 18.24 1.78 38.90
100_40_1 100x40 033 17.58 0.67 20.08 1.10 48.70 0.96 26.77 1.53 24.87 143 43.91
100_60_1 100x60  0.29 20.75 0.66 29.14 1.38 48.94 0.90 32.98 1.68 29.29 1.63 60.02
200_20_1 200x20 0.90 30.28 1.94 38.52 1.04 28.80 238 39.83 2.94 40.41 2.87 74.36
200_40_1 200x40 0.73 32.74 143 34.22 1.68 87.43 1.89 4817 2.70 51.24 2.37 88.50
200_60_1 200x60 0.63 3716 1.30 42.52 1.85 163.80 175 60.05 2.68 63.12 2.63 133.75
300.20_1 300x20 152 43.12 2.69 50.32 1.09 38.26 3.20 49.24 3.66 48.50 3.70 86.49
300.40_1 300x40 1.05 46.77 2.03 58.14 1.86 99.78 2.75 67.44 342 70.30 3.29 119.56
300_60_1 300x60 0.98 51.79 1.93 76.94 2.36 196.68  2.38 69.91 3.38 82.95 2.89 187.25
400_20_1 400x20 222 59.60 3.24 61.74 125 33.69 3.76 56.44 4.09 65.90 438 89.43
400_40_1 400x40 147 66.84 2.57 71.05 172 12086  3.00 73.88 3.82 79.03 3.52 137.70
400_60_1 400x60 1.24 77.55 2.39 91.89 2.49 189.55 275 93.63 3.82 108.97 3.84 193.42
500_20_1 500x20 2.77 79.46 3.74 67.86 1.56 49.44 4.20 54.61 4.55 75.18 4.50 79.77
500_40_1 500x40 194 85.05 2.98 94.37 1.80 11448 334 68.90 423 107.76 417 168.80
500_60_1 500x60 147 91.98 2.65 110.78  2.53 27010 3.5 10269 412 120.03  3.66 205.13
600_20_1 600x20 3.28 82.57 4.20 83.15 1.74 52.79 4.54 67.34 4.85 98.65 4.95 67.32
600_40_1 600x40 231 90.71 3.27 85.53 1.90 99.00 3.76 87.34 4.44 12588 444 152.12
600_60_1 600x60  2.01 95.98 3.05 117.98 2.55 21492  3.65 98.30 4.38 128.58  3.96 189.24
700_20_1 700x20 413 87.54 4.80 76.03 1.89 57.31 5.02 68.75 5.28 100.11 5.24 64.58
700_40_1 700x40  3.05 105.69  3.69 10456  1.97 106.76  4.01 97.55 4.73 11949 452 126.89
700_60_1 700x60  2.53 117.57 3.38 13314 261 189.00 3.85 106.62  4.52 151.58  4.24 171.68
800_20_1 800x20 4.59 93.59 5.20 71.20 2.05 68.41 5.38 56.96 5.70 106.23 529 76.65
800_40_1 800x40 3.48 105.88  3.98 11379  2.08 110.21 4.50 95.85 4.84 111.65 4.53 133.92
800_60_1 800x60  3.01 12725 373 12918  2.62 162.02 415 98.89 4.77 15765 433 171.19
Avg 1.93 69.27 2.77 74.09 1.84 10762 319 68.73 3.83 86.90 3.67 119.19

Table 16

Computational results of VRF_hard_large benchmark with p = 15.
Instance nxm HBV DWWO mPTLM TMIIG IIGA CGLS

