Expert Systems With Applications 126 (2019) 41-53

journal homepage: www.elsevier.com/locate/eswa

Contents lists available at ScienceDirect

Expert Systems With Applications

Expert
Systems
with
Applications §#
An International
Journal

A factorial based particle swarm optimization with a population n
adaptation mechanism for the no-wait flow shop scheduling problem e

with the makespan objective

Fuging Zhao®* Shuo Qin¢ Guogqiang Yang? Weimin Ma", Chuck Zhang¢, Houbin Song?

aSchool of Computer and Communication Technology, Lanzhou University of Technology, Lanzhou 730050, China

b School of Economics and Management, Tongji University, Shanghai 200092, China

¢H. Milton Stewart School of Industrial & Systems Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA

ARTICLE INFO ABSTRACT

Article history:

Received 19 October 2018
Revised 21 January 2019
Accepted 22 January 2019
Available online 14 February 2019

Keywords:

Particle swarm optimization

No-wait flow shop scheduling problem
Factorial representation

Runtime analysis

Variable neighborhood search
Makespan

The no-wait flow shop scheduling problem (NWFSP) performs an essential role in the manufacturing in-
dustry. In this paper, a factorial based particle swarm optimization with a population adaptation mecha-
nism (FPAPSO) is implemented for solving the NWFSP with the makespan criterion. The nearest neighbor
mechanism and NEH method are employed to generate a potential initial population. The factorial rep-
resentation, which uniquely represents each number as a string of factorial digits, is designed to transfer
the permutation domain to the integer domain. A variable neighbor search strategy based on the insert
and swap neighborhood structure is introduced to perform a local search around the current best so-
lution. A population adaptation (PA) mechanism is designed to control the diversity of the population
and to avoid the particles being trapped into local optima. Furthermore, a runtime analysis of FPAPSO is
performed with the level-based theorem. The computational results and comparisons with other state-
of-the-art algorithms based on the Reeve’s and Taillard’s instances demonstrate the efficiency and perfor-

mance of FPAPSO for solving the NWFSP.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Shop scheduling plays an essential role in a manufacturing sys-
tem as excellent scheduling planning improves the productivity of
the company. The shop scheduling problem includes the single ma-
chine scheduling problem with a single processor, the single ma-
chine scheduling problem with parallel processors, the flow shop
scheduling problem and the job shop scheduling problem (Zhao
et al., 2017; Zhao et al.,, 2016, 2015). The flow shop scheduling
problem (FSP) is a common model in the field of industrial pro-
duction, and it is also a hot issue in academic research. The FSP
is roughly divided into the following categories. The permutation
FSP (PFSP) (Zhao et al., 2017), no-wait FSP (NWFSP) (Zhao et al.,
2018), blocking FSP BFSP) (Ribas et al., 2017), no-idle FSP (NIFSP)
(Shao et al., 2017a,b) and hybrid FSP (HFSP) (Yu et al., 2017).

In the NWEFSP, n jobs are processed in the same order on each
of m machines and there is no waiting time between two consecu-
tive operations until the whole process is done. Therefore, the start
time of a job on a machine has to be delayed to satisfy the no-wait

* Corresponding author.
E-mail addresses: Fzhao2000@hotmail.com (F. Zhao), mawm®@tongji.edu.cn (W.
Ma), chuck.zhang@isye.gatech.edu (C. Zhang), 523712418@qq.com (H. Song).

https://doi.org/10.1016/j.eswa.2019.01.084
0957-4174/© 2019 Elsevier Ltd. All rights reserved.

constraints. The NWFSP has been proved to be a NP-hard problem
when the number of machines is more than two with the objective
of minimizing the makespan (Garey et al.,, 1976). It is difficult to
solve the NWFSP by branch-and-bound or mixed integer program-
ming methods with a reasonable time cost as the problem size in-
creases. Therefore, it is necessary to try various efficient methods
for solving the NWFSP.

Evolutionary algorithms (EA), which solve complex optimization
problems without gradient information, have gained wide popu-
larity. Recently, various EAs and the variants of classical EAs, such
as particle swarm optimization (Zhao et al., 2015), harmony search
(Zhao et al., 2017), biogeography-based optimization (Zhao et al.,
2019), and the gravitational search algorithm (Zhao et al., 2018),
have been proposed. Various heuristics are proposed to solve the
NWEFSP as they obtain high-quality solutions within a reasonable
time limit. The heuristic algorithms are roughly classified into two
main categories, constructive heuristics and meta-heuristics.

Various potential constructive heuristics have been developed
over the last few decades to solve the NWFSP. The LC heuris-
tic, which is based on the principle of job insertion, was de-
signed by Laha et al. (2009) for minimizing makespan in the
NWEFSP. The experimental results demonstrated the LC heuris-
tic outperforms four other compared algorithms in the litera-

https://doi.org/10.1016/j.eswa.2019.01.084
http://www.ScienceDirect.com
http://www.elsevier.com/locate/eswa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2019.01.084&domain=pdf
mailto:Fzhao2000@hotmail.com
mailto:mawm@tongji.edu.cn
mailto:chuck.zhang@isye.gatech.edu
mailto:523712418@qq.com
https://doi.org/10.1016/j.eswa.2019.01.084

42 E Zhao, S. Qin and G. Yang et al./Expert Systems With Applications 126 (2019) 41-53

ture. The average departure time (ADT) heuristic was proposed
by Ye et al. (2016). The ADT outperforms the other compared al-
gorithms on the large scale problems. An average idle time (AIT)
heuristic, which achieved smaller deviations in the same computa-
tional complexity compared with the existing heuristics, was pro-
posed by Ye et al. (2017) to minimize makespan in the NWFSP. In
addition, several other constructive heuristics for the regular flow
shop were also employed to solve the NWEFSP, such as the NEH
which was proposed by Nawaz et al. (1983).

Various noteworthy meta-heuristics have been developed for
solving the NWESP. A tabu-mechanism improved iterated greedy
(TMIIG) algorithm was proposed by Ding et al. (2015). In the
TMIIG, a tabu-based construction strategy and several neighbor-
hood structures are employed to improve the quality of solutions.
Recently, the block-shifting simulated annealing (BSA) algorithm,
which combines a block-shifting mechanism and the framework
of simulated annealing, was designed by Ding et al. (2015). The
NWFSP model was formulated as the asymmetric traveling sales-
man problem (ATSP) by Lin et al. (2016). Two potential meta-
heuristics were proposed to solve the NWFSP problem. An ex-
tended framework of a meta-heuristic based on the teaching-
learning process was introduced by Shao et al. (2017). The com-
putational results demonstrate that the proposed framework out-
performs the other compared algorithms. The DWWO algorithm
was designed by Zhao et al. (2018). In the DWWO, the opera-
tors of the original water wave algorithm were redefined to adapt
to the NWFSP. A flower pollination algorithm was proposed by
Qu et al. (2018) for solving the NWFSP.

The particle swarm optimization (PSO) algorithm, which mim-
ics the swarm behaviors such as birds flocking and fish school-
ing, was proposed by Eberhart et al. (1995). Owing to the sim-
ple concept and high efficiency of PSO, the PSO algorithm has
been successfully applied to various complex optimization prob-
lems. The SHSPSOS algorithm, which combines the harmony search
algorithm and the particle swarm optimization, was proposed by
Zhao et al. (2015) for solving the global numerical problem. The
convergence performance of SHSPSOS was also analyzed with the
Markov model. The particle swarm optimization algorithm with
the cross operation (PSOCO) was proposed by Chen et al. (2018).
The experimental results demonstrated that the PSOCO is a com-
petitive optimizer regarding solution quality and efficiency. The
PSO algorithm was also applied to solve the NWFSP. The discrete
particle swarm optimization was presented by Pan et al. (2008) to
solve the NWFSP with both the makespan and the total flow time
criteria. The particle swarm optimization based on a memetic al-
gorithm (MA) was proposed by Akhshabi et al. (2014) to solve the
NWESP. The experimental results demonstrate that the PSO-based
MA is a robust algorithm.

Although the PSO algorithm and its variants were widely ap-
plied to solve the combinational optimization problems which in-
clude the NWFSP, little attention has been paid to employing the
factorial representation to transfer the permutation domain to the
integer domain. In this paper, a factorial particle swarm optimiza-
tion algorithm with a population adaptation mechanism is pro-
posed to solve the NWFSP with the minimization of the makespan
objective. First, the factorial representation mechanism is intro-
duced to transfer the permutation domain to the integer domain
uniquely. Second, the NN+NEH method is employed to construct
an initial population with desirable quality. Third, the VNS local
search method is applied to exploit the promising area around
the current best solution obtained by PSO. Finally, the population
adaptation (PA) operator is designed to control the diversity of
the population and to avoid the particles being trapped into lo-
cal optima. The runtime of FPAPSO is also analyzed according to
the level-based theorem. The experimental results based on the
Reeve’s and Taillard’s instances demonstrate the effectiveness, ef-

ficiency and robustness of the proposed algorithm. The contribu-
tions of this paper are listed as follows.

e The NN+NEH method is introduced to initialize the potential
population of PSO.

o The factorial representation is designed to transfer the permu-
tation domain to the integer domain.

o The variable neighborhood search, which is based on the insert
and swap neighborhood structure, is applied to search around
the current best solutions in each generation.

o The population adaptation mechanism is designed to control
the diversity of the population and avoid the particles being
trapped into a local optimal.

