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a b s t r a c t 

The no-wait flow shop scheduling problem (NWFSP) plays an essential role in the manufacturing indus- 

try. Inspired by the overall process of biogeography theory, the standard biogeography-based optimization 

(BBO) was constructed with migration and mutation operators. In this paper, a hybrid biogeography-based 

optimization with variable neighborhood search (HBV) is implemented for solving the NWFSP with the 

makespan criterion. The modified NEH and the nearest neighbor mechanism are employed to generate a 

potential initial population. A hybrid migration operator, which combines the path relink technique and 

the block-based self-improvement strategy, is designed to accelerate the convergence speed of HBV. The 

iterated greedy (IG) algorithm is introduced into the mutation operator to obtain a promising solution 

in exploitation phase. A variable neighbor search strategy, which is based on the block neighborhood 

structure and the insert neighborhood structure, is designed to perform the local search around the cur- 

rent best solution in each generation. Furthermore, the global convergence performance of the HBV is 

analyzed with the Markov model. The computational results and comparisons with other state-of-art al- 

gorithms based on Taillard and VRF benchmark show that the efficiency and performance of HBV for 

solving NWFSP. 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction 

Shop scheduling plays an important role in manufacturing

cheduling since an excellent scheduling planning improves the

roductivity of the company effectively. The shop scheduling prob-

em is classified into single machine scheduling problem with sin-

le processor, single machine scheduling problem with parallel

rocessors, flow shop scheduling problem, job shop scheduling

roblem ( Van Laarhoven, Aarts, & Lenstra, 1992 ). The flow shop

cheduling problem (FSP) seems to be a common problem in the

eld of industrial production. The FSP is divided into the following

ategories: permutation FSP (PFSP), no-wait FSP (NWFSP), block-

ng FSP (BFSP) ( Riahi, Khorramizadeh, Newton, & Sattar, 2017 ), no-

dle FSP (NIFSP) ( Shao, Pi, & Shao, 2018 ), non-smooth FSP ( Ferrer,

uimarans, Ramalhinho, & Juan, 2016 ) and hybrid FSP (HFSP) ( Lei,

iang, & Zheng, 2018 ), etc. 
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The NWFSP, which is an extension of the FSP, has been widely

pplied in various industries, such as the electronics, metals,

hemicals and food-processing industries. As the technological rea-

ons, n jobs are processed in the same order on m machines with-

ut waiting time between consecutive operations until the whole

rocess is done in NWFSP. Therefore, the starting time of a job on

 machine have to be delayed to satisfy the no-wait constraints.

he NWFSP with three or more machines was proved by Garey

nd Johnson (1979) to be one of the strongly NP-hard problems.

t is difficult to solve the problems by branch-and-bound or mixed

nteger programming methods as the problem size increases. It is

ecessary to try more efficient algorithms for solving the NWFSP. 

Evolutionary algorithms (EAs) have gained wide popularity as

hey solve the complex optimization problems without any gra-

ient information. Various EAs and variants of classical EAs, such

s particle swarm optimization ( Clerc & Kennedy, 2002 ), har-

ony search ( Geem, Kim, & Loganathan, 2001 ), water wave op-

imization ( Zheng, 2015 ), gravitational search algorithm ( Rashedi,

ezamabadi-Pour, & Saryazdi, 2009 ), have been proposed. In recent

ears, various heuristics are proposed to solve the NWFSP since

hey in general obtain high-quality solutions within a reasonable
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time limit. The heuristic algorithms are classified into two main

categories: constructive heuristics and meta-heuristics. 

Inspired by the migration of species in natural biogeogra-

phy, the biogeography-based optimization (BBO) was proposed by

Simon (2008) . In the last decade, the BBO algorithm and its vari-

ants have been successfully employed to solve complex prob-

lems. A hybrid algorithm which comprises PSO and BBO was pre-

sented by Yogesh et al. (2017) for emotion and stress recogni-

tion from the speech signal. A learning mechanism for radial ba-

sis function networks, which is based on biogeography-based op-

timization with population competition (BBOPC) algorithm, was

proposed by Aljarah, Faris, Mirjalili, and Al-Madi (2018) to im-

prove the economics of electric power planning. A two-stage

differential biogeography-based optimization (TDBBO) algorithm,

which combines the Gaussian mutation operator, the two-stage

migration model and BBO/current-to-select/1, was proposed by

Zhao et al. (2019) for solving the global continuous optimization

problem. The convergence performance of TDBBO was analyzed

with Markov model. 

The BBO algorithm and the variants of BBO have been widely

applied to scheduling problems. An HBBO algorithm, which is com-

bined with the chaos theory and BBO, was proposed by Wang and

Duan (2014) to solve the job shop scheduling problem. The BBO

algorithm was combined with some heuristics by Lin (2015) to

construct a hybrid algorithm for solving the fuzzy flexible JSP. The

BBO was also developed by Rabiee, Jolai, Asefi, Fattahi, and Lim

(2016) to address the realistic no-wait hybrid flow shop (NWHFSP)

with unrelated parallel machines to minimize mean tardiness.

The hybrid discrete biogeography-based (HDBBO) was proposed by

Lin (2016) for solving the permutation FSP. For solving the block-

ing flow shop scheduling problem (BFSP) with maximum comple-

tion time criterion, an improved biogeography-based optimization

(BBO) was proposed by Liu, Wang, and Zhang (2018) . 

However, although the BBO algorithm and its variants were

widely applied to solve the combinational optimization problems,

little attention has been paid to the NWFSP. In this paper, a

hybrid biogeography-based optimization with variable neighbor-

hood search is proposed to be an alternative scheme for solving

NWFSP. The experimental results based on Reeve’s, Taillard’s and

VRF benchmark show the effectiveness and robustness of HBV. The

contributions of this paper are summarized as follows. 

• The standard framework of BBO is retained. The NN + MNEH

is introduced to init potential population. The iterated greedy

mechanism is employed by the mutation operator to improve

the exploitation ability of HBV. 
• The path relink technique is embedded into the migration op-

erator to improve the exploration ability of HBV. The self-

improvement strategy which is based on the block neighbor-

hood structure is designed to improve the quality of solution. 
• A modified variable neighborhood search, which is based on

the block neighborhood structure and the insert neighborhood

structure, is designed to search around the current best solu-

tions in each generation. 
• The convergence performance of HBV is analyzed with the

Markov model. The convergence process of the candidate so-

lutions is mapped to the state transition process in the Markov

chain. 

The remainder of this paper is organized as follows:

Section 2 describes the background. Section 3 provides the

description of NWFSP. A brief description of the standard BBO

algorithm is given in Section 4 . In Section 5 , the proposed HBV

algorithm is introduced in detail for NWFSP. In Section 6 , the

computational evaluation is provided. Section 7 summarizes the

conclusion and future work. 
. Background 

The heuristic algorithms, which are available for solving the

WFSP, are classified into two main categories, constructive

euristics and meta-heuristics. Several noteworthy constructive

euristics have been proposed for solving the NWFSP over the last

ew decades. A slope matching (S/M) method, which employs geo-

etrical relationships between the cumulative process times, was

esigned by Bonney and Gundry (1976) . The RAJ, which is based

n heuristic preference relations and job insertion, was presented

y Rajendran (1994) . The average departure time (ADT) heuristic

as proposed by Ye, Wei, and Miao (2016) . Based on the com-

utational experiment with a large number of instances of vari-

us sizes, the ADT performed than compared algorithms. An aver-

ge idle time (AIT) heuristic was proposed by Ye, Li, and Abedini

2017) to minimize makespan in NWFSP. Compared with the exist-

ng heuristics, the AIT achieved the smaller deviations in the same

omputational complexity. In addition, several other constructive

euristics for the regular flowshop were used to solve the NWFSP,

uch as the NEH which was proposed by Nawaz, EEE, and Ham

1983) . 

Various remarkable meta-heuristics have also been developed

or solving the NWFSP. The discrete particle swarm optimiza-

ion (DPSO) was proposed by Pan, Tasgetiren, and Liang (2008a) ,

an, Wang, and Zhao (2008b) for solving the NWFSP with both

akespan and total flowtime criteria. Several speed-up methods

ere proposed for the swap and insert neighborhood structure.

he improved iterated greedy algorithm (IIGA) was proposed by

an et al. (2008a,b) for solving the NWFSP. Three speed-up meth-

ds, which includes the insertion of a new job into a partial se-

uence, the insertion and exchange neighborhood moves, were de-

igned by Wang, Li, and Wang (2010) to reduce the time com-

lexity of evaluating the candidate. A composite heuristic which

onsists of the standard deviation heuristic with double-job in-

ert operator and the iteration operator was proposed by Gao, Xie,

ua, and Li (2012) to improve the quality of solutions. An im-

roved NEH heuristic was presented to construct the initial pop-

lation. A local search algorithm was also proposed to perform

xploitation. A tabu-mechanism improved iterated greedy (TMIIG)

as proposed by Ding et al. (2015a,b) . In TMIIG, the tabu-based

onstruction strategy is employed to enhance the exploration abil-

ty and several neighborhood structures are applied to improve the

uality of solutions. In the same year, the block-shifting simulated

nnealing (BSA) was introduced by Ding et al. (2015a,b ). In BSA,

he block neighborhood structure was embedded into the frame-

ork of simulated annealing. The NWFSP was formulated as the

TSP by Lin and Ying (2016) . Two meta-heuristics were proposed

o solve the NWFSP problem. Later on, an extended framework of

eta-heuristic based on teaching-learning process was developed

y Shao, Pi, and Shao (2017a,b) . The DWWO algorithm was intro-

uced by Zhao, Liu, Zhang, Ma, and Zhang (2018) for solving the

WFSP. In DWWO, the operators of the original water wave algo-

ithm were redefined to adapt to the NWFSP. The computational

esults demonstrate that the DWWO outperforms other compared

lgorithms. A flower pollination algorithm, which is based on the

ormone modulation mechanism, was proposed by Qu, Fu, Yi, and

an (2018) for solving the NWFSP. 

In the studies mentioned above, various algorithms were pro-

osed to solve the NWFSP. However, the existing algorithms still

truggle with large size problems. One key reason is that the

ramework of algorithms and the neighborhood structure are in-

omplete. Variable neighborhood search (VNS) is a popular meta-

euristic proposed by Hansen and Mladenovi ́c (1997) systemat-

cally exploiting the idea of neighborhood change. In the DPSO

hich was proposed by Quan Ke Pan et al. (2008a,b) to solve

he NWFSP, a variable neighborhood descent (VND) method was
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mployed to perform the exploitation. An approach based on vari-

ble greedy algorithm was proposed by Framinan and Leisten

2008) for solving the permutation flow shop problem with the

bjective of minimizing the total tardiness. In this study, the VNS

oncept of varying the neighborhood has been applied to the de-

truction and construction phases of iterated greed (IG) algorithm.

he refreshing VNS (RVNS) was designed by Perez-Gonzalez and

raminan (2010) to solve the due date setting problem in a con-

trained flow shop with the objective of minimizing the makespan

f the new jobs. In the RVNS, the strict sequence which includes

he feasible solutions and the relaxed sequence which consists of

ither feasible or unfeasible solutions are considered. An efficient

ariable neighborhood search for the flow shop with many batch

rocessing machines (many-BPM) was proposed by Lei and Guo

2011) to minimize total tardiness, maximum tardiness and num-

er of tardy jobs, respectively. In this VNS, an insertion operation

nd two swap operation are applied to improve the initial per-

utation. The computational results showed the excellent perfor-

ance of the VNS on many-BPM flow shop problem. The differ-

ntial evolution algorithm based on variable neighborhood search

VNSDE) was presented by Zhou (2012) for solving the flow shop

roblem with the makespan criterion. In VNSDE, the VNS is per-

ormed after the basic operations of DE to enhance the global

earch ability and accelerate the convergence speed. The compu-

ational results indicated that the VNSDE is superior to compared

lgorithms. 