ARPD SD ARPD SD ARPD SD ARPD SD ARPD SD ARPD SD

100_20_1 100x20 0.24 1042 0.67 13.15 0.90 2733 0.89 2019 1.72 21.87 148 33.08
100_40_1 100x40 0.24 17.27 0.56 20.90 0.95 36.45 0.75 2343 1.52 31.51 118 45.55
100_60_1 100x 60  0.20 19.50 0.55 25.68 1.21 48.18 0.71 28.21 1.65 34.47 1.51 61.57
200_20_1 200x20  0.60 23.35 1.42 29.69 0.88 27.77 1.91 3413 2.94 35.08 2.40 76.17
200.40_1 200x40 0.52 26.02 1.10 33.20 1.51 92.38 1.51 4147 2.73 55.29 2.02 85.14
200_60_1 200x60 045 40.79 1.04 45.86 1.68 146.66 141 52.14 2.66 65.62 2.39 117.01
300_20_1 300x20 0.85 36.64 1.98 42.83 1.07 27.87 2.68 50.94 3.63 53.23 3.42 118.30
300.40_1 300x40 0.70 45.73 1.67 55.78 1.62 72.01 2.35 64.59 3.38 70.28 295 125.40
300_60_1 300x60 0.69 5718 1.53 67.24 1.99 170.71  2.06 61.90 3.34 80.77 2.59 194.05
400_20_1 400x20 119 41.21 2.56 57.89 1.25 35.54 3.38 61.07 411 66.02 3.86 143.79
400_40_1 400x40 0.92 48.65 2.10 65.61 1.62 78.87 2.73 66.64 3.84 82.98 3.07 179.23
400_60_1 400x60  0.86 71.41 2.05 83.56 2.31 159.91 251 90.43 3.82 10594  3.40 249.32
500.20_1 500x20 153 50.05 3.02 67.75 1.53 48.48 3.88 73.89 4.55 90.95 4.10 108.45
500_40_1 500x40 113 72.96 2.46 78.91 1.77 91.12 3.09 75.56 4.24 10123 3.94 219.23
500_60_1 500x60  0.98 72.60 2.32 97.78 2.36 16755 293 10252 410 126.05  3.27 234.58
600_20_1 600x20 199 55.86 3.47 73.21 1.74 55.00 422 69.07 4.88 94.25 4.67 120.24
600_40_1 600x40 1.39 69.98 2.84 82.84 1.90 81.63 342 97.03 4.46 104.38 419 190.16
600_60_1 600x60 1.21 78.58 2.66 10491 251 17424 323 12648 437 13558  3.60 314.25
700_20_1 700x20  2.65 81.76 3.88 83.99 1.89 46.07 4.59 81.72 5.19 82.19 4.97 12717
700_40_1 700x40 171 88.23 3.08 105.04 198 8743 3.62 96.55 4.70 123.88  4.23 194.99
700_60_1 700x60 150 108.99 299 119.06 258 16920 341 133.07 453 159.96  3.99 245.82
800_20_1 800x20 311 76.72 4.22 82.40 2.06 60.21 4.81 79.90 5.39 123.09  5.06 120.24
800_40_1 800x40  2.06 91.55 3.34 113.69  2.07 90.50 3.92 99.74 4.81 12831 419 210.19
800_60_1 800x60 175 11341 3.22 13590 2.66 17156 3.59 126.64 479 13827  4.06 254.91
Avg 119 58.29 2.28 70.29 175 90.28 2.82 73.22 3.81 87.97 3.36 157.03

experimental results show that the self-improvement strategy
which is based on the block neighborhood structure remarkably
improves the performance of HBV. Thirdly, the IG algorithm was
embedded into the mutation operator to extend the exploitation
ability of HBV. In DWWO, the IG was applied to the propaga-
tion operator to search the promising area adaptively. Finally, the
VNS is different in HBV and DWWO as the neighbor structure is
different.

7. Conclusion and future research

In this paper, a hybrid biogeography-based optimization with
variable neighborhood search (HBV) is presented to solve the no-
wait flow shop scheduling problem (NWFSP) with the objective
of minimizing makespan. The HBV includes five phases: Firstly,
a hybrid initial population strategy based on the NN+MNEH is
employed to generate potential solutions. Secondly, the migration
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Table 17
Computational results of VRF_hard_large benchmark with p=30.
Instance nxm HBV DWWO mPTLM TMIIG 1IGA CGLS
ARPD SD ARPD SD ARPD SD ARPD SD ARPD SD ARPD SD