This paper is organized as follows. Section 2 describes the
model of the NWEFSP. The proposed FPAPSO algorithm is intro-
duced in detail in Section 3. In Section 4, the computational re-
sults on the well-known benchmark and comparisons are provided.
Section 5 summarizes the conclusion and future research.

2. No-wait flow shop scheduling problem (NWFSP)

The NWFSP is described as follows. n jobs, which have the same
processing routes, are processed through m machines, Each job
jG=1, 2, ..., n) has a predefined processing time on each machine
i(i=1, 2, ..., m). A job is only processed at most by one machine
and each machine executes one job at any moment. Each job is
processed without waiting time between consecutive operations.
The start of a job is delayed on the first machine to satisfy the no-
wait constraint. In this paper, the goal is to find a feasible schedule
7 which has the minimum makespan for the n jobs in finite time.

The 7 =[x (1), m(2), ..., m(n)] represents a schedule sequence.
Cmax denotes the makespan of m. p(m (i), k) is the processing time
of the ith job on the kth machine. The no-wait constraint ensures
that the completion time distance between adjacent jobs is just
related to the processing time of the two jobs. Thus, it is calcu-
lated between each pair of jobs. The completion time distance D(i,
j) from job i to job j is calculated as Eq. (1).

m
D(i. j) = max {Z (PG 1) = p(i. 1)) + p(i.) (1)
=l.m | =~
The makespan of the feasible schedule 7 is obtained as Eq. (2).
n m
Cnax(m) =Y D@ (j—1),w(j)) + Y _ p((1), k) (2)
i=2 k=1

A virtual job whose processing time is set to zero is introduced
to simplify the calculation process. The sequence 7 is replaced by

' =[m(0), (1), 7(2), ..., w(n)]. D((0), 7 (1)) = i P(m (1), k).

k=
Therefore, the computational formula of makespan is simplified as
Eq. (3).

Cnax () =) D (j = 1), () + Y _ p(w(1). k)

i=2 k=1

=Y D((j—1),7(j)) +D(m (0), 7 (1))
i=2

=Y D@(-1),7(j)) 3)

i=1

The IT denotes the set of all possible permutations. The mini-
mum makespan is described as follows.

Crnax (77*) = min{Cpax (70) |7 € 1} (4)

E Zhao, S. Qin and G. Yang et al./Expert Systems With Applications 126 (2019) 41-53 43

3. The factorial representation based PSO with population
adaptation (FPAPSO)

Symbols used mostly in this section are summarized as follows:

Dp a list of possible digits of the factorial base in ascending order, f={0, 1,
.., n-1}
PT a factorial vector, PT={(n—-1)!, (n-2)!, ..., 1!, 0}
the maximum run time criteria of PSO

MRT

L the population size of FPAPSO

xi, the ith particle in the swarm at generation g

X, a set of L particles at generation g, X, = {x3,x2, ..., x5}
g corresponding permutation of x;

I, corresponding permutations of Xg, Iy = {r], 7, ..., 7}
Vg velocity set of X

3.1. Original particle swarm optimization

Particle swarm optimization (PSO) (Eberhart et al., 1995) is a
swarm intelligence algorithm, which simulates the behavior of the
particle to find an optimal solution. In the PSO, each particle has
two types of attribute. One is the position of the particle X;=(x;;,
X;2, - Xip). The other one is the velocity of particle V;=(v;1, v;,,
... Vip). The new velocity consists of the old velocity, the velocity
towards the best position found by this particle and the velocity
towards the global best position of the population. In the PSO, each
particle maintains a memory to keep track of its previous best po-
sitions. The previous positions are distinguished as pbest and gbest.
pbest is the previous best position found by particle X so far. gbest
is the previous global best position found by the whole swarm so
far. i is the number of iterations. The equation of velocity update
is as follows.

Vigr = wV; + i1y (pbest — X;) + cara (gbest — X;) (5)
where w is the inertia factor and is calculated as follows.
W = Winax — Wmax ; Whin «t (6)

where t denotes the current number of generation, b denotes the
total number of iterations. It is necessary to note that in the ex-
perimental phase of this paper, a maximum run time termination
criteria is used to compare the algorithms. Therefore, w in the gth
generation is calculated in a new way as follows.

Wmax — Whin
MRT
where timeg denotes the run time from the beginning of the al-
gorithm to the current generation, MRT is the maximum run time

criteria. Eq. (7) produces the same effect as Eq. (6).

The ¢; and ¢, in Eq. (5) are positive constants, called the ac-
celeration coefficients, r; and r, are two uniformly distributed
random numbers in the interval [0, 1]. And the V; belongs to

W = Wpax — x timeg (7)

[- VmﬂXvaaX]'
The equation for position update is as follows.
Xip1 =Xi + Vi (8)

The position of each particle is limited in [LB, UB]. Where UB is
the upper bound, LB is the lower bound. The equation of judgment
of the segment limit is as follows.

UB Xij > UB
xi,j xi,j LB < X,‘{j <UB (9)
LB Xij < LB

Umax Vij > Vmax
VijyVij —VUmax = Vi j < Umax (10)
—Vmax Vij < —Vmax

In general, the limit of the maximum velocity vmex is selected
empirically as the characteristics of the problem. In this paper, the
maximum velocity vmgy is calculated as follows.

Umax = (UB — LB)/L (11)

where UB and LB are the upper bound and the lower bound re-
spectively. L is the population size.

The full steps of the standard PSO are described as follows.

Step 1: Initialize the position and velocity of the population
randomly.

Step 2: Update the velocity according to Eq. (5).

Step 3: Update the position according to Eq. (8).

Step 4: Judgment of the segment limit according to Eq. (9) and
Eq. (10). Let the particle equal the UB if the particle is over the
upper bound. Let the particle equal the LB if the particle is below
the lower bound.

Step 5: Repeat Step 2 to Step 4 until the termination conditions
are met.

In the following subsections, a factorial representation based
particle swarm optimization with a population adaptation
(FPAPSO) is proposed for solving the NWFSP. The three main
operators, initial population, VNS local search and PA, are detailed
as follows.

3.2. The factorial representation

The standard particle swarm optimization was designed to
solve global numerical optimization problems. Therefore, the real-
valued encoding schema was employed by the standard PSO.
For the NWFSP, the real-number encoding schema is not suit-
able. In the discrete particle swarm optimization proposed by
Pan et al. (2008), the permutation-based representation was em-
ployed to map the particle swarm optimization to the discrete
search space. However, the framework of PSO has been modified
as the inertia factor and acceleration coefficients were modified
to probability instead of coefficients. The ranked-order-value (ROV)
was employed by the hybrid particle swarm optimization (HPSO),
which was introduced by Liu et al. (2007), for the NWFSP. Although
the HPSO retains the framework of PSO, the search space was ex-
tended by ROV. In this paper, the factorial representation is em-
ployed to map the PSO for the NWFSP.

The factorial number system, called factorial system, is a fac-
torial based mixed radix numeral system adapted to number-
ing permutations. Factorial representation was first presented by
Laisant (1888). The idea of the factorial representation closely
linked to that of the Lehmer code (Knuth, 1998). The factorial rep-
resentation uniquely represents each number between 0 and n! —1
as a string of factorial digits. Each position i, i € [1, ..., n], is as-
signed a digit taking a value between 0 and i. The base of each
position increases with i and so does its place value. The place
value at position i is (i—1)!. The factorial a(,) is transformed into
ith decimal form a9y as follows.

n
aao) = Za(!),- X (l— 1)' (12)
i=1

where a;); denotes the ith element of a(,). The factorial represents
a simple numbering system.

The factorial numbering system is unambiguous. Each number
is represented in only one permutation as the sum of consecutive
factorials multiplied by the index is always the next factorial minus
one. There are n jobs, and the job sequence is 7 ={J1J3,.... Jj_1,
Jjse-es Jn}. There is a natural mapping between the integers 0, 1, ...,
n! —1 (or equivalently the factorial numbers with n digits) and the
permutations of n jobs in lexicographical order when the integers
are expressed in factorial representation. The mapping has been

44 E Zhao, S. Qin and G. Yang et al./Expert Systems With Applications 126 (2019) 41-53

Table 1
The natural mapping between job permutations,
factorial codes and decimal numbers when n=3.

