
Expert Systems With Applications 126 (2019) 41–53

Contents lists available at ScienceDirect

Expert Systems With Applications

journal homepage: www.elsevier.com/locate/eswa

A factorial based particle swarm optimization with a population

adaptation mechanism for the no-wait flow shop scheduling problem

with the makespan objective

Fuqing Zhao

a , ∗, Shuo Qin

a , Guoqiang Yang

a , Weimin Ma

b , Chuck Zhang

c , Houbin Song

a

a School of Computer and Communication Technology, Lanzhou University of Technology, Lanzhou 730050, China
b School of Economics and Management, Tongji University, Shanghai 20 0 092, China
c H. Milton Stewart School of Industrial & Systems Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA

a r t i c l e i n f o

Article history:

Received 19 October 2018

Revised 21 January 2019

Accepted 22 January 2019

Available online 14 February 2019

Keywords:

Particle swarm optimization

No-wait flow shop scheduling problem

Factorial representation

Runtime analysis

Variable neighborhood search

Makespan

a b s t r a c t

The no-wait flow shop scheduling problem (NWFSP) performs an essential role in the manufacturing in-

dustry. In this paper, a factorial based particle swarm optimization with a population adaptation mecha-

nism (FPAPSO) is implemented for solving the NWFSP with the makespan criterion. The nearest neighbor

mechanism and NEH method are employed to generate a potential initial population. The factorial rep-

resentation, which uniquely represents each number as a string of factorial digits, is designed to transfer

the permutation domain to the integer domain. A variable neighbor search strategy based on the insert

and swap neighborhood structure is introduced to perform a local search around the current best so-

lution. A population adaptation (PA) mechanism is designed to control the diversity of the population

and to avoid the particles being trapped into local optima. Furthermore, a runtime analysis of FPAPSO is

performed with the level-based theorem. The computational results and comparisons with other state-

of-the-art algorithms based on the Reeve’s and Taillard’s instances demonstrate the efficiency and perfor-

mance of FPAPSO for solving the NWFSP.

© 2019 Elsevier Ltd. All rights reserved.

1

t

t

c

c

s

e

p

d

i

F

2

(

o

t

t

M

c

w

o

s

m

c

f

p

l

a

(

2

h

N

t

m

o

h

0

. Introduction

Shop scheduling plays an essential role in a manufacturing sys-

em as excellent scheduling planning improves the productivity of

he company. The shop scheduling problem includes the single ma-

hine scheduling problem with a single processor, the single ma-

hine scheduling problem with parallel processors, the flow shop

cheduling problem and the job shop scheduling problem (Zhao

t al., 2017; Zhao et al., 2016 , 2015). The flow shop scheduling

roblem (FSP) is a common model in the field of industrial pro-

uction, and it is also a hot issue in academic research. The FSP

s roughly divided into the following categories. The permutation

SP (PFSP) (Zhao et al., 2017), no-wait FSP (NWFSP) (Zhao et al.,

018), blocking FSP BFSP) (Ribas et al., 2017), no-idle FSP (NIFSP)

 Shao et al., 2017 a,b) and hybrid FSP (HFSP) (Yu et al., 2017).

In the NWFSP, n jobs are processed in the same order on each

f m machines and there is no waiting time between two consecu-

ive operations until the whole process is done. Therefore, the start

ime of a job on a machine has to be delayed to satisfy the no-wait
∗ Corresponding author.

E-mail addresses: Fzhao20 0 0@hotmail.com (F. Zhao), mawm@tongji.edu.cn (W.

a), chuck.zhang@isye.gatech.edu (C. Zhang), 523712418@qq.com (H. Song).

t

s

N

t

ttps://doi.org/10.1016/j.eswa.2019.01.084

957-4174/© 2019 Elsevier Ltd. All rights reserved.
onstraints. The NWFSP has been proved to be a NP-hard problem

hen the number of machines is more than two with the objective

f minimizing the makespan (Garey et al., 1976). It is difficult to

olve the NWFSP by branch-and-bound or mixed integer program-

ing methods with a reasonable time cost as the problem size in-

reases. Therefore, it is necessary to try various efficient methods

or solving the NWFSP.

Evolutionary algorithms (EA), which solve complex optimization

roblems without gradient information, have gained wide popu-

arity. Recently, various EAs and the variants of classical EAs, such

s particle swarm optimization (Zhao et al., 2015), harmony search

 Zhao et al., 2017), biogeography-based optimization (Zhao et al.,

019), and the gravitational search algorithm (Zhao et al., 2018),

ave been proposed. Various heuristics are proposed to solve the

WFSP as they obtain high-quality solutions within a reasonable

ime limit. The heuristic algorithms are roughly classified into two

ain categories, constructive heuristics and meta-heuristics.

Various potential constructive heuristics have been developed

ver the last few decades to solve the NWFSP. The LC heuris-

ic, which is based on the principle of job insertion, was de-

igned by Laha et al. (2009) for minimizing makespan in the

WFSP. The experimental results demonstrated the LC heuris-

ic outperforms four other compared algorithms in the litera-

https://doi.org/10.1016/j.eswa.2019.01.084
http://www.ScienceDirect.com
http://www.elsevier.com/locate/eswa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2019.01.084&domain=pdf
mailto:Fzhao2000@hotmail.com
mailto:mawm@tongji.edu.cn
mailto:chuck.zhang@isye.gatech.edu
mailto:523712418@qq.com
https://doi.org/10.1016/j.eswa.2019.01.084

42 F. Zhao, S. Qin and G. Yang et al. / Expert Systems With Applications 126 (2019) 41–53

fi

t

m

d

s

S

2

p

j

i

a

p

T

w

π

C

o

t

r

l

j

D

C

t

π

T

E

C

m

C (π) = min { C (π) | π ∈ �} (4)
ture. The average departure time (ADT) heuristic was proposed

by Ye et al. (2016) . The ADT outperforms the other compared al-

gorithms on the large scale problems. An average idle time (AIT)

heuristic, which achieved smaller deviations in the same computa-

tional complexity compared with the existing heuristics, was pro-

posed by Ye et al. (2017) to minimize makespan in the NWFSP. In

addition, several other constructive heuristics for the regular flow

shop were also employed to solve the NWFSP, such as the NEH

which was proposed by Nawaz et al. (1983) .

Various noteworthy meta-heuristics have been developed for

solving the NWFSP. A tabu-mechanism improved iterated greedy

(TMIIG) algorithm was proposed by Ding et al. (2015) . In the

TMIIG, a tabu-based construction strategy and several neighbor-

hood structures are employed to improve the quality of solutions.

Recently, the block-shifting simulated annealing (BSA) algorithm,

which combines a block-shifting mechanism and the framework

of simulated annealing, was designed by Ding et al. (2015) . The

NWFSP model was formulated as the asymmetric traveling sales-

man problem (ATSP) by Lin et al. (2016) . Two potential meta-

heuristics were proposed to solve the NWFSP problem. An ex-

tended framework of a meta-heuristic based on the teaching-

learning process was introduced by Shao et al. (2017) . The com-

putational results demonstrate that the proposed framework out-

performs the other compared algorithms. The DWWO algorithm

was designed by Zhao et al. (2018) . In the DWWO, the opera-

tors of the original water wave algorithm were redefined to adapt

to the NWFSP. A flower pollination algorithm was proposed by

Qu et al. (2018) for solving the NWFSP.

The particle swarm optimization (PSO) algorithm, which mim-

ics the swarm behaviors such as birds flocking and fish school-

ing, was proposed by Eberhart et al. (1995) . Owing to the sim-

ple concept and high efficiency of PSO, the PSO algorithm has

been successfully applied to various complex optimization prob-

lems. The SHSPSOS algorithm, which combines the harmony search

algorithm and the particle swarm optimization, was proposed by

Zhao et al. (2015) for solving the global numerical problem. The

convergence performance of SHSPSOS was also analyzed with the

Markov model. The particle swarm optimization algorithm with

the cross operation (PSOCO) was proposed by Chen et al. (2018) .

The experimental results demonstrated that the PSOCO is a com-

petitive optimizer regarding solution quality and efficiency. The

PSO algorithm was also applied to solve the NWFSP. The discrete

particle swarm optimization was presented by Pan et al. (2008) to

solve the NWFSP with both the makespan and the total flow time

criteria. The particle swarm optimization based on a memetic al-

gorithm (MA) was proposed by Akhshabi et al. (2014) to solve the

NWFSP. The experimental results demonstrate that the PSO-based

MA is a robust algorithm.

Although the PSO algorithm and its variants were widely ap-

plied to solve the combinational optimization problems which in-

clude the NWFSP, little attention has been paid to employing the

factorial representation to transfer the permutation domain to the

integer domain. In this paper, a factorial particle swarm optimiza-

tion algorithm with a population adaptation mechanism is pro-

posed to solve the NWFSP with the minimization of the makespan

objective. First, the factorial representation mechanism is intro-

duced to transfer the permutation domain to the integer domain

uniquely. Second, the NN + NEH method is employed to construct

an initial population with desirable quality. Third, the VNS local

search method is applied to exploit the promising area around

the current best solution obtained by PSO. Finally, the population

adaptation (PA) operator is designed to control the diversity of

the population and to avoid the particles being trapped into lo-

cal optima. The runtime of FPAPSO is also analyzed according to

the level-based theorem. The experimental results based on the

Reeve’s and Taillard’s instances demonstrate the effectiveness, ef-
ciency and robustness of the proposed algorithm. The contribu-

ions of this paper are listed as follows.