100_20_1 100x20 0.8 8.92 0.58 13.95 0.39 13.90 0.74 19.34 1.77 20.49 1.39 37.25
100_40_1 100x40  0.20 14.93 0.49 17.19 0.64 39.66 0.59 19.45 1.56 2411 113 38.59
100_60_1 100x60  0.15 15.39 0.51 2415 0.86 48.08 0.61 2318 1.62 32.50 132 51.36
200_20_1 200x20 0.50 26.26 1.21 29.60 0.76 15.34 1.55 33.37 297 36.69 2.26 65.75
200.40_1 200x40 0.44 30.80 1.00 33.59 0.81 38.02 1.26 39.38 2.71 49.80 1.95 82.04
200.60_1 200x60 0.37 30.20 0.95 43.82 1.30 95.27 1.21 54.59 2.65 65.37 211 105.56
300_20_1 300x20 0.68 27.82 1.77 42.07 1.23 20.93 2.31 39.08 3.63 61.25 3.20 120.00
300.40_1 300x40 0.62 39.85 1.50 56.44 0.90 35.70 1.95 61.88 3.37 86.05 2.70 173.70
300_60_1 300x60  0.60 4234 144 62.22 1.23 88.14 172 73.13 3.34 87.65 2.45 196.00
400_20_1 400x20 0.93 35.08 2.27 63.16 1.56 30.61 2.81 52.35 411 55.70 349 158.48
400_40_1 400x40 0.73 49.84 1.89 62.87 1.08 43.02 241 66.27 3.84 78.29 2.83 211.71
400_60_1 400x60  0.70 60.02 1.83 76.96 1.28 76.62 2.23 83.45 3.84 110.81 317 236.67
500_20_1 500x20 116 40.07 2.72 57.66 1.87 33.21 3.43 56.93 4.56 82.70 3.75 149.07
500_40_1 500x40 1.02 58.52 2.37 76.53 1.25 59.16 2.71 83.65 422 103.11 3.75 243.32
500_60_1 500x60 0.87 83.62 217 94.81 1.39 76.35 2.46 10478 413 11594  3.01 264.30
600_20_1 600x20 137 48.96 3.03 70.58 217 43.29 3.64 69.00 4.84 96.58 4.44 171.91
600.40_1 600x40 11 82.55 2.63 80.37 1.45 62.74 2.92 110.90 449 10836  3.99 257.87
600_60_1 600x60 1.04 88.02 2.53 101.62 1.70 90.11 2.72 99.27 434 150.97 3.48 333.92
700.20_1 700x20  2.06 61.10 3.62 81.97 2.37 47.63 3.96 67.11 5.15 10144  4.73 138.77
700_40_1 700x40 133 71.32 2.90 10049  1.61 79.83 3.16 85.41 4.70 119.06  4.07 257.81
700_60_1 700x60 125 98.90 2.84 13095 172 13316  3.03 117.04 453 13421 3.80 324.68
800_20_1 800x20 274 104.07  4.03 96.97 2.57 58.99 4.23 85.78 543 110.00  4.77 162.04
800_40_1 800x40 184 95.30 3.27 111.37 178 78.34 3.49 10145  4.80 126.77  4.02 309.19
800_60_1 800x60  1.61 97.51 318 138.21 1.94 12387 339 12242 475 183.57  3.90 319.01
Avg 0.98 54.64 211 69.48 1.41 59.67 244 69.55 3.81 89.22 315 183.71

Results of the multiple-problem Wilcoxon’s test at & = 0.05 and « = 0.01 signifi-

cance level.
HBV vs. R+ R— VA p-value =005 «=0.01
DWWO  28920.00 0.00 —13.43  4.00E-41  Yes Yes
mPTLM  28,125.50 55450 —-12.88 5.49E-38  Yes Yes
TMIIG 28,920.00  0.00 —13.43  4.00E-41  Yes Yes
[IGA 28,920.00  0.00 -13.43  4.00E-41 Yes Yes
CGLS 28,920.00  0.00 —13.43  4.00E-41  Yes Yes
Table 19
Ranking of algorithms obtained through Friedman's test.
Algorithm Mean rank  Chi-Square  p-value
HBV 1.06 1117.56 2.108E-239
DWWO 2.92
mPTLM 217
TMIIG 3.95
[IGA 5.90
CGLS 5.00
Crit. Diff. «=0.05  0.4399
Crit. Diff. ®=0.01 0.5279

operator is employed to guide the population to search the better
area and the self-improvement strategy is employed to search the
neighbor of unmigrated solutions. Thirdly, the mutation operator
based on IG is used to maintain the diversity of the population.
Furthermore, the improved variable search is utilized to enhance
the quality of global best solutions in each generation. Finally, the
elitism strategy is used to reserve the best solution in the current
population. The computational results based on Taillard’s and VRF
benchmark show the effectiveness of HBV for solving the NWFSP.

Further research will be conducted in following directions.
Firstly, the HBV algorithm will further extend to the NWFSP in-
volving additional realistic conditions. Secondly, it is necessary to
design novel and effective neighborhood structures. Thirdly, it is
desirable to apply the HBV to other combinational optimization
problems, such as traveling salesman problem, job shop schedul-
ing problem, etc.
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