Job permutation Factorial code Decimal
{1,2,3} {0, 0, 0} 0
(1,32} {0, 1,0} 1
{2,1,3} {1, 0, 0} 2
{2,3,1} {1, 1,0} 3
{312} {2, 0,0} 4
(3,2, 1} {2,1, 0} 5
Table 2
The encoding process of “[2, 3, 1]—[1, 1, 0] > 3".
Iteration (i) i=1 i=2 i=3
Permutation (J;) 2 3 1
P {123} {13} {1}
Dy {0.1,2} {012} {012}
Factoradic (F) 1 1 0
Decimal (N) 0+1 x 2!=2 241 x 11=3 3+0 x 0!=3

termed the Lehmer code. For example, the complete mapping with
n=3 is shown in Table 1.

3.2.1. Factorial encoding schema

The encoding process is described as follows. First, consider a
job permutation 7 ={J1 ..., Ji_1, Jjs-.., Jn}, @ list of possible dig-
its of the factorial base in ascending order Dg={0, 1, ..., n—1}, an
ascending job list P={1, 2, ..., n} which contains all jobs, and an
empty factorial sequence F. Second, the first job J; is chosen from
the permutation 7w and the corresponding digit in P is found si-
multaneously. Suppose that the digit J; is the ith digit in P, the
digit J; is removed from P and the corresponding ith digit f; in Dg
is put to the end of factorial list F. Therefore, the second job J, in
7 is carried out continuously and the above procedure is repeated
until all jobs are accessed. Finally, the factorial list F is transformed
to its decimal form N according to the Eq. (10). The pseudo code
of the encode process is given in Algorithm 1. The computational
complexity of the encode process is O(n).

The mapping of [2, 3, 1]—[1, 1, 0] — 3 based on Algorithm 1 is
demonstrated in Table 2.

3.2.2. Factorial decode schema

The detailed decode process is devised in two phases. The fac-
torial decimal form N is transformed to factorial in the first phase.
The corresponding factorial is transformed into a job permutation
7 in the second phase.

The first phase is described as follows. Consider a factorial dec-
imal form in N, a factorial vector PT={(n—1)!, (n—2)!, ..., 1!, 0}
and an empty factorial list F. First, the ith digit PT; is carried out
from left to right in PT which is not greater than N, and put i—1
zero elements into F. Second, the quotient of N/PT; is put into F and
N is equal to the remainder of N/PT;. The above two steps are re-
peated until N is equal to zero. Afterward, a factorial list of natural
number N is obtained.

The second phase is described as follows. Consider a factorial
list F obtained from the first phase, an empty job permutation 7,
a list of possible digits of the factorial base in ascending order
Dr={0, 1, ..., n—1} and an ascending job list P={1, 2, ..., n} which
contains all jobs. First, the first element F; in F is chosen, and this
digit in Dg is found. Suppose that this digit Dg; is the ith digit in
Dg. The ith digit P; in P is removed and put to the end of the job
permutation list 7r. Second, the next element F; in F is chosen and
the above procedure is repeated until all the jobs are accessed. Fi-
nally, the corresponding job permutation is obtained. The pseudo
code of the decoding process is given in Algorithm 2. The compu-
tational complexity of the encoding process is O(n).

Table 3

The decoding process of 3—[1, 1, 0] - [2, 3, 1].
Iteration (i) i=1 i=2 i=3
Decimal (N) 3+2!=1---1 1=+1'=1---0 0
Factoradic (F) 1 1 0
Dr {0.1,2} {012} {012}
p {123} {13} 1}
Permutation (J;) 2 3 1

The mapping of “3—[1, 1, 0]—[2, 3, 1]”
Algorithm 2 is demonstrated in Table 3.

based on

3.3. Initial population

L initial solutions (or sequences) are generated by using
the nearest neighbor (NN) (Fink et al., 2003) and the NEH
(Nawaz et al., 1983) to accelerate the convergence speed of the
early stages. L is the population size which is set by the author.
The NN and the NEH are two popular heuristics. The NN heuris-
tic appends an unscheduled job with a minimal delay time to the
last job of the partial scheduled sequence at each step. The NEH
heuristic consists of three steps. The three steps are described as
follows.

Step 1: Sort the jobs according to the descending sums of their
processing times and generate a sequence .

Step 2: Take the first two jobs J;,J, of & and evaluate the two
possible sub-sequences. Then, the better sub-sequence is selected
as the current sequence.

Step 3: Take job three and find the best sub-sequence by plac-
ing it in all possible positions of the sub-sequence that have been
already scheduled. After that, repeat Step 3 with J; j=4, 5, ..., n)
until all jobs are sequenced.

The idea of using the NN heuristic and the NEH heuristic to
construct an initial population was presented in the discrete par-
ticle swarm optimization (DPSO) algorithm. The NN+NEH are em-
ployed to obtain the L initial solutions in this paper. The detailed
steps of NN+NEH are described as follows.

Step 1: Pick out L jobs S={J!.J2,....J%} randomly from a uni-
versal set P = {J},J2,....J1} which includes all of the jobs;

Step 2: The jth job J;, j=1, 2, ..., L, from S is taken as the first
job in the jth candidate sequence 7; of the initial permutations on
[Ty which is denoted as]}Tj. Then, apply the NN heuristic to find a
job]}rj with a minimal delay time to]}rj:

Step 3: Apply the NEH heuristic with the other n—2 jobs from
S; (i.e., exclude]}Tj and]7211,) to build a sub-sequence Sygy;

Step 4: The final permutation 7; is constructed by appending
the Sygy to the first two scheduled jobs []}rj,]7211,]. Repeat the Step 2
and Step 3 until L initial permutations were obtained. The pseudo
code of the initial population is given in Algorithm 3.

The pseudo code of the NN-+NEH strategy is given in
Algorithm 3. After L permutations are provided by the NN+NEH,
Algorithm 1 is employed to code them to L integers as the initial
population for PSO. Therefore, the PSO is able to start the search
process in the integer domain.

Since the proposed FPAPSO algorithm uses particles to explore
the search space, particle velocity is also needed to update the par-
ticle’s position during iterations of the algorithm. The FPAPSO algo-
rithm initially generates a random integer number as particle ve-
locity to upgrade the particle’s position. Note that velocities have
to be in an appropriate interval so that the particle remains in the
feasible space after being upgraded.

E Zhao, S. Qin and G. Yang et al./Expert Systems With Applications 126 (2019) 41-53 45

3.4. VNS local search

VNS is a recent meta-heuristic for combinatorial and global op-
timization problems (Mladenovi et al., 2008). The basic idea of the
VNS is to allow a systematic change in neighborhood structures of
the current best (incumbent) solution within a randomized local
search. Its effectiveness was tested on several combinatorial prob-
lems.

The DPSO was proposed by Pan et al. (2008) for solving the
NWEFSP with both makespan and total flowtime criteria respec-
tively. The VNS algorithm was embedded in the DPSO algorithm
in the proposed DPSO to improve solution quality. The experimen-
tal results show that the VNS enhances solution quality substan-
tially. Therefore, the VNS method is modified and embedded into
the proposed FPAPSO algorithm in this paper. There are two struc-
tures of neighborhoods of the VNS, called the swap neighborhood
and insert neighborhood, which are defined as follows:

(1) Swap two jobs between the nth and kth dimensions, n # k
(Swap).

(2) Remove the job at the nth dimension and insert it in the kth
dimension n # k (Insert).

The pseudo code of the VNS is given in Algorithm 4. An inte-
ger particle is decoded into a permutation by using Algorithm 2 to
apply the VNS local search. In the same way, the local optimum
permutation of VNS is encoded into an integer solution which is
returned to PSO.

3.5. Population adaptation

Since each solution represented by factorial encoding schema
has at most two neighbors, a local optimum appears when the ad-
jacent three neighbors are arranged in a non-monotonically order.
There are numerous local optima in the factorial representation. It
means a naive PSO is easily trapped into a local optimum. Popu-
lation adaptation (PA) is able to control the population’s diversity
when the population diversity is poor and enables the population
to continue to evolve when it has been in stagnation. PA is de-
signed to improve population diversity and avoid particles stacking
into local optima in the PSO. The details of the PA are as follows.

Euclidean distance in the one-dimensional integer domain is
employed to measure the population diversity in PA. Suppose that
Xg={x1,X3,..., X, } is the population at the gth generation, where L
denotes the population size. The sum of the Euclidean distances Dg
between particles of X, is calculated as follows.