• The NN + NEH method is introduced to initialize the potential

population of PSO.
• The factorial representation is designed to transfer the permu-

tation domain to the integer domain.
• The variable neighborhood search, which is based on the insert

and swap neighborhood structure, is applied to search around

the current best solutions in each generation.
• The population adaptation mechanism is designed to control

the diversity of the population and avoid the particles being

trapped into a local optimal.

This paper is organized as follows. Section 2 describes the

odel of the NWFSP. The proposed FPAPSO algorithm is intro-

uced in detail in Section 3 . In Section 4 , the computational re-

ults on the well-known benchmark and comparisons are provided.

ection 5 summarizes the conclusion and future research.

. No-wait flow shop scheduling problem (NWFSP)

The NWFSP is described as follows. n jobs, which have the same

rocessing routes, are processed through m machines, Each job

 (j = 1, 2, …, n) has a predefined processing time on each machine

 (i = 1, 2, …, m). A job is only processed at most by one machine

nd each machine executes one job at any moment. Each job is

rocessed without waiting time between consecutive operations.

he start of a job is delayed on the first machine to satisfy the no-

ait constraint. In this paper, the goal is to find a feasible schedule

which has the minimum makespan for the n jobs in finite time.

The π = [π (1), π (2), …, π (n)] represents a schedule sequence.

 max denotes the makespan of π . p (π (i), k) is the processing time

f the i th job on the k th machine. The no-wait constraint ensures

hat the completion time distance between adjacent jobs is just

elated to the processing time of the two jobs. Thus, it is calcu-

ated between each pair of jobs. The completion time distance D (i,

) from job i to job j is calculated as Eq. (1) .

 (i, j) = max
k =1 , ... m

{

m ∑

h = k
(p (j, h) − p (i, h)) + p (i, k)

}

(1)

The makespan of the feasible schedule π is obtained as Eq. (2) .

 max (π) =

n ∑

i =2

D (π(j − 1) , π(j)) +

m ∑

k =1

p (π(1) , k) (2)

A virtual job whose processing time is set to zero is introduced

o simplify the calculation process. The sequence π is replaced by

′ = [π (0), π (1), π (2), …, π (n)]. D (π(0) , π(1)) =

m ∑

k =1

P (π(1) , k) .

herefore, the computational formula of makespan is simplified as

q. (3) .

 max (π) =

n ∑

i =2

D (π(j − 1) , π(j)) +

m ∑

k =1

p (π(1) , k)

=

n ∑

i =2

D (π(j − 1) , π(j)) + D (π(0) , π(1))

=

n ∑

i =1

D (π(j − 1) , π(j)) (3)

The � denotes the set of all possible permutations. The mini-

um makespan is described as follows.

∗

max max

F. Zhao, S. Qin and G. Yang et al. / Expert Systems With Applications 126 (2019) 41–53 43

3

a

3

s

p

t

x

.

t

t

p

s

p

i

f

i

V

w

w

w

t

p

c

g

w

w

g

c

c

r

[

X

t

o

x

v

e

m

v

w

s

r

E

u

t

a

p

(

o

a

3

s

v

F

a

P

p

s

a

t

w

w

t

t

p

t

i

L

l

r

a

s

p

v

i

a

w

a

i

f

o

J

n

p
. The factorial representation based PSO with population

daptation (FPAPSO)

Symbols used mostly in this section are summarized as follows:

D F a list of possible digits of the factorial base in ascending order, f = {0, 1,

…, n − 1}

PT a factorial vector, PT = {(n − 1)!, (n − 2)!, …, 1!, 0}

MRT

the maximum run time criteria of PSO

L the population size of FPAPSO

x i g the i th particle in the swarm at generation g

X g a set of L particles at generation g , X g = { x 1 g , x
2
g , . . . , x

L
g }

π i
g corresponding permutation of x i g

�g corresponding permutations of X g , �g = { π1
g , π

2
g , . . . , π

L
g }

V g velocity set of X g

.1. Original particle swarm optimization

Particle swarm optimization (PSO) (Eberhart et al., 1995) is a

warm intelligence algorithm, which simulates the behavior of the

article to find an optimal solution. In the PSO, each particle has

wo types of attribute. One is the position of the particle X i = (x i ,1 ,

 i ,2 , ..., x i,D). The other one is the velocity of particle V i = (v i ,1 , v i ,2 ,

.., v i,D). The new velocity consists of the old velocity, the velocity

owards the best position found by this particle and the velocity

owards the global best position of the population. In the PSO, each

article maintains a memory to keep track of its previous best po-

itions. The previous positions are distinguished as pbest and gbest.

best is the previous best position found by particle X so far. gbest

s the previous global best position found by the whole swarm so

ar. i is the number of iterations. The equation of velocity update

s as follows.

 i +1 = w V i + c 1 r 1 (pbest − X i) + c 2 r 2 (gbest − X i) (5)

here w is the inertia factor and is calculated as follows.

 = w max − w max − w min

b
× t (6)

here t denotes the current number of generation, b denotes the

otal number of iterations. It is necessary to note that in the ex-

erimental phase of this paper, a maximum run time termination

riteria is used to compare the algorithms. Therefore, w in the g th

eneration is calculated in a new way as follows.

 = w max − w max − w min

MRT
× tim e g (7)

here time g denotes the run time from the beginning of the al-

orithm to the current generation, MRT is the maximum run time

riteria. Eq. (7) produces the same effect as Eq. (6) .

The c 1 and c 2 in Eq. (5) are positive constants, called the ac-

eleration coefficients, r 1 and r 2 are two uniformly distributed

andom numbers in the interval [0, 1]. And the V i belongs to

 − V max ,V max].

The equation for position update is as follows.

 i +1 = X i + V i +1 (8)

The position of each particle is limited in [LB, UB]. Where UB is

he upper bound, LB is the lower bound. The equation of judgment

f the segment limit is as follows.

 i, j

{

UB

x i, j

LB

x i, j > UB

LB ≤ x i, j ≤ UB

x i, j < LB

(9)

 i, j

{

v max

v i, j

−v max

v i, j > v max

−v max ≤ v i, j ≤ v max

v i, j < −v max

(10)
a
In general, the limit of the maximum velocity v max is selected

mpirically as the characteristics of the problem. In this paper, the

aximum velocity v max is calculated as follows.

 max = (UB − LB) /L (11)

here UB and LB are the upper bound and the lower bound re-

pectively. L is the population size.

The full steps of the standard PSO are described as follows.

Step 1: Initialize the position and velocity of the population

andomly.

Step 2: Update the velocity according to Eq. (5) .

Step 3: Update the position according to Eq. (8) .

Step 4: Judgment of the segment limit according to Eq. (9) and

q. (10) . Let the particle equal the UB if the particle is over the

pper bound. Let the particle equal the LB if the particle is below

he lower bound.

Step 5: Repeat Step 2 to Step 4 until the termination conditions

re met.

In the following subsections, a factorial representation based

article swarm optimization with a population adaptation

FPAPSO) is proposed for solving the NWFSP. The three main

perators, initial population, VNS local search and PA, are detailed

s follows.

.2. The factorial representation

The standard particle swarm optimization was designed to

olve global numerical optimization problems. Therefore, the real-

alued encoding schema was employed by the standard PSO.

or the NWFSP, the real-number encoding schema is not suit-

ble. In the discrete particle swarm optimization proposed by

an et al. (2008) , the permutation-based representation was em-

loyed to map the particle swarm optimization to the discrete

earch space. However, the framework of PSO has been modified

s the inertia factor and acceleration coefficients were modified

o probability instead of coefficients. The ranked-order-value (ROV)

as employed by the hybrid particle swarm optimization (HPSO),

hich was introduced by Liu et al. (2007) , for the NWFSP. Although

he HPSO retains the framework of PSO, the search space was ex-

ended by ROV. In this paper, the factorial representation is em-

loyed to map the PSO for the NWFSP.

The factorial number system, called factorial system, is a fac-

orial based mixed radix numeral system adapted to number-

ng permutations. Factorial representation was first presented by

aisant (1888) . The idea of the factorial representation closely

inked to that of the Lehmer code (Knuth, 1998). The factorial rep-

esentation uniquely represents each number between 0 and n ! − 1

s a string of factorial digits. Each position i, i ∈ [1, …, n], is as-

igned a digit taking a value between 0 and i . The base of each

osition increases with i and so does its place value. The place

alue at position i is (i − 1)!. The factorial a (!) is transformed into

 th decimal form a (10) as follows.

 (10) =

n ∑

i =1

a (!) i × (i − 1) ! (12)

here a (!) i denotes the i th element of a (!) . The factorial represents

 simple numbering system.