Three local search methods with variable neighborhoods, which

mploys a new neighborhood of exponential size along with the

ell-known neighborhoods of polynomial size, were developed by

ononova and Kochetov (2013) for obtaining upper bounds of the

wo machine flow shop problem with passive prefetch. The com-

utational results showed the high efficiency of the developed

ethods. The parallel VNS and the series VNS were proposed by

ibas and Companys (2013) to solve the block flow shop prob-

em. In the parallel VNS, the insertion and swap neighborhoods are

andomly chosen to improve the solution. In the serial VNS, the

eighborhoods are executed sequentially. The computational eval-

ation showed that the serial VNS is competitive. A general VNS

GVNS) was presented by Tasgetiren, Buyukdagli, Pan, and Sugan-

han (2013) to solve the no-idle permutation flow shop problem.

n the GVNS, the VND is employed by the inner loop. The iterated

reedy algorithm and iterated local search algorithm are employed

n the VND as neighborhood structures. The insert and swap oper-

tions are used by the outer loop. The experimental results showed

hat GVNS outperforms other algorithms on the Ruben Ruiz bench-

ark. A hybrid variable neighborhood search (HVNS), which com-

ines the VNS and simulated annealing algorithm, was presented

y Moslehi and Khorasanian (2014) to solve the limited-buffer per-

utation flow shop problem (LBPFSP) with the makespan criterion.

he computational results demonstrated that the HVNS algorithm

s competitive with the algorithms for the blocking flow shop prob-

em. The VNSSA, which incorporates the SA into the framework of

NS, was proposed by Xie, Zhang, Shao, and Yin (2014) to solve the

locking flow shop problem with the total flow time minimization.

n the VNSSA, the SA is employed as the local search method in

he third stage of VNS, and the best-insert operator is introduced

o generate the neighbors in SA. The computational results validate

he effectiveness of VNSSA on Taillard’s benchmark. 

The flow shop problem with two agents was studied by Lei

2015) , and the feasibility model was also considered to minimize

he makespan of the first agent and the total tardiness of the sec-

nd agent simultaneously. In this study, a learning neighborhood

tructure, which combines part of a randomly chosen member and

he most parts of current solution, was constructed to produce

ew solutions in VNS. Besides, the replacement principle is ap-

lied to decide if the current solution can be replaced with the
ew solution. The hybrid harmony search (HHS) was proposed by

hao et al. (2017) to solve the permutation flow shop problem.

n the HHS, a novel VNS which is based on the efficient insert

nd swap operations was designed to emphasize the local exploita-

ion ability. Experimental simulations demonstrated that the HHS

utperforms the compared algorithms in term of solution quality

nd stability. Four neighborhood structures, which are based on

he factory assignment and job sequence adjustment, were incor-

orated into the framework of VNS by Shao et al. (2017a,b) for

olving the distributed NWFSP. The comparisons with the state-

f-the-art algorithms demonstrated the effectiveness of proposed

lgorithms for solving DNWFSP. The iterated local search method

nd the iterated greedy method were combined with VNS by Ribas,

ompanys, and Tort-Martorell (2017) for solving the parallel block-

ng flow shop problem (PBFSP) with the makespan criterion min-

mization. The computational results demonstrated that the pro-

osed two algorithms are superior to the compared algorithms for

olving the PBFSP. The multi-objective parallel variable neighbor-

ood search (MPVNS) was proposed by F. Wang, Deng, Jiang, and

hang (2018) to solve the blocking flow shop problem. The VNS

as designed to explore the initial solutions in parallel. The exper-

mental results illustrated that the MPVNS is superior to the com-

ared multi-objective meta-heuristics. 

Although the VNS and its variants have been widely applied to

ow shop problems, little attention has been paid to construct VNS

ith block neighborhood structure for solving the NWFSP. In this

aper, a modified VNS based on the block neighborhood structure

nd insert neighborhood structure is designed to perform exploita-

ion around the current best solutions. 

. No-wait flow shop scheduling problem (NWFSP) 

The NWFSP is described as follows: There are n jobs to be pro-

essed through m machines, and all jobs have the same process-

ng routes. Every job j ( j = 1, 2, …, n ) has the predefined processing

ime on every machine i ( i = 1, 2, …, m ). At any moment, a job is

nly processed at most by one machine and each machine executes

o more than one job. Each job is processed without waiting time

etween consecutive operations. The start of a job is delayed on

he first machine to satisfy the no-wait constraint. In this paper,

he goal is to find a feasible schedule π which has the minimum

akespan for the n jobs. 

Assume that π = [ π (1), π (2), …, π ( n )] represents a schedule se-

uence. Let C max denotes the makespan of π , p ( π ( i ), k ) is the pro-

essing time of the i th job on the k th machine. Then the no wait

onstraint of problem ensures that the completion time distance

etween adjacent jobs just related to the processing time of the

wo jobs. Thus, it can be calculated between each pair of jobs. The

ompletion time distance D ( i, j ) from job i to job j is calculated as

ollow. 

 ( i, j ) = max 
k =1 , ... m 

{ 

m ∑ 

h = k 
( p ( j, h ) − p ( i, h ) ) + p ( i, k ) 

} 

(1) 

Then the makespan of the sequence π is obtained as Eq. (2) . 

 max ( π) = 

n ∑ 

i =2 

D ( π( j − 1 ) , π( j ) ) + 

m ∑ 

k =1 

P ( π( 1 ) , k ) (2) 

A virtual job, whose processing time is set to zero, is in-

roduced to simplify the calculation process. Sequence π is re-

laced by the π ′ = [ π (0), π (1), π (2), …, π ( n )]. Then, the

 ( π( 0) , π( 1) ) = 

∑ m 

k =1 P ( π( 1) , k ) . Therefore, the computational

ormula of makespan is simplified as follows. 

 max ( π) = 

n ∑ 

i =2 

D ( π( j − 1 ) , π( j ) ) + 

m ∑ 

k =1 

P ( π( 1 ) , k ) 
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Algorithm 1 The main procedure of original BBO. 

1. Generate the initial population H . 

2. Evaluate the fitness of each individual in H . 

3. While the halting criterion is not satisfied do 

4. Calculate λi , μi and m i for each individual H i . 

5. for i = 1 to NP do 

6. for j = 1 to D do 

7. if rndreal (0, 1) < λi then // rndreal (0, 1) is a uniform random number on the interval (0,1). 

8. Select H k with probability ∝ μk . 

9. H i ( j ) = H k ( j ) . 

10. end if 

11. end for 

12. end for 

13. for i = 1 to NP do 

14. for j = 1 to D do 

15. if rndreal (0, 1) < m i then 

16. Replace H i ( j ) with a randomly generated SIV . 

17. end if 

18. end for 

19. end for 

20. end while 
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w  
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i  
= 

n ∑ 

i =2 

D ( π( j − 1 ) , π( j ) ) + D ( π( 0 ) , π( 1 ) ) 

= 

n ∑ 

i =1 

D ( π( j − 1 ) , π( j ) ) (3)

Let � denotes the set of all possible permutation. The mini-

mum makespan is described as follows. 

 max ( π
∗) = min { C max ( π) | π ∈ �} (4)

Symbols used mostly in this paper are summarized as follows: 

N number of jobs 

M number of machines 

π the sequence of all jobs 

π i the i th sequence in population 

π (j) the j th job in sequence π
π i ( j ) the j th job in i th sequence π i 

C max ( π ) the makespan of π
p ( π ( i ), k ) the processing time for the π ( i ) on the k th ma-

chine 

D ( π ( i − 1), π ( i )) the delay time between job π ( i − 1) and job π ( i ) 

NP the population size 

� the set of all possible permutation sequence 

I the maximum immigration rate 

E the maximum emigration rate 

m i the mutation rate of i th sequence 

λi the immigration rate of i th sequence 

μi the emigration rate of i th sequence 

rmax the maximum length of the block 

pmutate the maximum mutation rate 

4. Biogeography-based optimization 

As a novel population-based optimization algorithm,

biogeography-based optimization ( Simon, 2008 ) takes inspira-

tion from the science of biogeography. In BBO algorithm, the

solution space analogous to habitats in biogeography. The good-

ness of each habitat is measured by the habitat suitability index

(HSI). The habitats with a high HSI tend to accommodate a large

number of species, whereas the habitats with a low HSI maintain

a few species. New candidates are generated by using migration

and mutation. The primary step of the standard BBO is described

in Algorithm 1 . The leading operators of BBO are briefly described

as follows. 
.1. Migration operator 

Migration operator is the leading operator in BBO. Features are

ixed among habitats based on the immigration rate λ and the

migration rate μ. For the habitats which have a vast number

f species, the immigration rate is low because they are already

early saturated with species. The high HSI habitats have a high

migration rate because the species on high HSI habitats have

ore opportunities to migrate to other habitats. On the contrary,

oor habitats tend to improve their HSI by accepting new features

rom more attractive habitats in the evolution process. In the stan-

ard BBO algorithm, the immigration rate λi and emigration rate

i are linear functions of the number of species. The linear migra-

ion model is calculated using Eqs. (5) and (6) . 

i = I ·
(

1 − i 

n 

)
(5)

i = E ·
(

i 

n 

)
(6)

here I and E are the maximum immigration rate and emigration

ate respectively. i is the rank of habitat. n represents the max-

mum number of species which the habitats accommodated. For

onvenience, n is equal to population size. 

.2. Mutation operator 

As a result of cataclysmic events can drastically change the HSI

f a habitat, a mutation operator is employed to modify the fea-

ures of solutions. Differ from other EAs, the mutation probability

s dynamically calculated by Eq. (7) . 

 i = m max ·
(

1 − p i 
p max 

)
(7)

here m max is the user-defined maximum mutation probability. p i 
epresents a priori existence probability. p max = max { p i , i = 1, 2, …,

s }. 

. The proposed HBV algorithm 

In this section, the HBV algorithm for solving the NWFSP

ith a makespan criterion is presented. In this paper, the job-

ermutation-based representation, which has been widely used in

he literature for the flow shop, is adapted to encode and decode

n the mapping process. The HBV consists of the following five
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Initialize the parameters of HBV algorithm 

Output the best solution

Generate and evaluate initial populaiton

migration operator 

mutation operator

Variable neighborhood structure

Evaluate and update the population

Termination condition met?

self-improvement strategy

migration condition met?

NY

Y

N

Fig. 1. workflow of HBV for NWFSP. 

Fig. 2. The trend of parameters. 
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hases: initial population based on the NN and NEH, the migra-

ion operator which is based on the path relink and block-based

elf-improvement strategy, the mutation operator which is based

n the iterated greedy algorithm, the modified variable neighbor-

ood search, and elitism strategy. The details of each phase are

ully described in the following sub-sections. The workflow of HBV

s also given in Fig. 1 . 