-1 L
De=Y > |xi—x (13)
i=1 j=i+1

When the population has converged at a local optimum, the
population diversity is low. In this case, the change in Dy between
two generations is not significant. If Dy remains unchanged over T
consecutive generations, it represents that the PSO cannot gener-
ate any better trials to escape from the local optimum. Since the
algorithm enters into a stable stagnation state will take more time
to escape the local optimum when the population size becomes
too large, T is set to equal to L instead of a constant. Then the al-
gorithm needs to regenerate the population at this time. The new
population Xg = {x].x}, ..., x;} is generated as follows.

X =N(u,0)i=1,2,...,L (14)

where N denotes generating a normal distribution random number
with a mean of x and a variance of o which were calculated as
follows.

_ pbest — LB

= UB_IB (15)

Timeg
o= <1 - IVIRT) -max(u, 1 —pup) (16)

In Eq. (15), pbest is the best position among the individuals,
UB and LB are the upper bound and lower bound of the search
space respectively. From the encode scheme, the factorial code is
the smallest value 0 when all the jobs are sorted in ascending or-
der. The factorial code is the largest value n! —1 when all the jobs
are sorted in descending order. Therefore, the LB is set to 0 and
the UB is set to n! — 1. In Eq. (16), Timeg denotes the run time from
the beginning of the algorithm to the current generation g. MRT is
the maximum run time criteria.

Algorithm 5 illustrates the framework of the PA. Note that, the
current best solution is not affected by the PA, it means the PA
approach does not re-diversify the current best solution.

3.6. Proposed FPAPSO algorithm

The FPAPSO is a heuristic algorithm which is combined with
PSO, PA and VNS to solve a factorial represented F|[nwt|Cmax prob-
lem. On the basis of the original PSO, the basic elements of FPAPSO
are summarized as follows.

3.6.1. Particle (individual)

Xig denotes the ith particle in the swarm at generation g. Un-
der the factorial representation, a particle is represented by a digit
in the natural number domain. Note that a particle always corre-
sponds to a job permutation.

3.6.1.1. Swarm (population). Xg is a set of L particles in generation
g Xg={x}.xZ. ... xk}.

3.6.1.2. Permutation. A particle xfg corresponds to a permutation
7g using encoding (see also Algorithm 1) and decoding (see also
Algorithm 2) process. Similarly, a swarm Xg with L particles corre-
sponds to a set I, Mg = {rg, ¢, ..., 7}} which contains L per-
mutations g, i=1, 2, ..., L.

3.6.1.3. Fitness value of particle. A particle has a fitness value which
equals the makespan of the corresponding job replacement.

3.6.14. Search space. Assume there are n jobs, all the permuta-
tions are uniquely mapped to the natural numbers space: [0, 1, ...,
n! —1]. The whole search space of FPAPSO is [0, 1, ..., n! —1].

3.6.1.5. Neighborhood. The neighborhood of FPAPSO is a natural
number denoted (NND) neighborhood structure. Therefore, the two
numbers around the current integer are the only two neighbor-
hoods of the current particle.

Based on the above several important components of our pro-
posed algorithm, the steps of FPAPSO algorithm are described be-
low:

Step 1: Initialize parameters. Set the values of the control pa-
rameters: L (number of particles), MRT (maximum run time crite-
ria), ¢; and c, (velocity constants), Wy,;, and wyax (parameters to
affect inertia weight), c=0 (population distance unchanged times),
g=1 (the current number of iterations).

Step 2: Initialize population. Generate a velocity set L initial per-
mutations using the NN+NEH detailed in Algorithm 3. Evaluate the
permutations to get the pbest, gbest and Dy Then the L permuta-
tions must be encoded as L integers using the encoding process
detailed in Algorithm 1. The L integers form the initial population.
Finally, randomly generate a feasible initial velocity set.

Step 3: Move the particles. Update the population by Eq. (8).
Map the new population to their corresponding permutation and

46 E Zhao, S. Qin and G. Yang et al./Expert Systems With Applications 126 (2019) 41-53

evaluate the makespan of each new permutation. Update the vari-
ables pbest and gbest.

Step 4: VNS local search. Get a local optimal permutation by us-
ing the VNS local search algorithm (detailed in Algorithm 4) for
the permutation of the pbest solution. Then replace pbest particles
with the corresponding integer of the local optimal permutation.

Step 5: Population adaptation. Apply the PA algorithm (detailed
in Algorithm 5) for the current population to get the adapted pop-
ulation. Then replace the current population with the adapted pop-
ulation corresponding integers.

Step 6: Check termination condition. If the termination condition
is met, stop. Return the value of variable gbest and the correspond-
ing permutation as a final solution. Otherwise, proceed to Step 7.

Step 7: Update the particle velocity. Update the particle velocity
set using Eq. (5). g=g+1, Go to Step 3.

The pseudo code of the proposed algorithm is presented in
Algorithm 6.

3.7. Runtime analysis of FPAPSO

In EAs, it is a fundamental problem to analyze the impact of pa-
rameter settings and the characteristics of the fitness landscape on
time complexity. The level-based theorem is a technique tailored
to population-based algorithms. The level-based theorem provides
the upper bound of expected time that the algorithm discovers an
element in the last level A; when the following conditions are sat-
isfied. First, the probability of creating an individual at level j+ 1 or
higher is at least z; when some individuals of the population have
reached the level j or a higher level. Second, the number of in-
dividuals at level j+ 1 tends to increase. Finally, the population is
sufficiently large. In this subsection, the upper bound on the run-
time of the FPAPSO is analyzed with the level-based theorem.

Level-based Theorem (Corus et al, 2014). Given a partition
(A1,-++, Am) of x, define T: =min {tA||Pt:nAm| > 0}, where for all
teN, Py € x* is the population in generation t. If there exist z1,...,
Zm_1, 6 € (0, 1], and yq € (0, 1) such that for any population P ¢
x*,

(G1) for each level j € [m—1], if [PNA,;j| > Y oA, then

Pr(y € Azi+1) = Zj,
(G2) for each level j € [m—2], and all y € (0, yol, if [PNA,j| >
YoA and [PNA.; 4| = ¥A, then

Pr(yeA.) = (1+98)y.
(G3) the population size A e satisfies

4 128m
= <y082)1n< —)

where z+: =min; ¢ | _1}{z}, then

8\ ! 65X 1
E[T] < (5—2> D (x In <M> + Zj).

j=1

Definition. . Given a partition (Ay,---, Am), if (¢1,..., £) is em-
ployed to denote the sorted level of search points in P, the proba-
bility of selection is

A
£(y.P):=Y p(ilP)- [P(i) € A, |

i=1
Corollary. . Given a partition (Aq,-:-, Am) of x, define T:
=min {tA||P;NAm| > 0}, where for all te N, Py € x* is the popu-
lation in generation t. There exist s, ..., S;m_1, S+, Po, &, 6 € (0, 1],
and a constant y¢ € (0, 1] such that
(C1) for each level j € [m—1]

Prpapso (¥ € Asjy1lX € Aj) =

(C2) for each level j € [m—1]
Prpapso (X € Asj|X € Aj) = po
(C3) for any population P € (x\Am)* and y € (0, Yol

cy.py = 1EOY
Po

(C4) the population size satisfied

5> 4 In 128m
~ \ nd? Y0825,

where s«: =min j ¢ [_1){sj}, then,

8\ ' 65 1
BTl = () ; (’\ tn <4+ yosj3x> * yosJ>

Proof. . According to the guidelines provided by
Corus, et al. (2014), the level-based theorem is applied.

Step 1: The partition A;: ={j} for all j € [m] is employed, where
An is the goal state.

Step 2: Assume that [PNA,;j| > yoA and [PNA,; 4| > ¥ A>0.

It suffices to pick the individual x € |PNAy| for any k > j+1
from the personal best library and mutate it by FPAPSO to an indi-
vidual in A.y. As (C2) and (C3), the probability of such an event is
at least

(y.P)po= (1+8)y

Condition (G2) is satisfied with the same y¢ and § as in (C3).

Step 3: Assume that |[PNAj| > yoA. The individual xy for any k
> j+1 is chosen with probability ¢(yq,P).

If X € Aj, then the FPAPSO will by (M1) upgrade x to A, ; with
Si.
J If x € A,j, 4, the FPAPSO leaves the individual x in A,;, ; with
probability with pg.

Then the probability of producing the individual in A, 4 is at
least

¢ (vo. Pymin {s;, po} = £ (0. P)sipo > ¥os;

Condition (G1) is satisfied with z;=ys; and z: =y gs:

Step 4: Given that z« =y (s, (C4) implied (G3).

Step 5: Condition (G1-3) are satisfied, the level-based theorem
gives

8\ ! 68 1
E[T] < (= Aln | —24)+ —
[]5<5z>j=1 (“(4+yosj8)\)+yosj)

The expected time to reach the last level Ay, is less than

m-1
()% (1 (525) +)
p =+]/05] A)/()SJ
However, a general formula, which is employed to calculate the
upper bounds of expected time, is provided instead of a deter-
mined upper bound. The upper bounds of various instances are
different since the different parameter settings and the different
characteristics of the fitness landscape. Besides, the motivation of
this paper is to provide an algorithm which finds better solutions
within a limited time. The upper bound of each instance is not
suitable to set the runtime stop criterion in the experiments.