The factorial numbering system is unambiguous. Each number

s represented in only one permutation as the sum of consecutive

actorials multiplied by the index is always the next factorial minus

ne. There are n jobs, and the job sequence is π = { J 1 , J 2 ,…, J j − 1 ,

 j ,…, J n }. There is a natural mapping between the integers 0, 1, …,

 ! − 1 (or equivalently the factorial numbers with n digits) and the

ermutations of n jobs in lexicographical order when the integers

re expressed in factorial representation. The mapping has been

44 F. Zhao, S. Qin and G. Yang et al. / Expert Systems With Applications 126 (2019) 41–53

Table 1

The natural mapping between job permutations,

factorial codes and decimal numbers when n = 3.

Job permutation Factorial code Decimal

{1, 2, 3} {0, 0, 0} 0

{1, 3, 2} {0, 1, 0} 1

{2, 1, 3} {1, 0, 0} 2

{2, 3, 1} {1, 1, 0} 3

{3, 1, 2} {2, 0, 0} 4

{3, 2, 1} {2, 1, 0} 5

Table 2

The encoding process of “[2, 3, 1] → [1, 1, 0] → 3”.

Iteration (i) i = 1 i = 2 i = 3

Permutation (J i) 2 3 1

P {1, 2 ,3} {1, 3 } { 1 }

D F {0, 1 ,2} {0, 1 ,2} { 0 ,1,2}

Factoradic (F) 1 1 0

Decimal (N) 0 + 1 × 2! = 2 2 + 1 × 1! = 3 3 + 0 × 0! = 3

Table 3

The decoding process of 3 → [1, 1, 0] → [2, 3, 1].

Iteration (i) i = 1 i = 2 i = 3

Decimal (N) 3 ÷ 2! = 1 · · · 1 1 ÷ 1! = 1 · · · 0 0

Factoradic (F) 1 1 0

D F {0, 1 ,2} {0, 1 ,2} { 0 ,1,2}

P {1, 2 ,3} {1, 3 } { 1 }

Permutation (J i) 2 3 1

A

3

t

(

e

T

t

l

h

f

p

p

a

i

a

u

c

t

p

s

v

j

�

j

S

t

a

c

A

A

p

p

t

t

r

l

t

f

termed the Lehmer code. For example, the complete mapping with

n = 3 is shown in Table 1 .

3.2.1. Factorial encoding schema

The encoding process is described as follows. First, consider a

job permutation π = { J 1 , J 2 ,…, J j − 1 , J j ,…, J n }, a list of possible dig-

its of the factorial base in ascending order D F = {0, 1, …, n − 1}, an

ascending job list P = {1, 2, …, n } which contains all jobs, and an

empty factorial sequence F . Second, the first job J 1 is chosen from

the permutation π and the corresponding digit in P is found si-

multaneously. Suppose that the digit J 1 is the i th digit in P , the

digit J 1 is removed from P and the corresponding i th digit f i in D F

is put to the end of factorial list F . Therefore, the second job J 2 in

π is carried out continuously and the above procedure is repeated

until all jobs are accessed. Finally, the factorial list F is transformed

to its decimal form N according to the Eq. (10) . The pseudo code

of the encode process is given in Algorithm 1 . The computational

complexity of the encode process is O(n).

The mapping of [2, 3, 1] → [1, 1, 0] → 3 based on Algorithm 1 is

demonstrated in Table 2 .

3.2.2. Factorial decode schema

The detailed decode process is devised in two phases. The fac-

torial decimal form N is transformed to factorial in the first phase.

The corresponding factorial is transformed into a job permutation

π in the second phase.

The first phase is described as follows. Consider a factorial dec-

imal form in N , a factorial vector PT = {(n − 1)!, (n − 2)!, …, 1!, 0}

and an empty factorial list F . First, the i th digit PT i is carried out

from left to right in PT which is not greater than N , and put i − 1

zero elements into F . Second, the quotient of N / PT i is put into F and

N is equal to the remainder of N / PT i . The above two steps are re-

peated until N is equal to zero. Afterward, a factorial list of natural

number N is obtained.

The second phase is described as follows. Consider a factorial

list F obtained from the first phase, an empty job permutation π ,

a list of possible digits of the factorial base in ascending order

D F = {0, 1, …, n − 1} and an ascending job list P = {1, 2, …, n } which

contains all jobs. First, the first element F 1 in F is chosen, and this

digit in D F is found. Suppose that this digit D F i is the i th digit in

D F . The i th digit P i in P is removed and put to the end of the job

permutation list π . Second, the next element F i in F is chosen and

the above procedure is repeated until all the jobs are accessed. Fi-

nally, the corresponding job permutation is obtained. The pseudo

code of the decoding process is given in Algorithm 2 . The compu-

tational complexity of the encoding process is O(n).
The mapping of “3 → [1, 1, 0] → [2, 3, 1]” based on

lgorithm 2 is demonstrated in Table 3 .

.3. Initial population

L initial solutions (or sequences) are generated by using

he nearest neighbor (NN) (Fink et al., 2003) and the NEH

 Nawaz et al., 1983) to accelerate the convergence speed of the

arly stages. L is the population size which is set by the author.

he NN and the NEH are two popular heuristics. The NN heuris-

ic appends an unscheduled job with a minimal delay time to the

ast job of the partial scheduled sequence at each step. The NEH

euristic consists of three steps. The three steps are described as

ollows.

Step 1: Sort the jobs according to the descending sums of their

rocessing times and generate a sequence π .

Step 2: Take the first two jobs J 1 , J 2 of π and evaluate the two

ossible sub-sequences. Then, the better sub-sequence is selected

s the current sequence.

Step 3: Take job three and find the best sub-sequence by plac-

ng it in all possible positions of the sub-sequence that have been

lready scheduled. After that, repeat Step 3 with J j (j = 4, 5, …, n)

ntil all jobs are sequenced.

The idea of using the NN heuristic and the NEH heuristic to

onstruct an initial population was presented in the discrete par-

icle swarm optimization (DPSO) algorithm. The NN + NEH are em-

loyed to obtain the L initial solutions in this paper. The detailed

teps of NN + NEH are described as follows.

Step 1: Pick out L jobs S = { J 1
S
, J 2

S
, . . . , J L

S
} randomly from a uni-

ersal set P = { J 1 P , J
2
P , . . . , J

n
P
} which includes all of the jobs;

Step 2: The j th job J j , j = 1, 2, …, L , from S is taken as the first

ob in the j th candidate sequence π j of the initial permutations on

0 which is denoted as J 1 π j
. Then, apply the NN heuristic to find a

ob J 2 π j
with a minimal delay time to J 1 π j

;

Step 3: Apply the NEH heuristic with the other n − 2 jobs from

 1 (i.e., exclude J 1 π j
and J 2 π j

) to build a sub-sequence S NEH ;

Step 4: The final permutation π j is constructed by appending

he S NEH to the first two scheduled jobs [J 1 π j
, J 2 π j

] . Repeat the Step 2

nd Step 3 until L initial permutations were obtained. The pseudo

ode of the initial population is given in Algorithm 3 .

The pseudo code of the NN + NEH strategy is given in

lgorithm 3 . After L permutations are provided by the NN + NEH,

lgorithm 1 is employed to code them to L integers as the initial

opulation for PSO. Therefore, the PSO is able to start the search

rocess in the integer domain.

Since the proposed FPAPSO algorithm uses particles to explore

he search space, particle velocity is also needed to update the par-

icle’s position during iterations of the algorithm. The FPAPSO algo-

ithm initially generates a random integer number as particle ve-

ocity to upgrade the particle’s position. Note that velocities have

o be in an appropriate interval so that the particle remains in the

easible space after being upgraded.

F. Zhao, S. Qin and G. Yang et al. / Expert Systems With Applications 126 (2019) 41–53 45

3

t

V

t

s

l

N

t

i

t

t

t

t

a

(

(

g

a

p

r

3

h

j

T

m

l

w

t

s

i

e

X

d

b

D

p

t

c

a

a

t

t

g

p

x

w

w

f

μ

σ

U

s

t

d

a

t

t

t

c

a

3

P

l

a

3

d

i

s

3

g

3

π

A

s

m

3

e

3

t

n

3

n

n

h

p

l

r

r

a

g

m

p

t

d

F

M
.4. VNS local search

VNS is a recent meta-heuristic for combinatorial and global op-

imization problems (Mladenovi et al., 2008). The basic idea of the

NS is to allow a systematic change in neighborhood structures of

he current best (incumbent) solution within a randomized local

earch. Its effectiveness was tested on several combinatorial prob-

ems.

The DPSO was proposed by Pan et al. (2008) for solving the

WFSP with both makespan and total flowtime criteria respec-

ively. The VNS algorithm was embedded in the DPSO algorithm

n the proposed DPSO to improve solution quality. The experimen-

al results show that the VNS enhances solution quality substan-

ially. Therefore, the VNS method is modified and embedded into

he proposed FPAPSO algorithm in this paper. There are two struc-

ures of neighborhoods of the VNS, called the swap neighborhood

nd insert neighborhood, which are defined as follows:

1) Swap two jobs between the ηth and k th dimensions, η � = k

(Swap).