.1. Initial population 

The nearest neighbor (NN) and the NEH mechanism are two ef-

ective constructive heuristics for initial population. The NN and

EH method was combined by Pan et al. (2008a,b) to construct

he initial population in the discrete particle swarm optimiza-

ion algorithm (DPSO). The modified NEH was designed by Gao,

ie, Hua, and Li (2011) . The NN + MNEH method was designed by

hao et al. (2018) to make the initial population. The experimen-

al results show that the NN + MNEH method outperforms NN + NEH
nd MNEH. In this paper, the NN + MNEH method is employed to

onstruct the initial population. 

The detail of NN + MNEH method is described as follows. Firstly,

ick out NP jobs randomly from a set S 0 = { J 1 , J 2 ,…, J n }, which con-

ains all the jobs, to construct a sequence JF s = { JF 1 , JF 2 ,…JF n }. Then

he i th jobs of JF s is taken as the first job of i th candidate se-

uence. Secondly, NN is employed to find the second job. Thirdly,

he MNEH is applied to construct a partial sequence with other

 n − 2) jobs. The partial sequence is appended to the first sched-

led jobs to construct the final permutation. The pseudo code of

nitial population is given in Algorithm 2 . 

.2. Migration operator 

The migration strategy, which is the most significant operator

n BBO, is similar to the global combination approach of other

volutionary algorithms. The migration operator is employed to

odify existing solutions instead of creating new solutions. The
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Algorithm 2 Initial population. 

1. Pick up NP jobs from a set S 0 and construct a sequence JF s 
2. for k = 1: NP 

3. π k (1) = JF k 
4. π k (2) = NN ( π k (1)) 

5. S 1 = S 0 − { π k (1), π k (2)} 

6. π k = [ π k (1), π k (2)] + MNEH ( S 1 ) 

7. H (k) = π k 

8. end for 

Algorithm 3 Path relink technique. 

1. for k = 1: NP do 

2. if H i � = H e do 

3. find the position s of H e ( k ) in H i 
4. swap ( H i ( k ), H i ( s )) and generate intermediate solution H ′ 
5. end if 

6. find the solution H best with lowest makespan 

7. H i = H best 

8. end for 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Algorithm 4 Self-improvement strategy. 

1. Set bestFit = inf and bestSeq = ∅ 
2. for k = 1: ( n − r ) do 

3. remove a block from H i ( k ) to H i ( k + r ) 

4. find the sequence H ′ by inserting the block in any possible position 

5. if f ( H ′ ) < bestFit do 

6. bestFit = f ( H ′ ) 
7. bestSeq = H ′ 
8. end if 

9. end for 

10. H i = bestSeq 
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migration characteristics of sinusoidal migration model are closer

to natural law as Ma (2010) analyzed. Therefore, the sinusoidal mi-

gration model outperforms the linear migration model in the stan-

dard BBO algorithms. In this paper, the sinusoidal migration model

is employed to calculate the immigrate rate and the emigrate rate

of each in population. The sinusoidal model is given in Eqs. (8)

and (9) . 

λk = 

I 

2 

(
cos 

kπ

n 

+ 1 

)
(8)

μk = 

E 

2 

(
− cos 

kπ

n 

+ 1 

)
(9)

The immigration rate and the emigration rate of each solution

are employed to share information between habitats probabilisti-

cally. In this paper, if a given solution is selected to be modified,

the corresponding immigration rate λ is used to decide whether

or not to perform the migration operator probabilistically. If the

solution is selected to immigrate, another solution is employed to

share features with the immigration solution by the emigration

rate. Otherwise, the self-improvement strategy, which is based on

the block neighborhood structure, is designed to improve the qual-

ity of the solution. 

Path relink technique is employed to perform the migration op-

erator in HBV. The detail of the migration operator, which is based

on the path relink technique, is described as follows. For the em-

igration habitat H e and the immigrate habitat H i , a series of swap

operator are performed to transform H i to H e . Thus, an interme-

diate solution is obtained through each swap operator. If the in-

termediate solution is different from both the immigrate habitat

H i and the emigrate habitat H e , the intermediate solution is put

into a set S. After all the solution in S are evaluated, immigrate

habitat H i is replaced by the intermediate solution with the low-

est makespan. The pseudo code of path relink technique is given

in Algorithm 3 . 

The block neighborhood structure is a simple and effective

neighborhood structure which is proposed by Ding et al. (2015a,b ).

In this paper, the block neighborhood structure is integrated

into the self-improvement strategy. The self-improvement strat-

egy is performed while a solution is not selected to immigrate.

The main procedure of self-improvement strategy is described in

Algorithm 4 . 
.3. Mutation operator 

Mutation operator, which is employed to expand the search

pace and escape from the local optimum solutions, is the main

perator in the BBO. In standard BBO, the mutation operator is

erformed by simply replacing the solution with a new solution

hich is generating randomly. In this paper, the iterated greedy

IG) algorithm is integrated into the mutation operator to obtain a

romising solution in exploitation phase. 

IG is a simple and effective algorithm for solving the combina-

orial optimization problem. The new solution is obtained by iter-

ted applying destruction operation and construction operation in

G. In the destruction phase, d jobs are selected randomly and re-

oved from the candidate solution π . Therefore, π is divided into

wo parts πd and π r . πd contains d jobs and π r contains ( n - d )

obs. In the construction phase, each job in πd is inserted into π r 

equentially. The pseudo code of IG is given in Algorithm 5 . 

.4. Variable neighborhood search 

Variable neighborhood search (VNS) is a popular meta-heuristic

roposed by Hansen and Mladenovi ́c (1997) systematically exploit-

ng the idea of neighborhood change. The principle can be de-

cribed as follows. 

• A local minimum concerning one neighborhood structure is not

necessarily so for another. 
• A global minimum is a local minimum concerning all possible

neighborhood structures. 
• For many problems, local minima concerning one or several

neighborhoods are relatively close to each other. 

The VND, which is a variant of VNS, is embedded as a local

earch algorithm in the DPSO algorithm to obtain better results by

an et al. (2008a,b) . The insert + swap neighborhood structure is in-

egrated into VND in DPSO. As Ding et al. (2015a,b ) pointed out,

he block-based operator explores a lager neighborhood solution

pace than traditional insert and swap operators. In this paper, a

odified VNS which is presented by slightly modifying is only ap-

lied to the global best solution G 

t . The swap neighborhood is re-

laced by the block neighborhood. The modified VNS is described

s Algorithm 6 . 

.5. Elitism strategy 

BBO with only migration and mutation does not converge to a

lobal optimal as Ma, Dan, and Fei (2014) analyzed. In this paper,

he elitism strategy is adapted to retain the best solution in the

opulation. If the fitness value of the current optimal solution is

arger than the fitness value of the global optimal solution of the

revious generation at the end of each generation, the inferior so-

ution in population is replaced by the global optimal solution of

he previous generation. 
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Algorithm 5 Iterated greedy algorithm. 

1. π r = π

2. for k = 1: d do 

3. remove one job from π r and put it into π d 

4. end for 

5. for k = 1: d do 

6. insert job π d ( k ) into the optimal location with the minimum makespan in π r 

7. end for 

Algorithm 6 Variable neighborhood search. 

1. s 0 = G t 

2. s = perturbation ( s 0 ) 

3. s 1 = insert (s) 

4. s 2 = block neighborhood search (s1) 

5. if f ( s 2 ) < f ( s 0 ) do 

6. G t = s 2 
7. end if 

Algorithm 7 The main procedure of HBV. 

1. Generate the initial population H . 

2. Evaluate the HSI for each habitat in H . 

3. While the halting criterion is not satisfied do 

4. For each individual map the fitness to the number of species. 

5. for i = 1: NP do 

6. Calculate the immigration rate λi and the emigration rate μi . 

7. if rand <λi do 

8. Select H e with the emigration rate μi . 

9. U i = Path relink ( H i ,H e ). 

10. else 

11. U i = Block neighborhood search ( H i ). 

12. end if 

13. if rand < m i do 

14. Modify the population U with IG shown in Algorithm 5. 

15. end if 

16. end for 

17. Evaluate the fitness of each individual in U . 

18. H = U . 

19. Sort H with the HSI . 

20. if f ( H 1 ) > bestFit do 

21. H 1 = bestSeq. 

22. end if 

23. H 1 = VNS ( bestSeq ) . 

24. end while 
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.6. The framework of HBV 

This paper presents a hybrid biogeography-based optimization

ith variable neighborhood search (HBV) for the NWFSP. The HBV

as five phases: (i) initial population, (ii) migration operator, (iii)

utation operator, (iv) variable neighborhood search, (v) elitism

trategy. The pseudo-code of HBV is summarized in Algorithm 7 .

uppose that there are n jobs and m machines in the NWFSP, the

opulation size is NP , the mutation probability is p . Since the pop-

lation initialization is based on the NEH mechanism, the compu-

ational complexity of population initialization is given as O ( n 2 ).

he migration operator consists of two parts: path relink and self-

mprovement strategy. The migration operator executes Np times

tness evaluations in each generation. The mutation operator prob-

bly employs the IG mechanism to search around the potential so-

utions. The VNS employs the insert and block neighborhood struc-

ure to search around the best solution. As the speed-up method,

he complexity of fitness evaluation is O (1) when a sequence is

enerated by insert, swap or block operator. In each generation,

he computational complexity of migration operator is O ( mn ) . The

omputational complexity of mutation operator is O ( n 2 ). The com-

utational complexity of variable neighborhood search is O (2 n 2 ).

he computational complexity of elitism strategy is O (1). Suppose
he number of generations is k, the computational complexity of

BV algorithm is calculated as follows. 

 ( NP, p, n, m ) = O 

(
n 

2 
)

+ O ( k ) 

×
[
O ( mn ) + O 

(
n 

2 
)

+ O 

(
2 n 

2 
)

+ O ( 1 ) 
]

≈ O 

(
n 

2 
)

+ O ( k ) × O 

(
2 n 

2 
)

≈ O 

(
2 k n 

2 
)

.7. Convergence analysis of HBV 

In this section, the convergence behavior of HBV is analyzed

ith Markov model. 

According to the definition of NWFSP, the search space of the

roblem is represented as I = n !. The HBV algorithm with popula-

ion size NP consists of migration, mutation, elitism and VNS. Some

efinitions are given as follows. 

heorem 1. (Convergence in probability) ( Burton, 1985 ) { A ( t ),

t = 0, 1, 2…} is a population sequence generated by a population-

ased stochastic algorithm, the stochastic sequence { A ( t )} weakly con-

erges in Probability to the global optimum. If and only if: 

lim 

→∞ 

P { A ( t ) ∩ I ∗ � = ∅ } = 1 (10) 

here I ∗ is the set of global optimal of a problem. 

heorem 2. P is a stochastic matrix with the structure P = [ 
C 0 

R Q 

] ,

here C is a primitive stochastic matrix and R, Q � = 0. P 

k converges

o a stochastic matrix as k → ∞ ,. That is, 

 

∞ = lim 

k →∞ 

(
p i j 

)( k ) = 

⎛ 

⎝ 

π
. . . 
π

⎞ 

⎠ 

T ×T 

(11) 

here π = ( π1 ,…πm 

, 0, …, 0), and πj � = 0 for 1 ≤ j ≤ m < T 

efinition 1. A ( t ) = { a i ( t )| i ∈ [1, N ], a i ( t ) ∈ I } is the population

t the generation t. a i ( t ) is a candidate solution in search space

 . Then let I ∗ denote a set of global optimal of an optimization

roblem. The best individuals in the population at generation t are

 

∗( t ). Due to A ( t ) may contain duplicate elements, let I ∗( t ) repre-

ent the set of a 

∗( t ). 