4. The experimental results and analysis

The FPAPSO algorithm for the NWFSP was coded using Java. The
simulation experiments were carried out on a personal computer
(PC) with Intel (R) Core (TM) i7-6700 CPU 3.4GHz and 8.00GB
memory with a Windows Server 2012 Operating System.

E Zhao, S. Qin and G. Yang et al./Expert Systems With Applications 126 (2019) 41-53 47

In this section, the FPAPSO algorithm is compared with the
state-of-the-art algorithms. 141 instances are employed to test the
considered algorithms: (i) 21 instances provided by Reeves (1995):
RecO1 to Rec41 that comprises seven sub-sets of different sizes
which range from 20 jobs and 5 machines to 75 jobs and 20 ma-
chines. (ii) 120 instances provided by Taillard (1993): Ta001-Ta120
consists of 12 subsets of different sizes which range from 20 jobs
and 5 machines to 500 jobs and 20 machines. The relative devia-
tion (RD) between the solutions from the algorithms and the best-
known solutions which was provided by Lin et al. (2016) were col-
lected to compare the performance of FPAPSO with the other algo-
rithms visually. The average relative deviation (ARD) and the best
relative deviation (BRD) are employed to measure the quality of
the experimental results. The value of ARD and BRD are calculated
as follows.

1 &G -G
ARD = ~ 1 17
R ; o x 100 (17)
BRD = C’J“‘%CR x 100 (18)
R

where Cg* denotes the best solutions, which are provided by
Lin et al. (2016). In this paper, each testing case is executed 30
independent times for comparison. Therefore, the number of inde-
pendent runs R is set to 30. G, is the solution of the rth experi-
ment in 30 independent runs. Cp,, is the best solution found over
R runs, namely, Cp, is the minimum value of C;.

This section includes two subsections. The parameters setting of
FPAPSO is discussed in the first subsection. In the second subsec-
tion, the performance of FPAPSO, HMM-FPA, DWWO, TMIIG, DPSO
and IIGA are tested on the 21 Reeve instances and the 120 Tail-
lard’s instances.

4.1. Parameter setting

Five key control parameters should be tuned for the proposed
algorithm to initiate the search. Values of five parameters affect
the performance of the algorithm. A sensitivity analysis of the
five parameters has been performed to determine the effect of
the different parameter combinations on the performance of the
algorithm. Based on the parameter sensitivity analysis approach,
four problems of different sizes (20 x 10, 50 x 20, 100 x 20 and
200 x 20) are chosen from Taillard’s instances. Then, the problems
are solved with different combinations of parameter values. The
multi-factor analysis of variance (ANOVA) method is introduced to
investigate the experimental results. Based on the ANOVA results,
the following experimentally derived values are proposed for the
parameters: L=n, c; =2, ¢; =2, Wnax =1, Wpj =0.5.

4.2. Results and analysis

In the following experiment, the proposed FPAPSO is compared
with state-of-the-art algorithms for solving the NWFSP with the
minimization of the makespan criterion. The compared algorithms
are HMM-FPA Qu et al., 2018), DWWO (Zhao et al.,, 2018), TMIIG
(Ding et al., 2015a,b), DPSOynp (Pan et al., 2008a,b) and IIGA
(Pan et al., 2008a,b). Besides, the PAPSO is also designed to per-
form the effectiveness of factorial representation. The only differ-
ence between the FPAPSO and PAPSO is that the PAPSO uses a
permutation representation instead of factorial representation. For
these algorithms, two standard benchmark sets of different scales
are applied to test the performance of the above algorithms. (i) 21
instances designed by Reeves (1995): RecO1 to Rec41 that are di-
vided into seven subsets of different size problems, ranging from
20 x 5to 75 x 20. ((3) 120 instances designed by Taillard (1993):

Ta001 to Tall0 that range from 20 x 5 to 200 x 20. These in-
stances are available from the OR library website. Each instance is
independently run 30 times for every algorithm for comparison.

The algorithms chosen for comparison except for the HMM-FPA
have been carefully re-implemented in Java by all the details given
in the original papers which are run on the same platform and
with the same maximum run time (MRT) termination condition
used by the FPAPSO. The results of HMM-FPA are carried out from
the original paper. In various papers, the MRT value is only related
to the number of jobs. However, the amount of computation in-
creases as the number of machines increases. In this paper, the
MRT condition of each compared algorithm is set to n/2 xm x 30
milliseconds (ms). In this experiment, all the algorithms converged
slowly or stagnated when the run time reaches MRT.

For the Reeves instances, the computational results obtained by
the six compared algorithms are listed in Table 4. The best re-
sults of each instance are given in boldface. From Table 4, most of
the BRD values obtained by the FPAPSO are better than the other
compared algorithms or at least equal only except in the Rec4l
instance. On the Rec41 instance, the BRD value 0.07 yielded by
the FPAPSO algorithm is greater than the corresponding value 0.00
obtained by HMM-FPA. Besides, the ARD values obtained by the
FPAPSO are better than the other compared algorithms or at least
equal. The ARD of the 21 Reeves instances are shown in Fig. 1.
From Fig. 1, the performance of FPAPSO outperforms the other
state-of-the-art algorithms on Reeve’s instances.

The Taillard’s instances are carried out to further demonstrate
the performance of FPAPSO for solving the large-scale problems.
The computational results of six compared algorithms are sum-
marized in Table 5. The best results of each measure are given
in boldface. From Table 5, The average BRD value 0.42 obtained
by the FPAPSO is better than the corresponding value 0.52, 0.76,
0.56, 0.97, 0.72 obtained by HMM-FPA, DWWO, TMIIG, DPSOVND
and IIGA, respectively. The ARD value 0.58 obtained by FPAPSO is
also better than the 0.74, 0.95, 0.67, 1.15, 0.95 obtained by other
state-of-the-art algorithms. For the large-scale instances, FPAPSO is
superior to the other algorithms under the same run time. The av-
erage convergence curves of the algorithms on TA60, TA80, TA100
and TA120 are shown in Fig. 2 to demonstrate the convergence
performance of FPAPSO clearly. From the Fig. 2, the FPAPSO has
faster convergence speed than the compared algorithms on the dif-
ferent size Taillard’s instances. Fig. 3 and Fig. 4 are the Gantt charts
for the optimal results obtained by FPAPSO for TAO1 and TA11. The
ARD of 12 different scales of the Taillard’s instances is shown in
Fig. 5. From the Fig. 5, the performance of FPAPSO outperforms the
other state-of-the-art algorithms on Taillard’s instances.

Rigorous statistical studies based on the ARD values for the 120
Taillard’s instances are carried out to verify the effectiveness of the
FPAPSO for solving the NWFSP. The Friedman’s test (Garcia et al.,
2009) is performed to rank the algorithms. The Friedman'’s test is
implemented based on the SPSS software. The average ranking of
the above six algorithms obtained by Friedman’s test is summa-
rized in Table 6. As shown in Table 6, there is a statistically sig-
nificant difference in the optimization results depending on which
type of algorithm is chosen, x2(2)=351.806, p=6.3191E — 73 with
o =0.05 and o =0.01. FPAPSO has the best ranking among the six
algorithms. The additional Bonferroni-Dunn’s method is applied as
a post hoc procedure to evaluate the significance level of all the
algorithms.