2) Remove the job at the ηth dimension and insert it in the k th

dimension η � = k (Insert).

The pseudo code of the VNS is given in Algorithm 4 . An inte-

er particle is decoded into a permutation by using Algorithm 2 to

pply the VNS local search. In the same way, the local optimum

ermutation of VNS is encoded into an integer solution which is

eturned to PSO.

.5. Population adaptation

Since each solution represented by factorial encoding schema

as at most two neighbors, a local optimum appears when the ad-

acent three neighbors are arranged in a non-monotonically order.

here are numerous local optima in the factorial representation. It

eans a naive PSO is easily trapped into a local optimum. Popu-

ation adaptation (PA) is able to control the population’s diversity

hen the population diversity is poor and enables the population

o continue to evolve when it has been in stagnation. PA is de-

igned to improve population diversity and avoid particles stacking

nto local optima in the PSO. The details of the PA are as follows.

Euclidean distance in the one-dimensional integer domain is

mployed to measure the population diversity in PA. Suppose that

 g = { x 1 , x 2 ,…, x L } is the population at the g th generation, where L

enotes the population size. The sum of the Euclidean distances D g

etween particles of X g is calculated as follows.

 g =

L −1 ∑

i =1

L ∑

j= i +1

∣∣x i − x j
∣∣ (13)

When the population has converged at a local optimum, the

opulation diversity is low. In this case, the change in D g between

wo generations is not significant. If D g remains unchanged over T

onsecutive generations, it represents that the PSO cannot gener-

te any better trials to escape from the local optimum. Since the

lgorithm enters into a stable stagnation state will take more time

o escape the local optimum when the population size becomes

oo large, T is set to equal to L instead of a constant. Then the al-

orithm needs to regenerate the population at this time. The new

opulation X ′ g = { x ′ 1 , x ′ 2 , . . . , x ′ L } is generated as follows.

′
i = N (μ, σ) i = 1 , 2 , . . . , L (14)

here N denotes generating a normal distribution random number

ith a mean of μ and a variance of σ which were calculated as

ollows.

=

pbest − LB

UB − LB

(15)
=

(
1 − T im e g

MRT

)
· max (μ, 1 − μ) (16)

In Eq. (15) , pbest is the best position among the individuals,

B and LB are the upper bound and lower bound of the search

pace respectively. From the encode scheme, the factorial code is

he smallest value 0 when all the jobs are sorted in ascending or-

er. The factorial code is the largest value n ! − 1 when all the jobs

re sorted in descending order. Therefore, the LB is set to 0 and

he UB is set to n ! − 1. In Eq. (16) , Time g denotes the run time from

he beginning of the algorithm to the current generation g. MRT is

he maximum run time criteria.

Algorithm 5 illustrates the framework of the PA. Note that, the

urrent best solution is not affected by the PA, it means the PA

pproach does not re-diversify the current best solution.

.6. Proposed FPAPSO algorithm

The FPAPSO is a heuristic algorithm which is combined with

SO, PA and VNS to solve a factorial represented F m

| nwt | C max prob-

em. On the basis of the original PSO, the basic elements of FPAPSO

re summarized as follows.

.6.1. Particle (individual)

x i g denotes the i th particle in the swarm at generation g . Un-

er the factorial representation, a particle is represented by a digit

n the natural number domain. Note that a particle always corre-

ponds to a job permutation.

.6.1.1. Swarm (population). X g is a set of L particles in generation

 , X g = { x 1 g , x
2
g , . . . , x

L
g } .

.6.1.2. Permutation. A particle x i g corresponds to a permutation
i
g using encoding (see also Algorithm 1) and decoding (see also

lgorithm 2) process. Similarly, a swarm X g with L particles corre-

ponds to a set �g , �g = { π1
g , π

2
g , . . . , π

L
g } which contains L per-

utations π i
g , i = 1, 2, …, L .

.6.1.3. Fitness value of particle. A particle has a fitness value which

quals the makespan of the corresponding job replacement.

.6.1.4. Search space. Assume there are n jobs, all the permuta-

ions are uniquely mapped to the natural numbers space: [0, 1, …,

 ! − 1]. The whole search space of FPAPSO is [0, 1, …, n ! − 1].

.6.1.5. Neighborhood. The neighborhood of FPAPSO is a natural

umber denoted (NND) neighborhood structure. Therefore, the two

umbers around the current integer are the only two neighbor-

oods of the current particle.

Based on the above several important components of our pro-

osed algorithm, the steps of FPAPSO algorithm are described be-

ow:

Step 1: Initialize parameters . Set the values of the control pa-

ameters: L (number of particles), MRT (maximum run time crite-

ia), c 1 and c 2 (velocity constants), w min and w max (parameters to

ffect inertia weight), c = 0 (population distance unchanged times),

 = 1 (the current number of iterations).

Step 2: Initialize population . Generate a velocity set L initial per-

utations using the NN + NEH detailed in Algorithm 3 . Evaluate the

ermutations to get the pbest, gbest and D 0. Then the L permuta-

ions must be encoded as L integers using the encoding process

etailed in Algorithm 1 . The L integers form the initial population.

inally, randomly generate a feasible initial velocity set.

Step 3: Move the particles . Update the population by Eq. (8) .

ap the new population to their corresponding permutation and

46 F. Zhao, S. Qin and G. Yang et al. / Expert Systems With Applications 126 (2019) 41–53

P

ζ

λ

w

E

P

C

A

f

v

a

ζ

≥

s

p

l

ζ

g

E

(

u

m

d

c

t

w

s

4

s

(

m

evaluate the makespan of each new permutation. Update the vari-

ables pbest and gbest .

Step 4: VNS local search . Get a local optimal permutation by us-

ing the VNS local search algorithm (detailed in Algorithm 4) for

the permutation of the pbest solution. Then replace pbest particles

with the corresponding integer of the local optimal permutation.

Step 5: Population adaptation . Apply the PA algorithm (detailed

in Algorithm 5) for the current population to get the adapted pop-

ulation. Then replace the current population with the adapted pop-

ulation corresponding integers.

Step 6: Check termination condition . If the termination condition

is met, stop. Return the value of variable gbest and the correspond-

ing permutation as a final solution. Otherwise, proceed to Step 7.

Step 7: Update the particle velocity . Update the particle velocity

set using Eq. (5) . g = g + 1, Go to Step 3.

The pseudo code of the proposed algorithm is presented in

Algorithm 6 .

3.7. Runtime analysis of FPAPSO

In EAs, it is a fundamental problem to analyze the impact of pa-

rameter settings and the characteristics of the fitness landscape on

time complexity. The level-based theorem is a technique tailored

to population-based algorithms. The level-based theorem provides

the upper bound of expected time that the algorithm discovers an

element in the last level A m

when the following conditions are sat-

isfied. First, the probability of creating an individual at level j + 1 or

higher is at least z j when some individuals of the population have

reached the level j or a higher level. Second, the number of in-

dividuals at level j + 1 tends to increase. Finally, the population is

sufficiently large. In this subsection, the upper bound on the run-

time of the FPAPSO is analyzed with the level-based theorem.

Level-based Theorem (Corus et al., 2014). Given a partition

(A 1 , ���, A m

) of χ , define T: = min {t λ||P t ∩ A m

| > 0}, where for all

t ∈ N , P t ∈ χλ is the population in generation t. If there exist z 1 ,…,

z m − 1 , δ ∈ (0, 1], and γ 0 ∈ (0, 1) such that for any population P ∈
χλ,

(G1) for each level j ∈ [m − 1], if |P ∩ A ≥j | ≥ γ 0 λ, then

Pr
(
y ∈ A ≥j+1

)
≥ z j ,

(G2) for each level j ∈ [m − 2], and all γ ∈ (0, γ 0], if |P ∩ A ≥j | ≥
γ 0 λ and |P ∩ A ≥j + 1 | ≥ γ λ, then

Pr
(
y ∈ A ≥j+1

)
≥ (1 + δ) γ ,

(G3) the population size λ ∈ satisfies

λ ≥
(

4

γ0 δ2

)
ln

(
128m

z ∗δ2

)
where z ∗ : = min j ∈ [m − 1] {z j }, then

E [T] ≤
(

8

δ2

) m −1 ∑

j=1

(
λ ln

(
6 δλ

4 + z j δλ

)
+

1

z j

)
.