Obviously, a ∗( t ) changes randomly over time. As t → ∞ , the con-

ergence of a ∗( t ) indicates the globally convergent of HBV algo-

ithm. That is, HBV is said to converge if 

 

(
lim 

t→∞ 

a ∗( t ) ∈ I ∗
)

= 1 ⇔ P 

(
a ∗ ∈ lim 

t→∞ 

A ( t ) 

)
= 1 (12)

Thus, the evolution of a ∗( t ) is a homogeneous finite Markov

hain, namely, a ∗( t )-chain. 

efinition 2. Let ˆ P t = ( ̂  p i j ) be the transition matrix of an a ∗( t )-

hain, where ˆ p i j is the probability that a ∗( t ) = I i transition to

 

∗( t + 1) = I j . The HBV algorithm converges to global optimum if

 

∗( t ) transition from any state i ∈ I to I ∗ as t → ∞ with probability

, that is, if 

lim 

t→∞ 

∑ 

I j ∈ I ∗

(
ˆ P t 
)

i j 
= 1 ∀ i, I i ∈ I (13) 
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Table 1 

The parameters for different levels. 

Parameters Levels 

1 2 3 4 

pmutate 0.001 0.005 0.01 0.05 

rmax n /5 n /4 n /3 n /2 

NP n /5 n /4 n /3 n /2 
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Theorem 3. If the transition probability ˆ P = ( ̂  p i j ) of an a 

∗( t )- chain

is a stochastic matrix with the structure ˆ P = 

(
C 0 

R Q 

)
, where C is

a positive stochastic matrix, and R, Q � = 0, then the HBV algorithm

converges to one or more of global optima . 

Proof. From Theorem 3 , for any i ∈ S , 

lim 

→∞ 

∑ 

I j ∈ I ∗

(
ˆ P t 
)

i j 
= 

∑ 

I j ∈ I ∗
lim 

t→∞ 

(
ˆ P t 
)

i j 
= 

| I ∗| ∑ 

j=1 

π j = 1 (14)

Theorem 4. In HBV algorithm, the transition probability of a 

∗( t )-

chain satisfied the following conditions: ∀ k > i , p ij = 0 and ∀ k < i ,

p ij ≥ 0. 

Proof. As above definition, A ( t ) denotes the population at the

generation t, a ∗( t ) is the best individual in the population genera-

tion t . In each generation of HBV, the migration operator, mutation

operator, elitism strategy and VNS are performed conditionally.

Then let F best denotes the current best solution after the migra-

tion mutation operator. If F best < f ( a ∗( t − 1)), The elitism strategy

is not implemented and a ∗( t ) = F best , otherwise the elitism strat-

egy is performed, a ∗( t ) = a ∗( t − 1). In the VNS operator, the a ∗( t ) will

be replaced by one with better fitness, otherwise it will remain

unchanged. Obviously, the a ∗( t )-chain is monotonous and ∀ k > i ,

p ij = 0. Apart from this, the new solution can be obtained by mi-

gration operator and mutation operator. After migrate and mutate

t ( t → ∞ ) generations, ( P r ) 
t > 0. That is, the probability of searching

for any state k in the space from the initial state i after t genera-

tion is p ∞ 

ik 
> ( P r ) 

t > 0 . Then, ∀ k < i , p ij ≥ 0. 

If the best individual in HBV is equal to global optimum, it is an

absorbing state of the a ∗( t )-chain, According to Theorem 4 , the best

individual can only be replaced by one with better fitness. Then,

the a ∗( t )-chain of HBV contains three classes of states: 

(1) At least one absorbing state. 

(2) Non-absorbing states which transition to absorbing states in

one step. 

(3) Non-absorbing states which transition to non-absorbing

states in one step. 

Thus, the transition matrix P is given as ˆ P = 

(
C 0 

R Q 

)
. C is the

matrix corresponding to optimal individuals. R is a matrix cor-

responding to the non-absorbing states which transition to ab-

sorbing states in one step. Q is the matrix corresponding to the

non-absorbing states which transition to non-absorbing states. The

HBV algorithm converges to one or more global optima as the

Theorem 3 . 

6. Numerical result 

In this section, the HBV algorithm is compared with the state-

of-the-art algorithms to test the performance for solving the

NWFSP with minimization of makespan. 600 instances are em-

ployed to test the considered algorithms: (i) The 120 Taillard’s in-

stances provided by Taillard (1993) . Ta001 -Ta120 consists of 12

subsets of different size which is ranging from 20 jobs and 5 ma-

chines to 500 jobs and 20 machines. (ii) 480 instances provided by

Vallada, Ruiz, and Framinan (2015) . This benchmark problem set

consists of 240 large instances and 240 small instances. The small

instances include 24 combinations of n = {10, 20, 30, 40, 50, 60}

jobs with m = {5, 10, 15, 20} machines. The large instances include

24 combinations of n = {10 0, 20 0, 30 0, 40 0, 50 0, 60 0, 70 0, 80 0}

jobs with m = {20, 40, 60} machines. For each size of problems,

ten instances are provided. The optimal solutions are provided by

Lin and Ying (2016) . In order to make a fair comparison, all the al-

gorithms were coded using MATLAB. The simulation experiments
ere carried out on a personal computer (PC) with Intel (R) Core

TM) i7-6700 CPU 3.4 GHz and 8.00GB memory with a Windows

erver 2012 Operating System. 

The average relative percentage deviation (ARPD) is applied to

easure the quality of the experimental results and compare the

erformance of HBV with other algorithms visually. The value of

RPD is calculated as follows: 

RP D = 

1 

R 

R ∑ 

r=1 

C r − C R 
∗

C R 
∗ × 100 (15)

here C ∗
R 

is the best solution found so far, C r is the solution of

he r th experiment and R is the number of runs. The less value of

RPD is, the better the performance of algorithm is. The standard

eviation (SD) is also applied to indicate the robust of the algo-

ithms. The value of SD is calculated as follows: 

D = 

√ ∑ R 
r=1 

(
C r − C̄ 

)2 

R 

(16)

here C̄ is the mean value of R solutions. 

This experimental section consists of five parts. Section 6.1 pro-

ides the analysis of parameters. The effectiveness of the compo-

ents is analyzed in Section 6.2 . In Section 6.3 , the proposed HBV

lgorithm is compared with existing state-of-the-art algorithms on

aillard’s instances. The comparisons of the considered algorithms

n the VRF_hard instances are given in Section 6.4 . The experimen-

al results are analyzed in Section 6.5 . 

.1. Analysis of parameters 

The appropriate design of parameters plays an essential role in

he performance of HBV. In HBV, the maximum migration rate is

et to 1. There are three crucial parameters: the maximum proba-

ility of mutation pmutate , the maximum length of block rmax and

he population size NP . The Taguchi method ( Montgomery, 1976 )

f design for the experiments is introduced to investigate the

est parameter setting for HBV. 240 small-scale instances and

8 large scale instances in VRF benchmark which is provided by

allada et al. (2015) were employed to calibrate parameters. The

arious values of parameters are listed in Table 1 . n is the job

ize. The different parameter combinations and ARPD are given in

able 2 . 

From Table 3 , the NP is the most significant parameter of HBV

s the HBV is a population-based algorithm. The parameter pmu-

ate ranks the second place, which illustrates that pmutate is also

n important factor in HBV. A large pmutate diversifies the popula-

ion significantly, and a small pmutate accelerate the convergence

peed of HBV. The rmax ranks the third place, which demonstrates

hat the parameter rmax has slight effect on the performance of

BV. According to the above analysis, the parameters in HBV are

uggested as follows. pmutate = 0.005, rmax = n /5, NP = n /4. 

.2. Effectiveness of algorithm components 

The HBV without VNS and HBV without self-improvement were

ompared with the HBV algorithm to test the effectiveness of the
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Table 2 

Parameter combinations and average makespan. 

No. Parameter combination ARPD 

pmutate rmax NP 

1 1 1 1 0.304608 

2 1 2 2 0.298258 

3 1 3 3 0.289861 

4 1 4 4 0.277049 

5 2 1 2 0.166872 

6 2 2 1 0.297946 

7 2 3 4 0.279021 

8 2 4 3 0.27391 

9 3 1 3 0.299111 

10 3 2 4 0.296481 

11 3 3 1 0.294051 

12 3 4 2 0.275929 

13 4 1 4 0.284951 

14 4 2 3 0.293834 

15 4 3 2 0.289608 

16 4 4 1 0.287131 

Table 3 

Parameter rank and response value. 

Levels pmutate rmax NP 

1 0.2924 0.2639 0.2959 

2 0.2544 0.2966 0.2577 

3 0.2914 0.2881 0.2892 

4 0.2889 0.2785 0.2844 

Response value 0.038 0.0327 0.0383 

Rank 2 3 1 

Table 4 

Computational result of HBV without VNS, HBV without self- 

improvement and HBV. 

n × m HBV_NV HBV_NS HBV 

ARPD SD ARPD SD ARPD SD 

20 × 5 0.02 0.19 0.00 0.12 0.00 0.00 

20 × 10 0.08 0.35 0.00 0.09 0.00 0.06 

20 × 20 0.02 0.74 0.00 0.00 0.00 0.00 

50 × 5 0.19 1.92 0.49 1.39 0.15 1.02 

50 × 10 0.12 1.11 0.34 2.15 0.10 0.96 

50 × 20 0.11 2.39 0.27 2.44 0.06 0.45 

100 × 5 0.30 3.37 1.56 3.84 0.28 1.67 

100 × 10 0.25 3.07 0.99 4.00 0.24 2.27 

100 × 20 0.25 3.03 0.84 6.61 0.21 2.58 

200 × 10 0.58 4.07 2.46 7.96 0.57 3.88 

200 × 20 0.56 7.04 1.89 13.94 0.47 5.45 

500 × 20 1.20 10.34 3.67 26.58 1.04 10.13 

Average 0.31 3.13 1.04 5.76 0.26 2.37 
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lgorithm components. Table 4 lists the computational results ob-

ained in the three variants. ARPD and SD denote the average rela-

ive percentage deviation and standard deviation for 30 times run-

ing respectively. 

From Table 4 , the HBV outperforms HBV algorithm without

NS (HBV_NV) and the HBV without self-improvement (HBV_NS),

hich illustrates that the VNS and the self-improvement signif-

cantly improve the performance of HBV. In addition, the per-

ormance of HBV without VNS is superior to HBV without self-

mprovement strategy. The reason may be that self-improvement

nhances the exploration ability of HBV to avoid falling into local

ptimal. From Table 4 , the HBV obtains better results than other

ariants. As above analysis, the HBV balance exploration and ex-

loitation ability effectively. 