CD=qa,/"(k67;1). (19)

In Eq. (19), parameters k and N are the number of algorithms
and number of instances, respectively. They are k=6 and N=120
in the experimental evaluations. When o =0.05, q is 2.576 and
when o =0.01, q¢ is 3.091 from Table B.16 (two-tailed «(2)) of

48 E Zhao, S. Qin and G. Yang et al./Expert Systems With Applications 126 (2019) 41-53
Table 4
Comparison of results based on Reeve’s benchmark set.
Instance FPAPSO PAPSO HMM-FPA DWWO TMIIG DPSOynp IIGA
BRD ARD BRD ARD BRD ARD BRD ARD BRD ARD BRD ARD BRD ARD
Rec01 1526 000 000 000 000 000 000 000 000 000 000 000 000 000 0.00
Rec03 1361 000 000 000 000 000 000 000 000 000 000 000 000 000 0.00
Rec05 1511 000 000 000 005 000 004 000 001 000 000 000 000 000 0.00
Rec07 2042 000 000 000 000 000 000 000 001 000 000 000 000 000 0.00
Rec09 2042 000 000 000 000 000 000 000 000 000 000 000 000 000 0.00
Recll 1881 000 0.00 000 000 000 000 000 000 000 000 000 000 0.00 0.00
Rec13 2545 000 000 000 000 000 000 000 003 000 000 000 000 000 0.00
Rec15 2529 000 000 000 000 000 000 000 000 000 000 000 000 000 0.00
Rec17 2587 000 000 000 000 000 000 000 000 000 000 000 000 000 0.00
Rec19 2850 0.00 0.00 000 0.16 0.00 0.00 000 040 0.00 0.00 0.00 0.11 0.00 0.03
Rec21 2821 000 011 000 016 000 015 000 016 000 003 000 011 000 019
Rec23 2700 000 000 000 014 000 001 000 013 000 000 000 007 000 005
Rec25 3593 000 000 000 009 000 009 000 000 000 000 000 017 000 0.00
Rec27 3431 000 000 000 021 000 007 000 002 032 032 000 026 000 012
Rec29 3291 000 000 000 007 000 013 000 024 000 014 000 006 0.00 0.00
Rec31 4307 000 o011 039 077 013 020 023 041 009 029 012 039 051 078
Rec33 4424 000 023 009 100 000 054 027 062 000 040 025 072 079 124
Rec35 4397 000 012 039 122 000 083 014 039 000 021 000 039 041 078
Rec37 8008 0.00 036 067 107 025 067 024 048 031 055 027 069 114 143
Rec39 8419 0.09 0.33 0.44 0.96 0.20 0.65 0.40 0.67 0.17 0.48 0.19 0.70 0.91 134
Rec4l 8437 007 041 065 098 000 069 017 049 007 048 036 071 111 124
1.5 ————— T T T T T T T
—@— FPAPSO
—%— HMMFPA
1 H—=—pbwwo
a —— TMIIG
[—4k— DPSO
< |[—>—IGA
051 ——parso
0
1 3 5§ 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41
Rec instances
Fig. 1. The ARD of FPAPSO, FPAPSO, HMMFPA DWWO, TMIIG, DPSO, IIGA for Rec instances.
Table 5
Comparison of results based on Taillard’s benchmark set.
nxm FPAPSO PAPSO HMM-FPA DWWO TMIIG DPSOynp TIGA
BRD ARD BRD ARD BRD ARD BRD ARD BRD ARD BRD ARD BRD ARD
20x5 000 000 000 001 000 000 000 001 000 000 000 000 000 0.00
20x 10 000 000 000 001 000 000 000 001 000 000 000 000 000 000
20 x 20 000 000 000 001 000 000 000 001 000 000 000 000 000 001
50x5 016 037 062 095 022 037 02 050 033 047 058 079 013 037
50 x 10 001 020 027 068 004 018 017 039 015 027 047 069 008 022
50 x 20 002 012 026 056 005 037 007 031 017 027 034 064 005 022
100 x5 054 085 193 236 062 113 229 265 068 079 126 153 092 126
100x10 040 065 126 177 047 097 051 074 050 065 095 125 058 087
100 x 20 0.32 0.63 1.02 135 041 0.69 0.35 0.56 049 0.72 0.95 1.21 0.50 0.81
200x10 124 147 306 351 126 149 198 234 116 134 203 226 186 218
200x20 0.83 098 233 272 104 136 097 122 107 122 179 207 134 160
500x20 153 171 438 471 210 231 245 269 219 232 326 341 313 346
Avg 042 058 126 155 052 074 076 095 056 067 097 115 072 092
Table 6))) (Zar, 1999). Fig. 6 sketches the results of Bonferroni-Dunn’s test
Ranking of the compared algorithm obtained through Friedman’s test. considering the FPAPSO as the control algorithm. There is a signif—
Algorithm Mean Rank Chi-Square p-value icant difference between the FPAPSO and the other compared al-
FPAPSO 245 gorithms. In summary, the above comparison clearly demonstrates
PAPSO 6.26 that the FPAPSO is significantly better than the other compared al-
HMMEFPA 317 351.806 6.3191E-73 gorithms.
TDI‘\;IVI‘I’ZO ‘Z‘-gg The multiple-problem Wilcoxon’s test (Garcia et al., 2009) is
DPSO 593 performed to further check the behaviors of the above six algo-
1IGA 3:92 rithms. The statistical analysis results are summarized in Table 7.
Crit. Diff. 0.7360 The FPAPSO is considered as the control algorithm. From Table 7,
Crit. Diff. 0.8768 the FPAPSO provides higher R+ values than R— values in all the

E Zhao, S. Qin and G. Yang et al./Expert Systems With Applications 126 (2019) 41-53

6400 T 9100 T "
—8—FPAPSO —8—FPAPSO
6350 —4—pbwwo | - 9000 —3—DWWO T
—&— TMIIG
S ion —E-TMIG
6300 ¥ PAPSO 8900 —IGA
—%-PAPSO
DPSO, 8800 B
6250 HMM-FPA| - DPSOVND
< 8700 HMM-FPA | |
§ 6200 - b 8
I3 3 <
5 8 so00i| .
£ 6150 A R]
%5 E 8500 |- ,
6100 [-| — |
8400 —
6050 { A 8300 i
o L L ITER
FLiE e 2 2
IR S = 3 5100
0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16
Time(s) Time(s)
Ta060 Ta080
17x104 505 x10%
. T . . . T T
~& FPAPSO ~&-FPAPSO
1.68 —$-DWWO | 5 —$-bwwo |
—F-TMIG [l —H-TMIG
1.66 —-lIGA f b —-lIGA
——PAPSO 495 ——PAPSO
1.64 DPSOyp | A DPSO,\p
HMM-FPA 4.9% HMM-FPA |
c c
S 1.62 — g 3
3 Gass| WE S % wisrol & T F b 1
S 16 1 s |
£ £ 48
158 1)
1.56 4 4.75 1
1.54 i 47 J
152 ! ' . " L . 465 . \ , L . . .
0 5 10 15 20 25 30 35 0 20 40 60 80 100 120 140 160
Time(s) Time(s)
Tal00 Tal20
Fig. 2. The convergence curves on Taillard’s benchmark.
5.5 T T T T T T T
4.5 - -
O 4+ b
£
S
g 3.5 -
o L 4
g ° I I
7
O 25 u
8
2 1l
o 2 v"' =
1.5 - u
1 _
05 | 1 I I
0 200 400 600 1000 1200 1400 1600

processing time

Fig. 3. The Gantt chart of the solution for TaOl.

49

E Zhao, S. Qin and G. Yang et al./Expert Systems With Applications 126 (2019) 41-53

12 T T T T T T T T T T

10 iz b 46N EMAS [@or MSISHNNS (2l Bk #4050k o
7 BN @ b EN{AST o7 (HSN BN A8 BoNE oN A2 he
By B BE B o7 WG 2B @ [+ (2 lo
Ve B F el 7] BEEcEE e R b
7S B @ Bl 7 EE®E A R R
B 7pE ENENAEE7 | BB B (2B B b @R e
he 74 B EF B HNSN B [B0 = o0 M2 S
B @k E Bl @7 b Bsh2] B i &N &
27 BAENEN N7 E B B AR NI 2
Efl?ll4- 1o |id - ll_ Bl e

200 400 600 800 1000 1200 1400 1600 1800 2000 2200
processing time

o]
T

1

1

N
T

1

processing machine
()}
T

Fig. 4. The Gantt chart of the solution for Tall.

—@— FPAPSO
—¥%— HMMFPA
4T |—m— pwwo
—— ™G

3 - | —%— pPso
—p—IIGA
—+— PAPSO

ARD

1~10 11~20 21~30 31~40 41~50 51~60 61~70 71~80 81~90 91~100 101~110 111~120
Ta instances

Fig. 5. The ARD of FPAPSO, PAPSO, HMMFPA DWWO, TMIIG, DPSO, IIGA for Ta instances.

7 —
—— CD=0.7360 « = 0.05 0
6F ——- CD=0.8768 « =0.01
5 —
X
g
©4r
[0
8’) __________ —_— —_— —_—— -
g3/
4
2 —
1 —
0
FPAPSO HMM-FPA DWWO TMIG DPSO,,, lIGA PAPSO

Control Algorithms: FPAPSO

Fig. 6. Rankings obtained through the Friedman test and graphical representation.

E Zhao, S. Qin and G. Yang et al./Expert Systems With Applications 126 (2019) 41-53 51

Table 7
Results of the multiple-problem Wilcoxon's test at «=0.05 and «=0.01 significance
level.

FPAPSO vs. R+ R- z p-value =005 «o=0.01
PAPSO 4950.00 0.00 -8.64 5.69E-18 Yes Yes
HMMFPA 3171.00 924.00 -452 6.00E-06 Yes Yes
DWWO 4277.50 378.50 -712 1.04E-12 Yes Yes
TMIIG 284550 1159.50 -3.45 5.62E-04 Yes Yes
DPSOynp 4095.00 0.00 -8.24 1.74E-16 Yes Yes
TIGA 392850 257.50 -727 3.72E-13 Yes Yes

a“Yes” indicates that statistically significant can be observed under the correspond-
ing a.