Definition. . Given a partition (A 1 , ���, A m

), if (
 1 ,…,
 λ) is em-

ployed to denote the sorted level of search points in P, the proba-

bility of selection is

ζ (γ , P) :=

λ∑

i=1

p (i | P) ·
[
P (i) ∈ A ≥
 γ λ

]
Corollary. . Given a partition (A 1 , ���, A m

) of χ , define T:

= min {t λ||P t ∩ A m

| > 0}, where for all t ∈ N , P t ∈ χλ is the popu-

lation in generation t. There exist s, …, s m − 1 , s ∗ , p 0 , ε, δ ∈ (0, 1],

and a constant γ 0 ∈ (0, 1] such that

(C1) for each level j ∈ [m − 1]

P F PAPSO (y ∈ A ≥j+1 | x ∈ A j) ≥ s j
(C2) for each level j ∈ [m − 1]

 F PAPSO (x ∈ A ≥j | x ∈ A j) ≥ p 0

(C3) for any population P ∈ (χ \ A m

) λ and γ ∈ (0, γ 0]

(γ , P) ≥ (1 + δ) γ

p 0

(C4) the population size satisfied

≥
(

4

γ0 δ2

)
ln

(
128m

γ0 δ2 s ∗

)
here s ∗ : = min j ∈ [m − 1] {s j }, then,

 [T] ≤
(

8

δ2

) m −1 ∑

j=1

(
λ ln

(
6 δλ

4 + γ0 s j δλ

)
+

1

γ0 s j

)
.

roof. . According to the guidelines provided by

orus, et al. (2014) , the level-based theorem is applied.

Step 1: The partition A j : = {j} for all j ∈ [m] is employed, where

 m

is the goal state.

Step 2: Assume that |P ∩ A ≥j | > γ 0 λ and |P ∩ A ≥j + 1 | ≥ γ λ> 0.

It suffices to pick the individual x ∈ |P ∩ A k | for any k ≥ j + 1

rom the personal best library and mutate it by FPAPSO to an indi-

idual in A ≥k . As (C2) and (C3), the probability of such an event is

t least

(γ , P) p 0 ≥ (1 + δ) γ

Condition (G2) is satisfied with the same γ 0 and δ as in (C3).

Step 3: Assume that |P ∩ A j | ≥ γ 0 λ. The individual x k for any k

j + 1 is chosen with probability ζ (γ 0 ,P).

If x ∈ A j , then the FPAPSO will by (M1) upgrade x to A ≥j + 1 with

 j .

If x ∈ A ≥j + 1 , the FPAPSO leaves the individual x in A ≥j + 1 with

robability with p 0 .

Then the probability of producing the individual in A ≥j + 1 is at

east

(γ0 , P) min

{
s j , p 0

}
≥ ζ (γ0 , P) s j p 0 > γ0 s j

Condition (G1) is satisfied with z j = γ 0 s j and z ∗ = γ 0 s ∗
Step 4: Given that z ∗ = γ 0 s ∗ , (C4) implied (G3).

Step 5: Condition (G1-3) are satisfied, the level-based theorem

ives

 [T] ≤
(

8

δ2

) m −1 ∑

j=1

(
λ ln

(
6 δλ

4 + γ0 s j δλ

)
+

1

γ0 s j

)

The expected time to reach the last level A m + 1 is less than

8

δ2

) m −1 ∑

j=1

(
λ ln

(
6 δλ

4 + γ0 s j δλ

)
+

1

γ0 s j

)

However, a general formula, which is employed to calculate the

pper bounds of expected time, is provided instead of a deter-

ined upper bound. The upper bounds of various instances are

ifferent since the different parameter settings and the different

haracteristics of the fitness landscape. Besides, the motivation of

his paper is to provide an algorithm which finds better solutions

ithin a limited time. The upper bound of each instance is not

uitable to set the runtime stop criterion in the experiments.

. The experimental results and analysis

The FPAPSO algorithm for the NWFSP was coded using Java. The

imulation experiments were carried out on a personal computer

PC) with Intel (R) Core (TM) i7-670 0 CPU 3.4 GHz and 8.0 0GB

emory with a Windows Server 2012 Operating System.

F. Zhao, S. Qin and G. Yang et al. / Expert Systems With Applications 126 (2019) 41–53 47

s

c

R

w

c

c

a

t

k

l

r

r

t

a

A

B

w

L

i

p

m

R

F

t

a

l

4

a

t

fi

t

a

f

2

a

m

i

t

p

4

w

m

a

(

(

f

e

p

t

a

i

v

2

T

s

i

h

i

w

u

t

t

c

M

m

s

t

s

t

c

i

t

o

F

e

F

s

t

T

m

i

b

0

a

a

s

s

e

a

p

f

f

f

A

F

o

T

F

2

i

t

r

n

t

α

a

a

a

C

a

i

w
In this section, the FPAPSO algorithm is compared with the

tate-of-the-art algorithms. 141 instances are employed to test the

onsidered algorithms: (i) 21 instances provided by Reeves (1995) :

ec01 to Rec41 that comprises seven sub-sets of different sizes

hich range from 20 jobs and 5 machines to 75 jobs and 20 ma-

hines. (ii) 120 instances provided by Taillard (1993) : Ta001-Ta120

onsists of 12 subsets of different sizes which range from 20 jobs

nd 5 machines to 500 jobs and 20 machines. The relative devia-

ion (RD) between the solutions from the algorithms and the best-

nown solutions which was provided by Lin et al. (2016) were col-

ected to compare the performance of FPAPSO with the other algo-

ithms visually. The average relative deviation (ARD) and the best

elative deviation (BRD) are employed to measure the quality of

he experimental results. The value of ARD and BRD are calculated

s follows.

RD =

1

R

R ∑

r=1

C r − C R
∗

C R
∗ × 100 (17)

RD =

C best − C R
∗

C R
∗ × 100 (18)

here C R
∗ denotes the best solutions, which are provided by

in et al. (2016) . In this paper, each testing case is executed 30

ndependent times for comparison. Therefore, the number of inde-

endent runs R is set to 30. C r is the solution of the r th experi-

ent in 30 independent runs. C best is the best solution found over

 runs, namely, C best is the minimum value of C r .

This section includes two subsections. The parameters setting of

PAPSO is discussed in the first subsection. In the second subsec-

ion, the performance of FPAPSO, HMM-FPA, DWWO, TMIIG, DPSO

nd IIGA are tested on the 21 Reeve instances and the 120 Tail-

ard’s instances.

.1. Parameter setting

Five key control parameters should be tuned for the proposed

lgorithm to initiate the search. Values of five parameters affect

he performance of the algorithm. A sensitivity analysis of the

ve parameters has been performed to determine the effect of

he different parameter combinations on the performance of the

lgorithm. Based on the parameter sensitivity analysis approach,

our problems of different sizes (20 × 10, 50 × 20, 100 × 20 and

00 × 20) are chosen from Taillard’s instances. Then, the problems

re solved with different combinations of parameter values. The

ulti-factor analysis of variance (ANOVA) method is introduced to

nvestigate the experimental results. Based on the ANOVA results,

he following experimentally derived values are proposed for the

arameters: L = n, c 1 = 2, c 2 = 2, w max = 1, w min = 0.5.

.2. Results and analysis

In the following experiment, the proposed FPAPSO is compared

ith state-of-the-art algorithms for solving the NWFSP with the

inimization of the makespan criterion. The compared algorithms

re HMM-FPA Qu et al., 2018), DWWO (Zhao et al., 2018), TMIIG

 Ding et al., 2015 a,b), DPSO VND (Pan et al., 2008 a,b) and IIGA

 Pan et al., 2008 a,b). Besides, the PAPSO is also designed to per-

orm the effectiveness of factorial representation. The only differ-

nce between the FPAPSO and PAPSO is that the PAPSO uses a

ermutation representation instead of factorial representation. For

hese algorithms, two standard benchmark sets of different scales

re applied to test the performance of the above algorithms. (i) 21

nstances designed by Reeves (1995) : Rec01 to Rec41 that are di-

ided into seven subsets of different size problems, ranging from

0 × 5 to 75 × 20. ((3) 120 instances designed by Taillard (1993) :
a001 to Ta110 that range from 20 × 5 to 200 × 20. These in-

tances are available from the OR library website. Each instance is

ndependently run 30 times for every algorithm for comparison.

The algorithms chosen for comparison except for the HMM-FPA

ave been carefully re-implemented in Java by all the details given

n the original papers which are run on the same platform and

ith the same maximum run time (MRT) termination condition

sed by the FPAPSO. The results of HMM-FPA are carried out from

he original paper. In various papers, the MRT value is only related

o the number of jobs. However, the amount of computation in-

reases as the number of machines increases. In this paper, the

RT condition of each compared algorithm is set to n /2 × m × 30

illiseconds (ms). In this experiment, all the algorithms converged

lowly or stagnated when the run time reaches MRT.

For the Reeves instances, the computational results obtained by

he six compared algorithms are listed in Table 4 . The best re-

ults of each instance are given in boldface. From Table 4 , most of

he BRD values obtained by the FPAPSO are better than the other

ompared algorithms or at least equal only except in the Rec41

nstance. On the Rec41 instance, the BRD value 0.07 yielded by

he FPAPSO algorithm is greater than the corresponding value 0.00

btained by HMM-FPA. Besides, the ARD values obtained by the

PAPSO are better than the other compared algorithms or at least

qual. The ARD of the 21 Reeves instances are shown in Fig. 1 .

rom Fig. 1 , the performance of FPAPSO outperforms the other

tate-of-the-art algorithms on Reeve’s instances.