.3. Results and comparisons for Taillard’s benchmark 

For the Taillard’s instances, the proposed HBV algorithm was

ompared with five existing state-of-the-art algorithms including
IGA ( Pan et al., 2008a,b ), TMIIG ( Ding et al., 2015a,b ) DWWO

 Zhao et al., 2018 ), mPTLM ( Shao et al., 2017a,b ) and CGLS ( Riahi,

ewton, Su, & Sattar, 2019 ). The compared algorithms are chosen

s the HBV is a population-based algorithm which is directly ap-

lied to solve the NWFSP. Among the compared algorithms, the

PTLM is a population-based algorithm which employs the large-

rder-value (LOV) rule to build the mapping from the continu-

us variables to the job sequence. Compared with the mPTLM, the

dvantage of job-permutation-based representation which is em-

loyed by HBV is shown. Besides, the DWWO is also a population-

ased algorithm which employs the job-permutation-based rep-

esentation. The performance of HBV algorithms is demonstrated

y comparing with DWWO. The TMIIG and IIGA are also com-

ared with HBV to indicate the difference between the population-

ased algorithms and the adaptable algorithms. In addition, the

GLS, which is an objectively adapted algorithm for the BFSP, is

lso carried to compare with HBV. The compared algorithms are

e-implemented as all the details given in the original papers to

ake a fair comparison. Meanwhile, all the algorithms were de-

endently run with the maximum running time ( n /2) × m × ρ ms ,

here ρ = {5, 15, 30}. Each instance was run for 30 times. The

omputational results are summarized in Tables 5 –7 respectively

here the best results are given in bold. 

Several conclusions are contained by the results of experiment

hich shown in Tables 5 –7 . The proposed HBV performs less aver-

ge value of ARPD on most of the Taillard’s instances ρ = {5, 15,

0}. For the short running times ρ = 5 and ρ = 15, the value of

RPD obtained by HBV are 0.58 and 0.34 respectively, which is sig-

ificantly smaller than the other compared algorithm. The smaller

RPD indicates that the HBV obtain better solutions within a small

ange of time. The larger value of SD, which is larger than the

PTLM, demonstrated that the population diversity is controlled

ffectively. For the running time ρ = 30, the ARPD value obtained

y HBV is 0.27, which is less than 0.95, 0.6, 0.92, 1.77 obtained

y other compared algorithms respectively. The Fig. 3 shows the

nterval plot for the interaction between the algorithms and the

aximum running time. From Fig. 3 , the result obtained by HBV

ignificantly better than the other compared algorithms. 

Two rigorous statistical studies based on the ARPD value for 120

aillard’s instances are employed to investigate whether the results

f algorithms are rather significant for solving NWFSP with the ob-

ective of minimization makespan criterion. The multiple-problem

ilcoxon’s test is performed to demonstrate the performance of

he above six algorithms. As the statistical analysis results listed in

able 8 , the HBV provides higher R + values than R − values in all

ases. The result demonstrates that the HBV is significantly better

mong the compared algorithms for solving NWFSP problems with

= 0.05, α = 0.01. 

The Friedman’s test is carried out to further detect the sig-

ificant differences between HBV and other compared algorithms.

able 9 summarizes the average ranking of the five algorithms ob-

ained by the Friedman’s test. HBV has the best ranking among

he six algorithms. Therefore, the Bonferroni–Dunn’s method is ap-

lied as a post hoc procedure to calculate the critical difference for

omparing the differences of compared algorithms with α = 0.05,

= 0.01. From Fig. 4 , the solutions obtained by HBV algorithm are

ignificantly better than the solutions obtained by other compared

lgorithms with α = 0.05 and α = 0.01 on Taillard’s benchmark. 

For the running time ρ = 30, the values of SD obtained by the

ix algorithms are also calculated to demonstrate the robustness of

he HBV algorithm. The average value of SD obtained by HBV is

0.4, which is less than the 15.51, 17.99, 18.58 and 33.88 obtained

y DWWO, TMIIG, IIGA and CGLS respectively. The value of SD ob-

ained by HBV is slightly larger than the value of SD obtained by

PTLM. The boxplots of Ta057, Ta067, Ta097 and Ta117 are given in

ig. 6 . The robust of HBV is better than DWWO, TMIIG, IIGA, CGLS
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Table 5 

Computational results of Taillard’s benchmark with ρ = 5. 

Instance n × m HBV DWWO mPTLM TMIIG IIGA CGLS 

ARPD SD ARPD SD ARPD SD ARPD SD ARPD SD ARPD SD 

Ta01-10 20 × 5 0.00 0.09 0.06 1.21 0.01 0.25 0.02 0.51 0.02 0.34 0.17 1.21 

Ta11-20 20 × 10 0.01 0.14 0.09 2.26 0.00 0.09 0.02 0.60 0.01 0.39 0.26 1.31 

Ta21-30 20 × 20 0.00 0.00 0.03 0.22 0.01 0.39 0.03 0.38 0.02 0.32 0.19 1.37 

Ta31-40 50 × 5 0.30 4.86 0.81 6.13 0.42 4.76 0.74 7.77 1.72 6.71 1.48 11.04 

Ta41-50 50 × 10 0.19 4.81 0.55 8.08 0.22 5.94 0.47 8.87 0.81 7.27 0.86 10.89 

Ta51-60 50 × 20 0.11 5.36 0.49 13.09 0.36 12.78 0.43 9.81 0.60 9.89 0.82 17.06 

Ta61-70 100 × 5 0.65 8.63 3.33 13.81 1.66 7.96 2.02 14.60 3.51 12.78 2.52 23.22 

Ta71-80 100 × 10 0.45 11.81 1.20 17.43 0.64 8.89 1.45 18.98 2.10 16.23 2.02 36.08 

Ta81-90 100 × 20 0.35 12.70 0.83 16.13 0.50 12.62 1.18 23.59 1.80 17.89 2.15 36.96 

Ta91-100 200 × 10 1.37 26.67 3.26 31.04 1.77 18.26 3.17 37.45 3.62 25.75 3.61 62.10 

Ta101-110 200 × 20 0.88 29.32 1.83 31.25 0.97 22.20 2.25 35.78 2.95 36.78 2.76 71.86 

Ta111-120 500 × 20 2.62 64.98 3.64 64.13 2.08 55.02 4.33 66.72 4.61 85.25 4.67 77.19 

Avg 0.58 14.12 1.34 17.06 0.72 12.43 1.34 18.75 1.82 18.30 1.79 29.19 

Table 6 

Computational results of Taillard’s benchmark with ρ = 15. 

Instance n × m HBV DWWO mPTLM TMIIG IIGA CGLS 

ARPD SD ARPD SD ARPD SD ARPD SD ARPD SD ARPD SD 

Ta01-10 20 × 5 0.00 0.03 0.02 0.67 0.00 0.12 0.00 0.17 0.00 0.14 0.14 1.00 

Ta11-20 20 × 10 0.01 0.13 0.03 0.62 0.01 0.44 0.00 0.09 0.00 0.21 0.19 1.10 

Ta21-30 20 × 20 0.00 0.00 0.02 0.38 0.02 0.39 0.02 0.44 0.02 0.37 0.15 1.50 

Ta31-40 50 × 5 0.21 3.80 0.60 5.92 0.35 3.67 0.52 5.42 1.60 7.82 1.26 11.26 

Ta41-50 50 × 10 0.13 4.01 0.44 7.93 0.16 3.77 0.31 6.39 0.79 6.78 0.71 10.09 

Ta51-60 50 × 20 0.08 3.95 0.31 10.54 0.27 11.54 0.29 9.44 0.60 9.66 0.74 16.00 

Ta61-70 100 × 5 0.37 6.97 2.94 15.69 1.53 8.01 1.53 13.70 3.39 13.12 2.13 18.86 

Ta71-80 100 × 10 0.28 8.72 0.86 12.80 0.55 7.29 1.08 17.70 2.09 15.18 1.67 27.07 

Ta81-90 100 × 20 0.26 10.89 0.64 15.42 0.42 12.54 0.93 19.97 1.74 21.56 1.84 41.71 

Ta91-100 200 × 10 0.74 19.65 2.64 28.08 1.67 17.13 2.60 32.12 3.59 24.30 3.07 66.90 

Ta101-110 200 × 20 0.58 23.00 1.40 28.36 0.90 18.15 1.80 31.30 2.96 38.84 2.36 65.51 

Ta111-120 500 × 20 1.42 49.47 2.91 66.95 1.94 44.51 3.75 73.22 4.57 90.51 4.38 125.47 

Avg 0.34 10.88 1.07 16.11 0.65 10.63 1.07 17.50 1.78 19.04 1.55 32.21 

Table 7 

Computational results of Taillard’s benchmark with ρ = 30. 

Instance n × m HBV DWWO mPTLM TMIIG IIGA CGLS 

ARPD SD ARPD SD ARPD SD ARPD SD ARPD SD ARPD SD 

Ta01-10 20 × 5 0.00 0.00 0.01 0.09 0.00 0.03 0.00 0.00 0.00 0.15 0.11 1.18 

Ta11-20 20 × 10 0.00 0.00 0.01 0.15 0.00 0.06 0.00 0.06 0.00 0.15 0.14 1.32 

Ta21-30 20 × 20 0.00 0.00 0.01 0.45 0.00 0.24 0.01 0.39 0.02 0.32 0.13 2.23 

Ta31-40 50 × 5 0.16 3.66 0.50 5.26 0.29 4.18 0.37 4.64 1.53 6.99 1.01 11.06 

Ta41-50 50 × 10 0.07 2.62 0.39 5.56 0.13 3.67 0.22 4.70 0.75 8.69 0.58 10.13 

Ta51-60 50 × 20 0.06 3.13 0.31 10.88 0.19 8.61 0.22 7.95 0.59 9.30 0.65 17.38 

Ta61-70 100 × 5 0.29 6.68 2.65 12.80 1.42 8.15 1.26 12.18 3.44 10.96 1.83 16.68 

Ta71-80 100 × 10 0.23 7.76 0.74 11.62 0.48 5.79 0.86 15.11 2.04 14.58 1.48 25.93 

Ta81-90 100 × 20 0.21 10.21 0.56 13.91 0.37 8.80 0.81 19.51 1.78 19.67 1.63 40.54 

Ta91-100 200 × 10 0.55 17.72 2.34 30.55 1.62 15.93 2.18 28.42 3.56 31.55 2.77 70.86 

Ta101-110 200 × 20 0.49 22.65 1.22 24.57 0.80 14.68 1.60 30.86 2.98 32.80 2.11 67.39 

Ta111-120 500 × 20 1.12 50.35 2.69 70.20 1.87 38.56 3.46 91.98 4.51 87.82 4.14 141.87 

Avg 0.27 10.40 0.95 15.50 0.60 9.06 0.92 17.99 1.77 18.58 1.38 33.88 

Table 8 

Results of the multiple-problem Wilcoxon’s test on Ta instances at α = 0.05 and 

α = 0.01 significance level. 

HBV vs. R + R − Z p -value α = 0.05 α = 0.01 

DWWO 4656.00 0.00 −8.51 1.78E −17 Yes Yes 

mPTLM 4252.00 26.00 −8.37 1.90E −16 Yes Yes 

TMIIG 4276.00 2.00 −8.32 8.69E −17 Yes Yes 

IIGA 4560.00 0.00 −8.46 2.60E −17 Yes Yes 

CGLS 5883.00 3.00 −9.01 2.03E −19 Yes Yes 
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and similar to mPTLM for Taillard’s benchmark. The convergence

curves of the above algorithms for solving Ta057, Ta067, Ta097 and
a117 are also given in Fig. 5 . Compared with the convergence

peed of DWWO, TMIIG, IIGA and mPTLM, the convergence speed

f HBV is fastest on Taillard’s benchmark. 