Algorithm 1 Factorial encode process.

Input: Job permutation 7 = {J1J2,..., Ji—1, Jjse-es Jn}

Start
Initialize: DF={0, 1, ..., n—1}, P={1, 2, ..., n}, F={}, N=0
Fori=1:n

index = find(P[index] = =]J;) /| Find the first position index from left to right
in P which makes P[index] equal to J;
Fli] = Dglindex]
remove P[index] from P
N=N-+F[i] x De[n—i+1]!
End
End
Output: Natural number N

Algorithm 2 Factorial decode process.ab.

Inputs: Natural number: N, Number of jobs: n
Start
Initialize: PT={(n-1)!, (n-2)!, ..., 11,0}, Dr={0, 1, ..., n—1}, P={1, 2, ...,
n}, F={}, m ={}
index = find(PT[index] < N) // Find the first position index from left to right
in PT which makes PT[index] not greater than N
F[1: index—1]=0
While N # 0
Flindex] = quotient(N/PT[index])
N =remainder(N/PT[index])
index =index + 1
End
Fori=1:n
index = find(F, Flindex]==D¢[i])
7 [i] = Plindex]
remove P[index] from P
End
End
Output: Job permutation: 7

Algorithm 3 Initialize permutations.

Inputs: A set of all jobs P = {J},J3.....Js}, the population size L

Start
Randomly pick out L jobs S={J; J>,..., Ji} from P
Forj=1:1L
=0
12, =NN(L)
S'=s— UL .2}
= U;]r,»]%]] +NEH(S")
Hé =T
End
End

Output: The initial permutations: I

Algorithm 4 VNS local search.

Inputs: A job permutation 77 = {J1,J2,..., Ji_1, Jjs..., Ja}, number of jobs: n
Start
Initialize: n =rand(1, n), k=rand(1, n), n # k, i=0
S=insert(rr, n, k) /| perturbation
While i < n(n—-1)
S’ =SwapLocalSearch(S)
S’ = InseartLocalSearch(S’)
If fitness(S') < fitness(S)
S=9
i=0
Else
i=i+1
End
End
If fitness(S) < fitness(r)
T=S
End
End
Output: Local optimum permutation 7

cases. The statistical significance is observed in all the comparisons
as the Wilcoxon’s test with o =0.05 and o =0.01, which means
that FPAPSO is significantly better than HMM-FPA, DWWO, TMIIG,
DPSOynp and IIGA on solving Fp|nwt|Cnax problems with o =0.05
and o =0.01.

As to the above comparisons and discussion, there are the fol-
lowing conclusions. First, the PSO with factorial representation ex-
plores the search space of the Reeves instances and the Taillard’s
instances efficiently. Second, although the factorial representation
method presents difficulties to exploit the best areas, the VNS local
search method allows the PSO to exploit a promising area of the
search space. Third, the population adaption allows the proposed
algorithm to avoid being trapped into a local optimum since the

Algorithm 5 Population adaptation procedure.

Inputs: Population at the gth generation: Xy ={x;,X2,..., X}, distance of the population of last generation: D,_+, distance unchanged times c, pbest of current

generation
Start
Compute D, using Eq. (13)
If Dg==D,_;
c=c+1
Else
c=0
End
Ifc>1L
Get p using Eq. (15)
Get o using Eq. (16)
Regenerate population X; = {x{,X). ..., x;} using Eq. (14)
Select an individual from X; randomly and replace it with pbest
c=0
End
Xg =X,
End
Outputs: Adapted population X, distance unchanged times c

52 E Zhao, S. Qin and G. Yang et al./Expert Systems With Applications 126 (2019) 41-53

Algorithm 6 Proposed FPAPSO algorithm.

Input: A set of all jobs P={J}.J2,....J3}
Start
Initialize: L, MRT, c;, c;, Whins» Wmaxs Vmax, €=0, g=1
Iy = InitializePopulation(P, L)
Evaluate Iy to get the pbest, gbest, Dy
Xo = FactoradicEncode(ITy)
Generate feasible initial velocity V;
While time; < MRT
Xg=Xg_1+ Vg
I = FactoradicDecode(Xo,n)
Evaluate ITg to update the pbest, gbest
VNS(pbest)
Xg = FactoradicEncode(I1)
[Xg,c]=PA(Xg,Dg_1,)
Calculate feasible Vg 4
g=g+1
End
End
Outputs: The optimal makespan gbest and corresponding permutation
FactoradicDecode(gbest)

factorial represented landscapes are locally highly rugged. How-
ever, the FPAPSO takes a lot of extra run time in the encoding and
decoding processes even though the computational complexity of
these two methods are both O(n). The proposed FPAPSO is effec-
tive, efficient and robust for solving the NWFSP with the minimiza-
tion of makespan criterion.

5. Conclusion and future research

In this paper, a factorial based particle swarm optimization
with a population adaptation mechanism is proposed to solve the
NWEFSP. First, the factorial representation is employed as a novel
coding method to transfer the permutation domain to an integer
domain. Second, the NN+NEH method is introduced to generate
potential permutations for PSO to start the search process. Third,
the VNS local search method is introduced to exploit the promising
area around the current best solution obtained by PSO. Finally, the
population adaptation mechanism is designed to control the diver-
sity of the population and avoid the particles being trapped into
local optima. The computational results and comparisons based on
the Reeve’s and the Taillard’s instances demonstrate the effective-
ness, efficiency and robustness of the proposed FPAPSO.

The proposed FPAPSO algorithm also has the following limita-
tion. The FPAPSO takes a lot of extra run time in the encoding and
decoding processes as the existing generic computer architecture
is difficult to deal with the large integer operations brought by a
factorial.

Further work is divided into following directions. First, it is nec-
essary to alter the factorial representation to reduce the complex-
ity of the algorithm. Second, it is possible to employ the factorial
representation to encode various evolutionary algorithms, which
includes a differential evolution algorithm and biogeography-based
optimization, to deal with the NWFSP. Finally, the FPAPSO algo-
rithm could be applied for solving other complex scheduling prob-
lems, such as the flexible flow shop scheduling problems, the job
shop scheduling problems and the hybrid flow shop scheduling
problems in the literature.

Credit authorship contribution statement

Fuqing Zhao: Funding acquisition, Investigation, Supervision,
Writing - review & editing. Shuo Qin: Investigation, Software,
Writing - original draft. Guoqiang Yang: Conceptualization, For-
mal analysis. Weimin Ma: Methodology, Resources. Chuck Zhang:
Project administration, Writing - review & editing. Houbin Song:
Visualization.

Acknowledgment

This work was financially supported by the National Natu-
ral Science Foundation of China under grant numbers 61663023.
It was also supported by the Key Research Programs of Sci-
ence and Technology Commission Foundation of Gansu Province
(2017GS10817), Lanzhou Science Bureau project (2018-rc-98),
Public Welfare Project of Zhejiang Natural Science Founda-
tion(LGJ19E050001), Wenzhou Public Welfare Science and Technol-
ogy project (G20170016), respectively.

References

Akhshabi, M., Tavakkoli-Moghaddam, R., & Rahnamay-Roodposhti, F. (2014). A hy-
brid particle swarm optimization algorithm for a no-wait flow shop scheduling
problem with the total flow time. International Journal of Advanced Manufactur-
ing Technology, 70(5-8), 1181-1188.

Chen, Y., Li, L, Xiao,], Yang, Y., Liang,]., & Tao, L. (2018). Particle swarm opti-
mizer with crossover operation. Engineering Applications of Artificial Intelligence,
70, 159-169.

Corus, D., Dang, D.-C., Eremeev, A. V., & Lehre, P. K. (2014). Level-Based Analysis of
Genetic Algorithms and Other Search Processes. In T. BartzBeielstein,]. Branke,
B. Filipic, & J. Smith (Eds.), Parallel Problem Solving from Nature-PPSN XIII 8672
(pp. 912-921) (Eds.).

Ding, J. Y., Song, S., Gupta, J. N. D., Rui, Z, Chiong, R., & Cheng, W. (2015a). An
improved iterated greedy algorithm with a Tabu-based reconstruction strategy
for the no-wait flowshop scheduling problem. Applied Soft Computing, 30, 604-
613.

Ding,].-Y., Song, S., Zhang, R., Zhou, S., & Wu, C, A Novel Block-shifting Sim-
ulated Annealing Algorithm for the No-wait Flowshop Scheduling Problem
2015b.

Eberhart, R., & Kennedy,] (1995). A new optimizer using particle swarm theory.
International Symposium on MICRO Machine and Human Science (pp. 39-43).
Fink and Vof. (2003). Solving the continuous flow-shop scheduling problem by

metaheuristics. European Journal of Operational Research, 151(2), 400-414.