The Taillard’s instances are carried out to further demonstrate

he performance of FPAPSO for solving the large-scale problems.

he computational results of six compared algorithms are sum-

arized in Table 5 . The best results of each measure are given

n boldface. From Table 5 , The average BRD value 0.42 obtained

y the FPAPSO is better than the corresponding value 0.52, 0.76,

.56, 0.97, 0.72 obtained by HMM-FPA, DWWO, TMIIG, DPSOVND

nd IIGA, respectively. The ARD value 0.58 obtained by FPAPSO is

lso better than the 0.74, 0.95, 0.67, 1.15, 0.95 obtained by other

tate-of-the-art algorithms. For the large-scale instances, FPAPSO is

uperior to the other algorithms under the same run time. The av-

rage convergence curves of the algorithms on TA60, TA80, TA100

nd TA120 are shown in Fig. 2 to demonstrate the convergence

erformance of FPAPSO clearly. From the Fig. 2 , the FPAPSO has

aster convergence speed than the compared algorithms on the dif-

erent size Taillard’s instances. Fig. 3 and Fig. 4 are the Gantt charts

or the optimal results obtained by FPAPSO for TA01 and TA11. The

RD of 12 different scales of the Taillard’s instances is shown in

ig. 5 . From the Fig. 5 , the performance of FPAPSO outperforms the

ther state-of-the-art algorithms on Taillard’s instances.

Rigorous statistical studies based on the ARD values for the 120

aillard’s instances are carried out to verify the effectiveness of the

PAPSO for solving the NWFSP. The Friedman’s test (García et al.,

009) is performed to rank the algorithms. The Friedman’s test is

mplemented based on the SPSS software. The average ranking of

he above six algorithms obtained by Friedman’s test is summa-

ized in Table 6 . As shown in Table 6 , there is a statistically sig-

ificant difference in the optimization results depending on which

ype of algorithm is chosen, χ2 (2) = 351.806, p = 6.3191 E − 73 with

= 0.05 and α = 0.01. FPAPSO has the best ranking among the six

lgorithms. The additional Bonferroni-Dunn’s method is applied as

 post hoc procedure to evaluate the significance level of all the

lgorithms.

D = q α

√

k (k + 1)

6 N

. (19)

In Eq. (19) , parameters k and N are the number of algorithms

nd number of instances, respectively. They are k = 6 and N = 120

n the experimental evaluations. When α = 0.05, q α is 2.576 and

hen α = 0.01, q α is 3.091 from Table B.16 (two-tailed α(2)) of

48 F. Zhao, S. Qin and G. Yang et al. / Expert Systems With Applications 126 (2019) 41–53

Table 4

Comparison of results based on Reeve’s benchmark set.

Instance FPAPSO PAPSO HMM-FPA DWWO TMIIG DPSO VND IIGA

BRD ARD BRD ARD BRD ARD BRD ARD BRD ARD BRD ARD BRD ARD

Rec01 1526 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Rec03 1361 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Rec05 1511 0.00 0.00 0.00 0.05 0.00 0.04 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00

Rec07 2042 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00

Rec09 2042 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Rec11 1881 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Rec13 2545 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00

Rec15 2529 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Rec17 2587 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Rec19 2850 0.00 0.00 0.00 0.16 0.00 0.00 0.00 0.40 0.00 0.00 0.00 0.11 0.00 0.03

Rec21 2821 0.00 0.11 0.00 0.16 0.00 0.15 0.00 0.16 0.00 0.03 0.00 0.11 0.00 0.19

Rec23 2700 0.00 0.00 0.00 0.14 0.00 0.01 0.00 0.13 0.00 0.00 0.00 0.07 0.00 0.05

Rec25 3593 0.00 0.00 0.00 0.09 0.00 0.09 0.00 0.00 0.00 0.00 0.00 0.17 0.00 0.00

Rec27 3431 0.00 0.00 0.00 0.21 0.00 0.07 0.00 0.02 0.32 0.32 0.00 0.26 0.00 0.12

Rec29 3291 0.00 0.00 0.00 0.07 0.00 0.13 0.00 0.24 0.00 0.14 0.00 0.06 0.00 0.00

Rec31 4307 0.00 0.11 0.39 0.77 0.13 0.20 0.23 0.41 0.09 0.29 0.12 0.39 0.51 0.78

Rec33 4424 0.00 0.23 0.09 1.00 0.00 0.54 0.27 0.62 0.00 0.40 0.25 0.72 0.79 1.24

Rec35 4397 0.00 0.12 0.39 1.22 0.00 0.83 0.14 0.39 0.00 0.21 0.00 0.39 0.41 0.78

Rec37 8008 0.00 0.36 0.67 1.07 0.25 0.67 0.24 0.48 0.31 0.55 0.27 0.69 1.14 1.43

Rec39 8419 0.09 0.33 0.44 0.96 0.20 0.65 0.40 0.67 0.17 0.48 0.19 0.70 0.91 1.34

Rec41 8437 0.07 0.41 0.65 0.98 0.00 0.69 0.17 0.49 0.07 0.48 0.36 0.71 1.11 1.24

Fig. 1. The ARD of FPAPSO, FPAPSO, HMMFPA DWWO, TMIIG, DPSO, IIGA for Rec instances.

Table 5

Comparison of results based on Taillard’s benchmark set.

n × m FPAPSO PAPSO HMM-FPA DWWO TMIIG DPSO VND IIGA

BRD ARD BRD ARD BRD ARD BRD ARD BRD ARD BRD ARD BRD ARD

20 × 5 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00

20 × 10 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00

20 × 20 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.01

50 × 5 0.16 0.37 0.62 0.95 0.22 0.37 0.26 0.50 0.33 0.47 0.58 0.79 0.13 0.37

50 × 10 0.01 0.20 0.27 0.68 0.04 0.18 0.17 0.39 0.15 0.27 0.47 0.69 0.08 0.22

50 × 20 0.02 0.12 0.26 0.56 0.05 0.37 0.07 0.31 0.17 0.27 0.34 0.64 0.05 0.22

100 × 5 0.54 0.85 1.93 2.36 0.62 1.13 2.29 2.65 0.68 0.79 1.26 1.53 0.92 1.26

100 × 10 0.40 0.65 1.26 1.77 0.47 0.97 0.51 0.74 0.50 0.65 0.95 1.25 0.58 0.87

100 × 20 0.32 0.63 1.02 1.35 0.41 0.69 0.35 0.56 0.49 0.72 0.95 1.21 0.50 0.81

200 × 10 1.24 1.47 3.06 3.51 1.26 1.49 1.98 2.34 1.16 1.34 2.03 2.26 1.86 2.18

200 × 20 0.83 0.98 2.33 2.72 1.04 1.36 0.97 1.22 1.07 1.22 1.79 2.07 1.34 1.60

500 × 20 1.53 1.71 4.38 4.71 2.10 2.31 2.45 2.69 2.19 2.32 3.26 3.41 3.13 3.46

Avg 0.42 0.58 1.26 1.55 0.52 0.74 0.76 0.95 0.56 0.67 0.97 1.15 0.72 0.92

Table 6

Ranking of the compared algorithm obtained through Friedman’s test.

Algorithm Mean Rank Chi-Square p-value

FPAPSO 2.45

PAPSO 6.26

HMMFPA 3.17 351.806 6.3191E-73

DWWO 4.06

TMIIG 2.93

DPSO 5.23

IIGA 3.92

Crit. Diff. 0.7360

Crit. Diff. 0.8768

(

c

i

g

t

g

p

r

T

t
 Zar, 1999). Fig. 6 sketches the results of Bonferroni-Dunn’s test

onsidering the FPAPSO as the control algorithm. There is a signif-

cant difference between the FPAPSO and the other compared al-

orithms. In summary, the above comparison clearly demonstrates

hat the FPAPSO is significantly better than the other compared al-

orithms.

The multiple-problem Wilcoxon’s test (García et al., 2009) is

erformed to further check the behaviors of the above six algo-

ithms. The statistical analysis results are summarized in Table 7 .

he FPAPSO is considered as the control algorithm. From Table 7 ,

he FPAPSO provides higher R + values than R − values in all the

F. Zhao, S. Qin and G. Yang et al. / Expert Systems With Applications 126 (2019) 41–53 49

Ta060 Ta080

Ta100 Ta120

Fig. 2. The convergence curves on Taillard’s benchmark.

Fig. 3. The Gantt chart of the solution for Ta01.

50 F. Zhao, S. Qin and G. Yang et al. / Expert Systems With Applications 126 (2019) 41–53

Fig. 4. The Gantt chart of the solution for Ta11.

Fig. 5. The ARD of FPAPSO, PAPSO, HMMFPA DWWO, TMIIG, DPSO, IIGA for Ta instances.

Fig. 6. Rankings obtained through the Friedman test and graphical representation.

F. Zhao, S. Qin and G. Yang et al. / Expert Systems With Applications 126 (2019) 41–53 51

Table 7

Results of the multiple-problem Wilcoxon’s test at α= 0.05 and α= 0.01 significance

level.