.4. Results and comparisons for VRF’s benchmark 

In the above experiment, the Taillard’s benchmark has been

mployed to evaluate the performance of compared algorithms for

olving the NWFSP. Since the Taillard’s instances were tackled by

arious researchers, the VRF benchmark which was proposed by

allada et al. (2015) for PFSP is carried out to test the performance

f the proposed HBV in this paper. The VRF’s benchmark consists
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Fig. 3. The interval plot for the interaction between the algorithms and the maximum running time ρ (Taillard’s benchmark). 

Fig. 4. Rankings obtained through the Friedman test and graphical representation. 

Table 9 

Ranking of algorithms obtained through Friedman’s test. 

Algorithm Mean rank Chi-Square p -value 

HBV 1.52 416.59 7.88E −88 

DWWO 3.61 

mPTLM 2.39 

TMIIG 3.32 

IIGA 5.25 

CGLS 4.91 

Crit. Diff. α = 0.05 0.6222 

Crit. Diff. α = 0.01 0.7465 
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f a small benchmark set and a large benchmark set. The small

enchmark set, which is denoted by VRF_hard_small benchmark,

onsists of 240 small instances with the combinations of n = {10,

0, 30, 40, 50, 60} and m = {5, 10, 15, 20} . The large benchmark

et, which is denoted by VRF_hard_large benchmark, consists of
40 large instances with combinations of n = {10 0, 20 0, 30 0, 40 0,

0 0, 60 0, 70 0, 80 0} and m = {20, 40, 60}. In this paper, the opti-

al solutions, which is provided by Lin and Ying (2016) , are em-

loyed to be the best makespan so far. All of the considered algo-

ithms are tested with maximum running time ( n /2) × m × ρ ms ,

here ρ = {5, 15, 30}. Each algorithm runs 30 times on each in-

tance. The following two subsections provide the computational

esults and statistical results of VRF_hard_small benchmark and

RF_hard_large benchmark respectively. 

.4.1. Results and comparisons for VRF_hard_small benchmark 

The computational results for the VRF_hard_small benchmark

re listed in Tables 10 –12 where the best results are given in bold.

s Tables 10 and 11 , the average values of ARPD obtained by HBV

or short running time are significantly better than the ARPD value

btained by compared algorithms. Besides, the SD value is also

maller than the value of SD obtained by other algorithms. From

he Table 12 , the average ARPD value obtained by HBV is 0.18,
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Ta057 Ta067

Ta097 Ta117
Fig. 5. Convergence curve for the instances of TA. 

Table 10 

Computational results of VRF_hard_small benchmark with ρ = 5. 

Instance n × m HBV DWWO mPTLM TMIIG IIGA CGLS 

ARPD SD ARPD SD ARPD SD ARPD SD ARPD SD ARPD SD 

10_5 10 × 5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

10_10 10 × 10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

10_15 10 × 15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

10_20 10 × 20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

20_5 20 × 5 0.00 0.12 0.10 1.51 0.03 0.28 0.01 0.29 0.05 0.50 0.17 1.44 

20_10 20 × 10 0.00 0.04 0.03 1.02 0.01 0.23 0.01 0.29 0.00 0.00 0.07 1.39 

20_15 20 × 15 0.00 0.00 0.01 0.33 0.00 0.00 0.01 0.62 0.00 0.13 0.07 0.53 

20_20 20 × 20 0.00 0.00 0.03 1.03 0.00 0.00 0.00 0.00 0.00 0.00 0.05 1.14 

30_5 30 × 5 0.10 2.37 0.44 4.83 0.15 1.88 0.25 2.81 0.70 3.67 0.66 5.97 

30_10 30 × 10 0.05 1.55 0.32 5.86 0.13 2.82 0.14 3.60 0.17 2.61 0.45 6.80 

30_15 30 × 15 0.04 1.69 0.17 4.59 0.05 2.45 0.04 2.55 0.04 2.24 0.21 7.69 

30_20 30 × 20 0.03 1.66 0.20 5.90 0.07 3.84 0.07 3.15 0.08 2.37 0.30 8.34 

40_5 40 × 5 0.21 3.70 0.71 7.06 0.25 2.69 0.55 5.41 1.26 5.73 0.89 8.12 

40_10 40 × 10 0.13 3.73 0.47 7.40 0.19 4.29 0.35 5.69 0.48 4.66 0.81 11.62 

40_15 40 × 15 0.07 2.78 0.29 7.36 0.13 4.27 0.19 6.17 0.22 4.48 0.70 13.12 

40_20 40 × 20 0.07 3.21 0.28 9.76 0.15 6.13 0.20 7.51 0.24 5.66 0.41 9.00 

50_5 50 × 5 0.23 4.36 0.81 7.66 0.37 3.69 0.74 7.65 1.83 8.51 1.33 14.36 

50_10 50 × 10 0.19 5.59 0.63 10.63 0.24 5.54 0.47 8.10 0.85 7.67 0.99 15.31 

50_15 50 × 15 0.14 5.61 0.44 10.31 0.25 7.57 0.39 8.66 0.67 7.17 0.71 12.78 

50_20 50 × 20 0.13 5.32 0.45 8.41 0.30 10.19 0.36 10.95 0.58 7.56 0.74 19.24 

60_5 60 × 5 0.33 5.96 1.18 9.24 0.59 5.53 1.08 11.17 2.26 7.16 1.53 15.54 

60_10 60 × 10 0.28 7.33 0.72 10.57 0.28 7.20 0.84 12.19 1.24 9.39 1.50 18.40 

60_15 60 × 15 0.20 8.23 0.69 11.77 0.42 9.95 0.56 14.03 1.04 11.35 1.39 22.76 

60_20 60 × 20 0.15 7.72 0.56 12.45 0.42 13.33 0.52 15.56 0.80 9.89 1.20 19.72 

Avg 0.23 2.96 0.49 5.74 0.30 3.83 0.42 5.27 0.66 4.20 0.73 8.89 
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Ta057 Ta067

Ta097 Ta117

Fig. 6. Boxplots for the instances of TA. 
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hich is less than 0.34, 0.23, 0.28, 0.60 obtained by the DWWO,

PTLM, TMIIG, IIGA and CGLS respectively. Fig. 8 shows the inter-

al plot for the interaction between the algorithms and the maxi-

um running time. From Fig. 7 , the result obtained by HBV signif-

cantly better than the other compared algorithms. 

The multiple-problem Wilcoxon’s test and Friedman’s test are

lso carried out to detect the significant differences between HBV

nd other algorithms. As the results of Wilcoxon’s test which

isted in Table 13 , the HBV provides higher R + values than

 − values in all cases. The result shows that the HBV is signifi-

antly better among the compared algorithms for solving NWFSP

roblems with α = 0.05, α = 0.01. The result of Friedman’s test

s listed in Table 14 , the HBV algorithm is the best ranking

mong the six algorithms. From Fig. 8 , the solutions obtained

y HBV algorithm are significantly better than the solutions ob-

ained by other compared algorithms with α = 0.05 and α = 0.01

n VRF_hard_small benchmark. 

The values of SD obtained by the six algorithms are also pro-

ided in Tables 10 –12 to show the robustness of the HBV algo-

ithm. The SD values obtained by HBV are smaller than other

lgorithms in most instances with all the running times. For

= 30, the average value of SD 0.18 obtained by HBV is less

han the 0.34, 0.23, 0.28, 0.60, 0.55 obtained by DWWO, mPTLM,
MIIG, IIGA and CGLS respectively. The computational results

emonstrate that the HBV algorithm is robust on VRF_hard_small

enchmark. 

.4.2. Results and comparisons for VRF_hard_large benchmark 

The Tables 15 –17 lists the computational results for the

RF_hard_large benchmark where the best results are given in

old. From Tables 15 and 16 , the values of ARPD obtained by HBV

re smaller than other algorithms on most of the instances with

hort running time. However, the ARPD value of HBV is larger than

ther algorithms in several instances. The reason is given as follow.

s the size of instance increase, it is difficult to find the optimal

olutions in short running time. From Table 17 , the ARPD obtained

y HBV are smaller than other compared algorithms on the most

f instances. The average ARPD value 0.98 obtained by HBV is sig-

ificantly smaller than the 2.11, 1.41, 2.44, 3.81 and 3.15 obtained

y DWWO, mPTLM, TMIIG, IIGA respectively. The Fig. 9 shows the

nterval plot for the interaction between the algorithms and the

aximum running time. From Fig. 9 , the result obtained by HBV

ignificantly better than the other compared algorithms. 

The multiple-problem Wilcoxon’s test and Friedman’s test are

lso carried out to detect the significant differences between HBV

nd other compared algorithms. As the results of Wilcoxon’s test
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Table 11 

Computational results of VRF_hard_small benchmark with ρ = 15. 

Instance n × m HBV DWWO mPTLM TMIIG IIGA CGLS 

ARPD SD ARPD SD ARPD SD ARPD SD ARPD SD ARPD SD 

10_5 10 × 5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

10_10 10 × 10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

10_15 10 × 15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

10_20 10 × 20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

20_5 20 × 5 0.00 0.00 0.03 0.72 0.02 0.23 0.00 0.03 0.04 0.46 0.11 1.00 

20_10 20 × 10 0.00 0.00 0.01 0.39 0.00 0.00 0.00 0.00 0.00 0.00 0.04 1.45 

20_15 20 × 15 0.00 0.00 0.01 0.09 0.00 0.00 0.00 0.05 0.01 0.14 0.06 0.18 

20_20 20 × 20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 1.11 

30_5 30 × 5 0.04 1.28 0.26 3.64 0.08 1.35 0.11 1.94 0.51 3.40 0.49 5.12 

30_10 30 × 10 0.01 0.77 0.18 4.08 0.07 1.87 0.09 1.58 0.15 2.39 0.35 4.62 

30_15 30 × 15 0.00 0.24 0.12 3.52 0.02 0.96 0.03 1.41 0.04 1.84 0.20 5.68 

30_20 30 × 20 0.02 0.74 0.09 3.68 0.03 1.87 0.05 2.39 0.06 2.36 0.23 6.80 

40_5 40 × 5 0.12 2.27 0.47 5.00 0.18 2.86 0.28 3.24 1.08 6.33 0.63 6.10 

40_10 40 × 10 0.08 2.60 0.38 7.59 0.13 3.69 0.22 5.14 0.44 5.92 0.63 9.84 

40_15 40 × 15 0.02 1.74 0.19 7.00 0.08 2.95 0.11 3.53 0.21 4.76 0.49 11.62 

40_20 40 × 20 0.04 2.06 0.22 7.80 0.12 4.91 0.11 4.00 0.22 6.31 0.32 8.18 

50_5 50 × 5 0.14 3.37 0.57 6.51 0.28 3.73 0.48 5.35 1.61 7.08 1.01 9.68 

50_10 50 × 10 0.12 3.82 0.40 7.08 0.17 3.72 0.33 6.57 0.76 7.38 0.76 11.31 

50_15 50 × 15 0.10 3.55 0.35 9.83 0.17 5.16 0.27 7.35 0.63 6.96 0.57 9.97 

50_20 50 × 20 0.09 3.65 0.37 6.71 0.27 8.99 0.18 6.52 0.53 9.04 0.65 17.18 

60_5 60 × 5 0.20 4.26 0.76 8.18 0.49 5.34 0.72 7.28 2.10 8.90 1.16 12.39 

60_10 60 × 10 0.17 5.47 0.55 10.45 0.24 6.16 0.55 9.39 1.22 9.84 1.15 13.72 

60_15 60 × 15 0.11 5.52 0.60 11.16 0.33 9.14 0.42 8.25 1.03 10.63 1.14 20.32 

60_20 60 × 20 0.10 6.07 0.44 10.94 0.37 12.91 0.35 9.37 0.81 13.08 0.97 15.25 

Avg 0.19 1.97 0.38 4.77 0.26 3.16 0.31 3.47 0.61 4.45 0.59 7.15 

Table 12 

Computational results of VRF_hard_small benchmark with ρ= 30. 