Garcia, S., Molina, D., Lozano, M., & Herrera, F. (2009). A study on the use of non-
parametric tests for analyzing the evolutionary algorithms’ behaviour: A case
study on the CEC'2005 Special Session on Real Parameter Optimization. Journal
of Heuristics, 15(6), 617-644.

Garey, M. R, Johnson, D. S., & Sethi, R. (1976). The Complexity of Flowshop and
Jobshop Scheduling. Mathematics of Operations Research, 1(2), 117-129.

Knuth, D. E. (1998). Art of Computer Programming, Volume 3: Sorting and Searching
(2nd Edition).

Laha, D., & Chakraborty, U. K. (2009). A constructive heuristic for minimizing
makespan in no-wait flow shop scheduling. International Journal of Advanced
Manufacturing Technology, 41(1-2), 97-109.

Laisant, C.-A. (1888). Sur la numération factorielle, application aux permutations.
Bull.soc.math.france, 2, 176-183.

Lin, S.-W., & Ying, K.-C. (2016). Optimization of makespan for no-wait flowshop
scheduling problems using efficient matheuristics. Omega-International Journal
of Management Science, 64, 115-125.

Liu, B., Wang, L., & Jin, Y.-H. (2007). An effective hybrid particle swarm optimization
for no-wait flow shop scheduling. International Journal of Advanced Manufactur-
ing Technology, 31(9-10), 1001-1011.

Mladenovi¢, N., & Hansen, P. (2008). Variable neighborhood search. European Journal
of Operational Research, 191, 593-595.

Nawaz, M., Enscore, E. E., Jr, & Ham, 1. (1983). A heuristic algorithm for the m -ma-
chine, n -job flow-shop sequencing problem. Omega, 11(1), 91-95.

Pan, Q.-K., Tasgetiren, M. F,, & Liang, Y.-C. (2008a). A discrete particle swarm opti-
mization algorithm for the no-wait flowshop scheduling problem. Computers &
Operations Research, 35(9), 2807-2839.

Pan, Q.-K., Wang, L., & Zhao, B.-H. (2008b). An improved iterated greedy algorithm
for the no-wait flow shop scheduling problem with makespan criterion. Inter-
national Journal of Advanced Manufacturing Technology, 38(7), 778-786.

Qu, C, Fu, Y, Yi, Z, & Tan, J. (2018). Solutions to No-Wait Flow Shop Scheduling
Problem Using the Flower Pollination Algorithm Based on the Hormone Modu-
lation Mechanism. Complexity, 2018, 18.

Reeves, C. R. (1995). A genetic algorithm for flowshop sequencing. Computers & Op-
erations Research, 22(1), 5-13.

Ribas, I., Companys, R., & Tort-Martorell, X. (2017). Efficient heuristics for the paral-
lel blocking flow shop scheduling problem. Expert Systems with Applications, 74,
41-54.

Shao, W., Pi, D., & Shao, Z. (2017a). An extended teaching-learning based optimiza-
tion algorithm for solving no-wait flow shop scheduling problem. Applied Soft
Computing, 61, 193-210.

Shao, W,, Pi, D., & Shao, Z. (2017b). Memetic algorithm with node and edge his-
togram for no-idle flow shop scheduling problem to minimize the makespan
criterion. Applied Soft Computing, 54, 164-182.

Taillard, E. (1993). Benchmarks for basic scheduling problems. Eurj.oper.res, 64(2),
278-285.

Ye, H., Li, W,, & Abedini, A. (2017). An improved heuristic for no-wait flow shop to
minimize makespan. Journal of Manufacturing Systems, 44, 273-279.

http://dx.doi.org/10.13039/501100001809
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0001
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0001
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0001
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0001
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0001
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0002
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0002
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0002
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0002
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0002
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0002
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0002
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0002
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0003
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0003
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0003
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0003
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0003
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0003
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0004
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0004
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0004
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0004
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0004
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0004
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0004
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0004
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0005
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0005
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0005
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0005
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0006
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0007
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0007
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0007
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0007
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0007
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0007
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0008
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0008
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0008
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0008
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0008
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0009
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0009
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0009
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0009
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0010
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0010
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0011
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0011
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0011
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0011
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0012
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0012
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0012
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0012
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0012
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0013
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0013
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0013
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0013
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0014
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0014
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0014
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0014
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0014
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0015
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0015
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0015
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0015
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0015
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0016
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0016
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0016
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0016
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0016
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0017
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0017
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0017
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0017
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0017
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0017
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0018
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0018
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0019
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0019
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0019
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0019
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0019
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0020
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0020
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0020
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0020
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0020
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0021
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0021
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0021
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0021
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0021
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0022
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0022
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0023
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0023
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0023
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0023
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0023

E Zhao, S. Qin and G. Yang et al./Expert Systems With Applications 126 (2019) 41-53 53

Ye, H., Li, W,, & Miao, E (2016). An effective heuristic for no-wait flow shop produc-
tion to minimize makespan. Journal of Manufacturing Systems, 40, 2-7.

Yu, J.-M., Huang, R., & Lee, D.-H. (2017). Iterative algorithms for batching and
scheduling to minimise the total job tardiness in two-stage hybrid flow shops.
International Journal of Production Research, 55(11), 1-17.

Zar,]. H. (1999). Biostatistical analysis. Prentice Hall.

Zhao, F, Chen, Z., Wang,]., & Zhang, C. (2017a). An improved MOEA/D for multi-ob-
jective job shop scheduling problem. International Journal of Computer Integrated
Manufacturing, 30(6), 616-640.

Zhao, F, Liu, Y., Zhang, Y., Ma, W.,, & Zhang, C. (2017b). A hybrid harmony search
algorithm with efficient job sequence scheme and variable neighborhood search
for the permutation flow shop scheduling problems. Engineering Applications of
Artificial Intelligence, 65, 178-199.

Zhao, F, Liu, H., Zhang, Y., Ma, W., & Zhang, C. (2018a). A discrete Water Wave Op-
timization algorithm for no-wait flow shop scheduling problem. Expert Systems
with Applications, 91, 347-363.

Zhao, F, Liu, Y., Zhang, C., & Wang,]. (2015a). A self-adaptive harmony PSO search
algorithm and its performance analysis. Expert Systems with Applications An In-
ternational Journal, 42(21), 7436-7455.

Zhao, F, Qin, S., Zhang, Y., Ma, W., Zhang, C., & Song, H. (2019). A two-stage differ-
ential biogeography-based optimization algorithm and its performance analysis.
Expert Systems with Applications, 115, 329-345.

Zhao, F,, Shao, Z., Wang,]., & Zhang, C. (2016). A hybrid differential evolution and es-
timation of distribution algorithm based on neighbourhood search for job shop
scheduling problems. International Journal of Production Research, 54(4), 1-22.

Zhao, F, Xue, F, Zhang, Y., Ma, W.,, Zhang, C., & Song, H. (2018b). A hybrid algorithm
based on self-adaptive gravitational search algorithm and differential evolution.
Expert Systems with Applications, 113, 515-530.

Zhao, F, Zhang,]., Zhang, C., & Wang,]. (2015b). An improved shuffled complex
evolution algorithm with sequence mapping mechanism for job shop schedul-
ing problems. Expert Systems with Applications, 42(8), 3953-3966.

http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0024
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0024
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0024
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0024
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0024
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0025
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0025
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0025
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0025
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0025
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0026
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0026
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0027
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0027
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0027
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0027
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0027
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0027
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0028
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0028
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0028
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0028
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0028
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0028
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0028
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0029
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0029
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0029
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0029
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0029
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0029
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0029
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0030
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0030
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0030
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0030
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0030
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0030
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0031
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0031
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0031
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0031
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0031
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0031
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0031
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0031
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0032
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0032
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0032
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0032
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0032
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0032
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0033
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0033
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0033
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0033
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0033
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0033
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0033
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0033
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0034
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0034
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0034
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0034
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0034
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0034

	A factorial based particle swarm optimization with a population adaptation mechanism for the no-wait flow shop scheduling problem with the makespan objective
	1 Introduction
	2 No-wait flow shop scheduling problem (NWFSP)
	3 The factorial representation based PSO with population adaptation (FPAPSO)
	3.1 Original particle swarm optimization
	3.2 The factorial representation
	3.2.1 Factorial encoding schema
	3.2.2 Factorial decode schema

	3.3 Initial population
	3.4 VNS local search
	3.5 Population adaptation
	3.6 Proposed FPAPSO algorithm
	3.6.1 Particle (individual)

	3.7 Runtime analysis of FPAPSO

	4 The experimental results and analysis
	4.1 Parameter setting
	4.2 Results and analysis

	5 Conclusion and future research
	Credit authorship contribution statement
	Acknowledgment
	References