FPAPSO vs. R + R- Z p-value α = 0.05 α = 0.01

PAPSO 4950.00 0.00 –8.64 5.69E–18 Yes Yes

HMMFPA 3171.00 924.00 –4.52 6.00E–06 Yes Yes

DWWO 4277.50 378.50 –7.12 1.04E–12 Yes Yes

TMIIG 2845.50 1159.50 –3.45 5.62E–04 Yes Yes

DPSO VND 4095.00 0.00 –8.24 1.74E–16 Yes Yes

IIGA 3928.50 257.50 –7.27 3.72E–13 Yes Yes

a “Yes” indicates that statistically significant can be observed under the correspond-

ing α.

Algorithm 1 Factorial encode process.

Input: Job permutation π = { J 1 , J 2 ,…, J j − 1 , J j ,…, J n }

Start

Initialize: D F = {0, 1, …, n − 1}, P = {1, 2, …, n }, F = {}, N = 0

For i = 1: n

index = find (P [index] = = J i) // Find the first position index from left to right

in P which makes P [index] equal to J i
F [i] = D F [index]

remove P [index] from P

N = N + F [i] × D F [n − i + 1]!

End

End

Output: Natural number N

Algorithm 2 Factorial decode process.ab.

Inputs: Natural number: N , Number of jobs: n

Start

Initialize: PT = {(n − 1)!, (n − 2)!, …, 1!, 0}, D F = {0, 1, …, n − 1}, P = {1, 2, …,

n }, F = {}, π = {}

index = find (PT [index] ≤ N) // Find the first position index from left to right

in PT which makes PT [index] not greater than N

F [1: index − 1] = 0

While N � = 0

F [index] = quotient(N / PT [index])

N = remainder (N / PT [index])

index = index + 1

End

For i = 1: n

index = find (F, F [index] = = D F [i])

π [i] = P [index]

remove P [index] from P

End

End

Output: Job permutation: π

Algorithm 3 Initialize permutations.

Inputs: A set of all jobs P = { J 1 P , J
2
P , . . . , J

n
P } , the population size L

Start

Randomly pick out L jobs S = { J 1 , J 2 ,…, J L } from P

For j = 1: L

J 1 π j
= J 1 P

J 2 π j
= N N (J 1 π j

)

S ′ = S − { J 1 π j
, J 2 π j

}
π j = [J 1 π j

, J 2 π j
] + NEH(S ′)

� j
0

= π j

End

End

Output: The initial permutations: �0

Algorithm 4 VNS local search.

Inputs: A job permutation π = { J 1 , J 2 ,…, J j − 1 , J j ,…, J n }, number of jobs: n

Start

Initialize: η = rand (1, n), k = rand (1, n), η � = k, i = 0

S = insert (π , η, k) // perturbation

While i < n (n − 1)

S ′ = SwapLocalSearch (S)

S ′ = InseartLocalSearch (S ′)
If fitness (S ′) ≤ fitness (S)

S = S ′
i = 0

Else

i = i + 1

End

End

If fitness (S) ≤ fitness (π)

π = S

End

End

Output: Local optimum permutation π

c

a

t

D

a

l

p

i

m

s

s

a

Algorithm 5 Population adaptation procedure.

Inputs: Population at the g th generation: X g = { x 1 , x 2 ,…, x L } , distance of the population

generation

Start

Compute D g using Eq. (13)

If D g = = D g − 1

c = c + 1

Else

c = 0

End

If c ≥ L

Get μ using Eq. (15)

Get σ using Eq. (16)

Regenerate population X ′ g = { x ′ 1 , x ′ 2 , . . . , x ′ L } using Eq. (14)

Select an individual from X ′ g randomly and replace it with pbest

c = 0

End

X g = X
′
g

End

Outputs: Adapted population X g , distance unchanged times c
ases. The statistical significance is observed in all the comparisons

s the Wilcoxon’s test with α = 0.05 and α = 0.01, which means

hat FPAPSO is significantly better than HMM-FPA, DWWO, TMIIG,

PSO VND and IIGA on solving F m

| nwt | C max problems with α = 0.05

nd α = 0.01.

As to the above comparisons and discussion, there are the fol-

owing conclusions. First, the PSO with factorial representation ex-

lores the search space of the Reeves instances and the Taillard’s

nstances efficiently. Second, although the factorial representation

ethod presents difficulties to exploit the best areas, the VNS local

earch method allows the PSO to exploit a promising area of the

earch space. Third, the population adaption allows the proposed

lgorithm to avoid being trapped into a local optimum since the
of last generation: D g − 1 , distance unchanged times c, pbest of current

52 F. Zhao, S. Qin and G. Yang et al. / Expert Systems With Applications 126 (2019) 41–53

Algorithm 6 Proposed FPAPSO algorithm.

Input: A set of all jobs P = { J 1 P , J
2
P , . . . , J

n
P }

Start

Initialize: L, MRT, c 1 , c 2 , w min , w max , v max , c = 0, g = 1

�0 = InitializePopulation (P, L)

Evaluate �0 to get the pbest, gbest, D 0
X 0 = FactoradicEncode (�0)

Generate feasible initial velocity V 1
While time g < MRT

X g = X g − 1 + V g
�g = FactoradicDecode (X 0 , n)

Evaluate �g to update the pbest, gbest

VNS (pbest)

X g = FactoradicEncode (�g)

[X g ,c] = PA (X g ,D g − 1 , c)

Calculate feasible V g + 1
g = g + 1

End

End

Outputs: The optimal makespan gbest and corresponding permutation

FactoradicDecode (gbest)

A

r

I

e

(

P

t

o

R

A

C

C

D

D

E

G

K

L

L

L

M

N

P

P

S

S

T

Y
factorial represented landscapes are locally highly rugged. How-

ever, the FPAPSO takes a lot of extra run time in the encoding and

decoding processes even though the computational complexity of

these two methods are both O(n). The proposed FPAPSO is effec-

tive, efficient and robust for solving the NWFSP with the minimiza-

tion of makespan criterion.

5. Conclusion and future research

In this paper, a factorial based particle swarm optimization

with a population adaptation mechanism is proposed to solve the

NWFSP. First, the factorial representation is employed as a novel

coding method to transfer the permutation domain to an integer

domain. Second, the NN + NEH method is introduced to generate

potential permutations for PSO to start the search process. Third,

the VNS local search method is introduced to exploit the promising

area around the current best solution obtained by PSO. Finally, the

population adaptation mechanism is designed to control the diver-

sity of the population and avoid the particles being trapped into

local optima. The computational results and comparisons based on

the Reeve’s and the Taillard’s instances demonstrate the effective-

ness, efficiency and robustness of the proposed FPAPSO.

The proposed FPAPSO algorithm also has the following limita-

tion. The FPAPSO takes a lot of extra run time in the encoding and

decoding processes as the existing generic computer architecture

is difficult to deal with the large integer operations brought by a

factorial.

Further work is divided into following directions. First, it is nec-

essary to alter the factorial representation to reduce the complex-

ity of the algorithm. Second, it is possible to employ the factorial

representation to encode various evolutionary algorithms, which

includes a differential evolution algorithm and biogeography-based

optimization, to deal with the NWFSP. Finally, the FPAPSO algo-

rithm could be applied for solving other complex scheduling prob-

lems, such as the flexible flow shop scheduling problems, the job

shop scheduling problems and the hybrid flow shop scheduling

problems in the literature.

Credit authorship contribution statement

Fuqing Zhao: Funding acquisition, Investigation, Supervision,

Writing - review & editing. Shuo Qin: Investigation, Software,

Writing - original draft. Guoqiang Yang: Conceptualization, For-

mal analysis. Weimin Ma: Methodology, Resources. Chuck Zhang:

Project administration, Writing - review & editing. Houbin Song:

Visualization.
cknowledgment

This work was financially supported by the National Natu-

al Science Foundation of China under grant numbers 61663023 .

t was also supported by the Key Research Programs of Sci-

nce and Technology Commission Foundation of Gansu Province

 2017GS10817), Lanzhou Science Bureau project (2018-rc-98),

ublic Welfare Project of Zhejiang Natural Science Founda-

ion(LGJ19E050 0 01), Wenzhou Public Welfare Science and Technol-

gy project (G20170016), respectively.

eferences

khshabi, M. , Tavakkoli-Moghaddam, R. , & Rahnamay-Roodposhti, F. (2014). A hy-

brid particle swarm optimization algorithm for a no-wait flow shop scheduling
problem with the total flow time. International Journal of Advanced Manufactur-

ing Technology, 70 (5–8), 1181–1188 .

hen, Y. , Li, L. , Xiao, J. , Yang, Y. , Liang, J. , & Tao, L. (2018). Particle swarm opti-
mizer with crossover operation. Engineering Applications of Artificial Intelligence,

70 , 159–169 .
orus, D. , Dang, D.-C. , Eremeev, A. V. , & Lehre, P. K. (2014). Level-Based Analysis of

Genetic Algorithms and Other Search Processes. In T. BartzBeielstein, J. Branke,
B. Filipic, & J. Smith (Eds.), Parallel Problem Solving from Nature-PPSN XIII 8672

(pp. 912–921) (Eds.) .

ing, J. Y. , Song, S. , Gupta, J. N. D. , Rui, Z. , Chiong, R. , & Cheng, W. (2015a). An
improved iterated greedy algorithm with a Tabu-based reconstruction strategy

for the no-wait flowshop scheduling problem. Applied Soft Computing, 30 , 604–
613 .

ing, J.-Y., Song, S., Zhang, R., Zhou, S., & Wu, C., A Novel Block-shifting Sim-
ulated Annealing Algorithm for the No-wait Flowshop Scheduling Problem

2015b.
berhart, R. , & Kennedy, J (1995). A new optimizer using particle swarm theory.