Instance n × m HBV DWWO mPTLM TMIIG IIGA CGLS 

ARPD SD ARPD SD ARPD SD ARPD SD ARPD SD ARPD SD 

10_5 10 × 5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

10_10 10 × 10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

10_15 10 × 15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

10_20 10 × 20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

20_5 20 × 5 0.00 0.00 0.02 0.41 0.01 0.17 0.00 0.03 0.04 0.32 0.12 1.33 

20_10 20 × 10 0.00 0.00 0.00 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.58 

20_15 20 × 15 0.00 0.00 0.00 0.09 0.00 0.03 0.00 0.03 0.01 0.14 0.06 0.22 

20_20 20 × 20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05 1.22 

30_5 30 × 5 0.01 0.96 0.08 2.91 0.03 1.45 0.05 1.39 0.19 3.89 0.38 5.09 

30_10 30 × 10 0.01 0.48 0.11 3.80 0.05 1.86 0.05 1.16 0.15 2.98 0.35 4.27 

30_15 30 × 15 0.00 0.33 0.07 2.25 0.00 0.09 0.02 1.18 0.04 1.31 0.14 4.69 

30_20 30 × 20 0.01 0.78 0.08 2.34 0.02 1.94 0.04 1.84 0.05 1.85 0.21 6.99 

40_5 40 × 5 0.07 1.64 0.35 4.48 0.13 2.08 0.23 3.53 1.00 5.71 0.61 6.02 

40_10 40 × 10 0.06 1.79 0.34 6.44 0.11 3.12 0.21 4.22 0.43 4.92 0.55 9.09 

40_15 40 × 15 0.01 0.94 0.15 5.16 0.05 2.27 0.09 2.71 0.22 5.12 0.45 12.16 

40_20 40 × 20 0.03 1.29 0.15 5.20 0.08 3.59 0.10 4.22 0.23 5.33 0.29 7.40 

50_5 50 × 5 0.11 2.59 0.44 5.09 0.21 2.59 0.38 4.71 1.57 7.88 0.88 9.45 

50_10 50 × 10 0.09 3.95 0.36 7.03 0.12 3.33 0.25 4.85 0.81 6.99 0.77 9.26 

50_15 50 × 15 0.08 3.46 0.29 8.45 0.15 6.28 0.21 6.91 0.62 9.01 0.56 10.05 

50_20 50 × 20 0.07 3.47 0.29 9.21 0.19 8.20 0.18 6.37 0.55 8.98 0.55 13.29 

60_5 60 × 5 0.16 3.69 0.64 7.01 0.39 4.08 0.56 6.59 2.03 8.90 1.08 12.43 

60_10 60 × 10 0.13 5.07 0.51 9.39 0.18 4.76 0.42 8.61 1.21 9.76 0.99 14.42 

60_15 60 × 15 0.08 4.53 0.51 12.07 0.25 8.28 0.34 7.91 1.01 11.58 1.10 19.69 

60_20 60 × 20 0.08 4.57 0.38 9.74 0.32 10.30 0.32 9.94 0.78 11.44 0.88 15.51 

Avg 0.18 1.65 0.34 4.21 0.23 2.68 0.28 3.18 0.60 4.42 0.55 6.80 

Table 13 

Results of the multiple-problem Wilcoxon’s test at α = 0.05 and α = 0.01 signifi- 

cance level. 

HBV vs. R + R − Z p -value α= 0.05 α= 0.01 

DWWO 12,393.5 9.5 −10.853 1.93E −27 Yes Yes 

mPTLM 8987 743 −8.67044 4.30E −18 Yes Yes 

TMIIG 10,344 96 −10.22 1.61E −24 Yes Yes 

IIGA 13,011.5 29.5 −10.9562 6.20E −28 Yes Yes 

CGLS 15,040.0 11.0 −11.3905 4.66E −30 Yes Yes 
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isted in Table 18 , the HBV provides higher R + values than R − val-

es in all cases. The result shows that the HBV is significantly bet-

er among the compared algorithms for solving NWFSP problems

ith α = 0.05, α = 0.01. The result of Friedman’s test is listed in

able 19 , the HBV algorithm is the best ranking among the five

lgorithms. From Fig. 10 , the solutions obtained by HBV algorithm

re significantly better than the solutions obtained by other com-

ared algorithms with α = 0.05 and α = 0.01 on VRF_hard_large

enchmark. As the Table 17 , the average SD value 54.64 obtained
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Fig. 7. The interval plot for the interaction between the algorithms and the maximum running time ρ (VRF_hard_small benchmark). 

Fig. 8. Rankings obtained through the Friedman test and graphical representation. 

Table 14 

Ranking of algorithms obtained through Friedman’s test. 

Algorithm Mean rank Chi-Square p -value 

HBV 2.04 628.31 1.5419E −133 

DWWO 3.78 

mPTLM 2.58 

TMIIG 3.09 

IIGA 4.64 

CGLS 4.85 

Crit. Diff. α = 0.05 0.4399 

Crit. Diff. α= 0.01 0.5279 
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y HBV is smaller than the 69.48, 59.67, 69.55, 89.22 and 183.71

btained by DWWO, mPTLM, TMIIG, IIGA and CGLS respectively.

herefore, the HBV is robust on VRF_hard_large benchmark. 
.5. Analysis of experimental results 

As above experimental series, the proposed HBV algorithm is

n effective and robust algorithm for solving the NWFSP with

akespan criterion. The reasons are concluded as follows. 

Firstly, the BBO algorithm, which is a classical population-based

lgorithm, has been proven to be an effective framework in var-

ous fields. Although the population-based algorithms are sensi-

ive to the parameters of algorithms such as the population size,

utation probability, they in general provide excellent results on

arge-scale problems. In this paper, the parameters combinations

f HBV have been analyzed by experiment. From the above exper-

mental results, the population-based algorithms HBV, DWWO and

PTLM significantly outperform the TMIIG, IIGA and CGLS on the

RF_hard_large benchmark. 
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Fig. 9. The interval plot for the interaction between the algorithms and the maximum running time ρ (VRF_hard_large benchmark). 

Fig. 10. Rankings obtained through the Friedman test and graphical representation. 
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Secondly, the performance of algorithm is affected by the dif-

ferent coding scheme. For mPTLM, the LOV scheme extends the

search space of NWFSP. However, the proposed HBV algorithm only

searches in the job-permutation search space. Therefore, the search

efficiency of HBV outperforms the search efficiency of mPTLM. 

Thirdly, the neighborhood search is a significant factor which

affects the performance of algorithms. In the existing researches,

the insert and swap are the most common neighborhood structure

for solving the NWFSP. However, the different neighborhood struc-

tures have a gap in various instances. The block is also an effective

neighborhood structure. In the HBV algorithm, the block neigh-

borhood structure is employed to construct the self-improvement

strategy and the variable neighbor search. 

Finally, although the CGLS is an excellent algorithm for

the mixed blocking permutation flow shop scheduling problem,
he proposed HBV outperforms the CGLS as the no-free-launch

heorem. 

It is worth noting that the HBV seems to be similar to the

WWO which was proposed by us earlier. However, the difference

etween HBV and DWWO has been proven by the above exper-

mental results. For all the benchmarks, the performance of HBV

ignificantly outperforms the performance of DWWO. The main

ifference between the two algorithms is described as follows.

irstly, the optimization process of HBV mainly depends on the in-

eraction of individuals in the population. In this paper, the path

elink technique is introduced to perform the migration operator of

BV. In DWWO, the individuals search in parallel but rarely share

nformation. Therefore, the HBV has faster convergence speed than

WWO. Secondly, the block neighborhood structure is employed

y HBV as the excellent solutions have certain similarities. The
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Table 15 

Computational results of VRF_hard_large benchmark with ρ = 5. 

Instance n × m HBV DWWO mPTLM TMIIG IIGA CGLS 

ARPD SD ARPD SD ARPD SD ARPD SD ARPD SD ARPD SD 

100_20_1 100 × 20 0.34 14.92 0.84 16.06 1.02 31.87 1.21 27.40 1.78 18.24 1.78 38.90 

100_40_1 100 × 40 0.33 17.58 0.67 20.08 1.10 48.70 0.96 26.77 1.53 24.87 1.43 43.91 

100_60_1 100 × 60 0.29 20.75 0.66 29.14 1.38 48.94 0.90 32.98 1.68 29.29 1.63 60.02 

200_20_1 200 × 20 0.90 30.28 1.94 38.52 1.04 28.80 2.38 39.83 2.94 40.41 2.87 74.36 

200_40_1 200 × 40 0.73 32.74 1.43 34.22 1.68 87.43 1.89 48.17 2.70 51.24 2.37 88.50 

200_60_1 200 × 60 0.63 37.16 1.30 42.52 1.85 163.80 1.75 60.05 2.68 63.12 2.63 133.75 

300_20_1 300 × 20 1.52 43.12 2.69 50.32 1.09 38.26 3.20 49.24 3.66 48.50 3.70 86.49 

300_40_1 300 × 40 1.05 46.77 2.03 58.14 1.86 99.78 2.75 67.44 3.42 70.30 3.29 119.56 

300_60_1 300 × 60 0.98 51.79 1.93 76.94 2.36 196.68 2.38 69.91 3.38 82.95 2.89 187.25 

400_20_1 400 × 20 2.22 59.60 3.24 61.74 1.25 33.69 3.76 56.44 4.09 65.90 4.38 89.43 

400_40_1 400 × 40 1.47 66.84 2.57 71.05 1.72 120.86 3.00 73.88 3.82 79.03 3.52 137.70 

400_60_1 400 × 60 1.24 77.55 2.39 91.89 2.49 189.55 2.75 93.63 3.82 108.97 3.84 193.42 

500_20_1 500 × 20 2.77 79.46 3.74 67.86 1.56 49.44 4.20 54.61 4.55 75.18 4.50 79.77 

500_40_1 500 × 40 1.94 85.05 2.98 94.37 1.80 114.48 3.34 68.90 4.23 107.76 4.17 168.80 

500_60_1 500 × 60 1.47 91.98 2.65 110.78 2.53 270.10 3.15 102.69 4.12 120.03 3.66 205.13 

600_20_1 600 × 20 3.28 82.57 4.20 83.15 1.74 52.79 4.54 67.34 4.85 98.65 4.95 67.32 

600_40_1 600 × 40 2.31 90.71 3.27 85.53 1.90 99.00 3.76 87.34 4.44 125.88 4.44 152.12 

600_60_1 600 × 60 2.01 95.98 3.05 117.98 2.55 214.92 3.65 98.30 4.38 128.58 3.96 189.24 

700_20_1 700 × 20 4.13 87.54 4.80 76.03 1.89 57.31 5.02 68.75 5.28 100.11 5.24 64.58 

700_40_1 700 × 40 3.05 105.69 3.69 104.56 1.97 106.76 4.01 97.55 4.73 119.49 4.52 126.89 

700_60_1 700 × 60 2.53 117.57 3.38 133.14 2.61 189.00 3.85 106.62 4.52 151.58 4.24 171.68 

800_20_1 800 × 20 4.59 93.59 5.20 71.20 2.05 68.41 5.38 56.96 5.70 106.23 5.29 76.65 

800_40_1 800 × 40 3.48 105.88 3.98 113.79 2.08 110.21 4.50 95.85 4.84 111.65 4.53 133.92 

800_60_1 800 × 60 3.01 127.25 3.73 129.18 2.62 162.02 4.15 98.89 4.77 157.65 4.33 171.19 

Avg 1.93 69.27 2.77 74.09 1.84 107.62 3.19 68.73 3.83 86.90 3.67 119.19 

Table 16 

Computational results of VRF_hard_large benchmark with ρ = 15. 

Instance n × m HBV DWWO mPTLM TMIIG IIGA CGLS 

ARPD SD ARPD SD ARPD SD ARPD SD ARPD SD ARPD SD 

100_20_1 100 × 20 0.24 10.42 0.67 13.15 0.90 27.33 0.89 20.19 1.72 21.87 1.48 33.08 

100_40_1 100 × 40 0.24 17.27 0.56 20.90 0.95 36.45 0.75 23.43 1.52 31.51 1.18 45.55 

100_60_1 100 × 60 0.20 19.50 0.55 25.68 1.21 48.18 0.71 28.21 1.65 34.47 1.51 61.57 

200_20_1 200 × 20 0.60 23.35 1.42 29.69 0.88 27.77 1.91 34.13 2.94 35.08 2.40 76.17 

200_40_1 200 × 40 0.52 26.02 1.10 33.20 1.51 92.38 1.51 41.47 2.73 55.29 2.02 85.14 

200_60_1 200 × 60 0.45 40.79 1.04 45.86 1.68 146.66 1.41 52.14 2.66 65.62 2.39 117.01 

300_20_1 300 × 20 0.85 36.64 1.98 42.83 1.07 27.87 2.68 50.94 3.63 53.23 3.42 118.30 

300_40_1 300 × 40 0.70 45.73 1.67 55.78 1.62 72.01 2.35 64.59 3.38 70.28 2.95 125.40 

300_60_1 300 × 60 0.69 57.18 1.53 67.24 1.99 170.71 2.06 61.90 3.34 80.77 2.59 194.05 

400_20_1 400 × 20 1.19 41.21 2.56 57.89 1.25 35.54 3.38 61.07 4.11 66.02 3.86 143.79 

400_40_1 400 × 40 0.92 48.65 2.10 65.61 1.62 78.87 2.73 66.64 3.84 82.98 3.07 179.23 

400_60_1 400 × 60 0.86 71.41 2.05 83.56 2.31 159.91 2.51 90.43 3.82 105.94 3.40 249.32 

500_20_1 500 × 20 1.53 50.05 3.02 67.75 1.53 4 8.4 8 3.88 73.89 4.55 90.95 4.10 108.45 

500_40_1 500 × 40 1.13 72.96 2.46 78.91 1.77 91.12 3.09 75.56 4.24 101.23 3.94 219.23 

500_60_1 500 × 60 0.98 72.60 2.32 97.78 2.36 167.55 2.93 102.52 4.10 126.05 3.27 234.58 

600_20_1 600 × 20 1.99 55.86 3.47 73.21 1.74 55.00 4.22 69.07 4.88 94.25 4.67 120.24 

600_40_1 600 × 40 1.39 69.98 2.84 82.84 1.90 81.63 3.42 97.03 4.46 104.38 4.19 190.16 

600_60_1 600 × 60 1.21 78.58 2.66 104.91 2.51 174.24 3.23 126.48 4.37 135.58 3.60 314.25 

700_20_1 700 × 20 2.65 81.76 3.88 83.99 1.89 46.07 4.59 81.72 5.19 82.19 4.97 127.17 

700_40_1 700 × 40 1.71 88.23 3.08 105.04 1.98 87.43 3.62 96.55 4.70 123.88 4.23 194.99 

700_60_1 700 × 60 1.50 108.99 2.99 119.06 2.58 169.20 3.41 133.07 4.53 159.96 3.99 245.82 

800_20_1 800 × 20 3.11 76.72 4.22 82.40 2.06 60.21 4.81 79.90 5.39 123.09 5.06 120.24 

800_40_1 800 × 40 2.06 91.55 3.34 113.69 2.07 90.50 3.92 99.74 4.81 128.31 4.19 210.19 

800_60_1 800 × 60 1.75 113.41 3.22 135.90 2.66 171.56 3.59 126.64 4.79 138.27 4.06 254.91 

Avg 1.19 58.29 2.28 70.29 1.75 90.28 2.82 73.22 3.81 87.97 3.36 157.03 
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xperimental results show that the self-improvement strategy

hich is based on the block neighborhood structure remarkably

mproves the performance of HBV. Thirdly, the IG algorithm was

mbedded into the mutation operator to extend the exploitation

bility of HBV. In DWWO, the IG was applied to the propaga-

ion operator to search the promising area adaptively. Finally, the

NS is different in HBV and DWWO as the neighbor structure is
ifferent. e  
. Conclusion and future research 

In this paper, a hybrid biogeography-based optimization with

ariable neighborhood search (HBV) is presented to solve the no-

ait flow shop scheduling problem (NWFSP) with the objective

f minimizing makespan. The HBV includes five phases: Firstly,

 hybrid initial population strategy based on the NN + MNEH is

mployed to generate potential solutions. Secondly, the migration
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Table 17 

Computational results of VRF_hard_large benchmark with ρ= 30. 

Instance n × m HBV DWWO mPTLM TMIIG IIGA CGLS 

ARPD SD ARPD SD ARPD SD ARPD SD ARPD SD ARPD SD 

100_20_1 100 × 20 0.18 8.92 0.58 13.95 0.39 13.90 0.74 19.34 1.77 20.49 1.39 37.25 

100_40_1 100 × 40 0.20 14.93 0.49 17.19 0.64 39.66 0.59 19.45 1.56 24.11 1.13 38.59 

100_60_1 100 × 60 0.15 15.39 0.51 24.15 0.86 48.08 0.61 23.18 1.62 32.50 1.32 51.36 

200_20_1 200 × 20 0.50 26.26 1.21 29.60 0.76 15.34 1.55 33.37 2.97 36.69 2.26 65.75 

200_40_1 200 × 40 0.44 30.80 1.00 33.59 0.81 38.02 1.26 39.38 2.71 49.80 1.95 82.04 

200_60_1 200 × 60 0.37 30.20 0.95 43.82 1.30 95.27 1.21 54.59 2.65 65.37 2.11 105.56 

300_20_1 300 × 20 0.68 27.82 1.77 42.07 1.23 20.93 2.31 39.08 3.63 61.25 3.20 120.00 

300_40_1 300 × 40 0.62 39.85 1.50 56.44 0.90 35.70 1.95 61.88 3.37 86.05 2.70 173.70 

300_60_1 300 × 60 0.60 42.34 1.44 62.22 1.23 88.14 1.72 73.13 3.34 87.65 2.45 196.00 

400_20_1 400 × 20 0.93 35.08 2.27 63.16 1.56 30.61 2.81 52.35 4.11 55.70 3.49 158.48 

400_40_1 400 × 40 0.73 49.84 1.89 62.87 1.08 43.02 2.41 66.27 3.84 78.29 2.83 211.71 

400_60_1 400 × 60 0.70 60.02 1.83 76.96 1.28 76.62 2.23 83.45 3.84 110.81 3.17 236.67 

500_20_1 500 × 20 1.16 40.07 2.72 57.66 1.87 33.21 3.43 56.93 4.56 82.70 3.75 149.07 

500_40_1 500 × 40 1.02 58.52 2.37 76.53 1.25 59.16 2.71 83.65 4.22 103.11 3.75 243.32 

500_60_1 500 × 60 0.87 83.62 2.17 94.81 1.39 76.35 2.46 104.78 4.13 115.94 3.01 264.30 

600_20_1 600 × 20 1.37 48.96 3.03 70.58 2.17 43.29 3.64 69.00 4.84 96.58 4.44 171.91 

600_40_1 600 × 40 1.11 82.55 2.63 80.37 1.45 62.74 2.92 110.90 4.49 108.36 3.99 257.87 

600_60_1 600 × 60 1.04 88.02 2.53 101.62 1.70 90.11 2.72 99.27 4.34 150.97 3.48 333.92 

700_20_1 700 × 20 2.06 61.10 3.62 81.97 2.37 47.63 3.96 67.11 5.15 101.44 4.73 138.77 

700_40_1 700 × 40 1.33 71.32 2.90 100.49 1.61 79.83 3.16 85.41 4.70 119.06 4.07 257.81 

700_60_1 700 × 60 1.25 98.90 2.84 130.95 1.72 133.16 3.03 117.04 4.53 134.21 3.80 324.68 

800_20_1 800 × 20 2.74 104.07 4.03 96.97 2.57 58.99 4.23 85.78 5.43 110.00 4.77 162.04 

800_40_1 800 × 40 1.84 95.30 3.27 111.37 1.78 78.34 3.49 101.45 4.80 126.77 4.02 309.19 

800_60_1 800 × 60 1.61 97.51 3.18 138.21 1.94 123.87 3.39 122.42 4.75 183.57 3.90 319.01 

Avg 0.98 54.64 2.11 69.48 1.41 59.67 2.44 69.55 3.81 89.22 3.15 183.71 

Table 18 

Results of the multiple-problem Wilcoxon’s test at α = 0.05 and α = 0.01 signifi- 

cance level. 

HBV vs. R + R − Z p -value α= 0.05 α= 0.01 

DWWO 28,920.00 0.00 −13.43 4.00E −41 Yes Yes 

mPTLM 28,125.50 554.50 −12.88 5.49E −38 Yes Yes 

TMIIG 28,920.00 0.00 −13.43 4.00E −41 Yes Yes 

IIGA 28,920.00 0.00 −13.43 4.00E −41 Yes Yes 

CGLS 28,920.00 0.00 −13.43 4.00E −41 Yes Yes 

Table 19 

Ranking of algorithms obtained through Friedman’s test. 

Algorithm Mean rank Chi-Square p -value 

HBV 1.06 1117.56 2.108E −239 

DWWO 2.92 

mPTLM 2.17 

TMIIG 3.95 

IIGA 5.90 

CGLS 5.00 

Crit. Diff. α = 0.05 0.4399 

Crit. Diff. α= 0.01 0.5279 
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operator is employed to guide the population to search the better

area and the self-improvement strategy is employed to search the

neighbor of unmigrated solutions. Thirdly, the mutation operator

based on IG is used to maintain the diversity of the population.

Furthermore, the improved variable search is utilized to enhance

the quality of global best solutions in each generation. Finally, the

elitism strategy is used to reserve the best solution in the current

population. The computational results based on Taillard’s and VRF

benchmark show the effectiveness of HBV for solving the NWFSP. 

Further research will be conducted in following directions.

Firstly, the HBV algorithm will further extend to the NWFSP in-

volving additional realistic conditions. Secondly, it is necessary to

design novel and effective neighborhood structures. Thirdly, it is

desirable to apply the HBV to other combinational optimization

problems, such as traveling salesman problem, job shop schedul-

ing problem, etc. 
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