International Symposium on MICRO Machine and Human Science (pp. 39–43) .

Fink and Voß. (2003). Solving the continuous flow-shop scheduling problem by
metaheuristics. European Journal of Operational Research, 151 (2), 400–414 .

García, S. , Molina, D. , Lozano, M. , & Herrera, F. (2009). A study on the use of non–
parametric tests for analyzing the evolutionary algorithms’ behaviour: A case

study on the CEC’2005 Special Session on Real Parameter Optimization. Journal
of Heuristics, 15 (6), 617–644 .

arey, M. R. , Johnson, D. S. , & Sethi, R. (1976). The Complexity of Flowshop and

Jobshop Scheduling. Mathematics of Operations Research, 1 (2), 117–129 .
nuth, D. E. (1998). Art of Computer Programming, Volume 3: Sorting and Searching

(2nd Edition).
aha, D. , & Chakraborty, U. K. (2009). A constructive heuristic for minimizing

makespan in no-wait flow shop scheduling. International Journal of Advanced
Manufacturing Technology, 41 (1–2), 97–109 .

aisant, C.-A. (1888). Sur la numération factorielle, application aux permutations.

Bull.soc.math.france, 2 , 176–183 .
in, S.-W. , & Ying, K.-C. (2016). Optimization of makespan for no-wait flowshop

scheduling problems using efficient matheuristics. Omega-International Journal
of Management Science, 64 , 115–125 .

Liu, B. , Wang, L. , & Jin, Y.-H. (2007). An effective hybrid particle swarm optimization
for no-wait flow shop scheduling. International Journal of Advanced Manufactur-

ing Technology, 31 (9–10), 1001–1011 .

ladenovi ́c, N. , & Hansen, P. (2008). Variable neighborhood search. European Journal
of Operational Research, 191 , 593–595 .

awaz, M. , Enscore, E. E., Jr , & Ham, I. (1983). A heuristic algorithm for the m -ma-
chine, n -job flow-shop sequencing problem. Omega, 11 (1), 91–95 .

an, Q.-K. , Tasgetiren, M. F. , & Liang, Y.-C. (2008a). A discrete particle swarm opti-
mization algorithm for the no-wait flowshop scheduling problem. Computers &

Operations Research, 35 (9), 2807–2839 .

an, Q.-K. , Wang, L. , & Zhao, B.-H. (2008b). An improved iterated greedy algorithm
for the no-wait flow shop scheduling problem with makespan criterion. Inter-

national Journal of Advanced Manufacturing Technology, 38 (7), 778–786 .
Qu, C. , Fu, Y. , Yi, Z. , & Tan, J. (2018). Solutions to No-Wait Flow Shop Scheduling

Problem Using the Flower Pollination Algorithm Based on the Hormone Modu-
lation Mechanism. Complexity, 2018 , 18 .

Reeves, C. R. (1995). A genetic algorithm for flowshop sequencing. Computers & Op-

erations Research, 22 (1), 5–13 .
Ribas, I. , Companys, R. , & Tort-Martorell, X. (2017). Efficient heuristics for the paral-

lel blocking flow shop scheduling problem. Expert Systems with Applications, 74 ,
41–54 .

hao, W. , Pi, D. , & Shao, Z. (2017a). An extended teaching-learning based optimiza-
tion algorithm for solving no-wait flow shop scheduling problem. Applied Soft

Computing, 61 , 193–210 .
hao, W. , Pi, D. , & Shao, Z. (2017b). Memetic algorithm with node and edge his-

togram for no-idle flow shop scheduling problem to minimize the makespan

criterion. Applied Soft Computing, 54 , 164–182 .
aillard, E. (1993). Benchmarks for basic scheduling problems. Eur.j.oper.res, 64 (2),

278–285 .
e, H. , Li, W. , & Abedini, A. (2017). An improved heuristic for no-wait flow shop to

minimize makespan. Journal of Manufacturing Systems, 44 , 273–279 .

http://dx.doi.org/10.13039/501100001809
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0001
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0001
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0001
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0001
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0001
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0002
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0002
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0002
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0002
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0002
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0002
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0002
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0002
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0003
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0003
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0003
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0003
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0003
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0003
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0004
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0004
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0004
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0004
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0004
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0004
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0004
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0004
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0005
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0005
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0005
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0005
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0006
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0007
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0007
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0007
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0007
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0007
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0007
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0008
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0008
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0008
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0008
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0008
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0009
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0009
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0009
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0009
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0010
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0010
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0011
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0011
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0011
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0011
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0012
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0012
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0012
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0012
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0012
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0013
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0013
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0013
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0013
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0014
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0014
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0014
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0014
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0014
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0015
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0015
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0015
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0015
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0015
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0016
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0016
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0016
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0016
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0016
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0017
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0017
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0017
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0017
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0017
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0017
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0018
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0018
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0019
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0019
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0019
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0019
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0019
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0020
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0020
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0020
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0020
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0020
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0021
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0021
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0021
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0021
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0021
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0022
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0022
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0023
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0023
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0023
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0023
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0023

F. Zhao, S. Qin and G. Yang et al. / Expert Systems With Applications 126 (2019) 41–53 53

Y

Y

Z

Z

Z

Z

Z

Z

Z

Z

Z

e, H. , Li, W. , & Miao, E (2016). An effective heuristic for no-wait flow shop produc-
tion to minimize makespan. Journal of Manufacturing Systems, 40 , 2–7 .

u, J.-M. , Huang, R. , & Lee, D.-H. (2017). Iterative algorithms for batching and
scheduling to minimise the total job tardiness in two-stage hybrid flow shops.

International Journal of Production Research, 55 (11), 1–17 .
ar, J. H. (1999). Biostatistical analysis . Prentice Hall .

hao, F. , Chen, Z. , Wang, J. , & Zhang, C. (2017a). An improved MOEA/D for multi-ob-
jective job shop scheduling problem. International Journal of Computer Integrated

Manufacturing, 30 (6), 616–640 .

hao, F. , Liu, Y. , Zhang, Y. , Ma, W. , & Zhang, C. (2017b). A hybrid harmony search
algorithm with efficient job sequence scheme and variable neighborhood search

for the permutation flow shop scheduling problems. Engineering Applications of
Artificial Intelligence, 65 , 178–199 .

hao, F. , Liu, H. , Zhang, Y. , Ma, W. , & Zhang, C. (2018a). A discrete Water Wave Op-
timization algorithm for no-wait flow shop scheduling problem. Expert Systems

with Applications, 91 , 347–363 .
hao, F. , Liu, Y. , Zhang, C. , & Wang, J. (2015a). A self-adaptive harmony PSO search
algorithm and its performance analysis. Expert Systems with Applications An In-

ternational Journal, 42 (21), 7436–7455 .
hao, F. , Qin, S. , Zhang, Y. , Ma, W. , Zhang, C. , & Song, H. (2019). A two-stage differ-

ential biogeography-based optimization algorithm and its performance analysis.
Expert Systems with Applications, 115 , 329–345 .

hao, F. , Shao, Z. , Wang, J. , & Zhang, C. (2016). A hybrid differential evolution and es-
timation of distribution algorithm based on neighbourhood search for job shop

scheduling problems. International Journal of Production Research, 54 (4), 1–22 .

hao, F. , Xue, F. , Zhang, Y. , Ma, W. , Zhang, C. , & Song, H. (2018b). A hybrid algorithm
based on self-adaptive gravitational search algorithm and differential evolution.

Expert Systems with Applications, 113 , 515–530 .
hao, F. , Zhang, J. , Zhang, C. , & Wang, J. (2015b). An improved shuffled complex

evolution algorithm with sequence mapping mechanism for job shop schedul-
ing problems. Expert Systems with Applications, 42 (8), 3953–3966 .

http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0024
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0024
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0024
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0024
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0024
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0025
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0025
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0025
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0025
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0025
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0026
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0026
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0027
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0027
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0027
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0027
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0027
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0027
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0028
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0028
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0028
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0028
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0028
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0028
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0028
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0029
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0029
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0029
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0029
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0029
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0029
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0029
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0030
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0030
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0030
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0030
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0030
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0030
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0031
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0031
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0031
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0031
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0031
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0031
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0031
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0031
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0032
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0032
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0032
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0032
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0032
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0032
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0033
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0033
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0033
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0033
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0033
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0033
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0033
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0033
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0034
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0034
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0034
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0034
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0034
http://refhub.elsevier.com/S0957-4174(19)30068-5/sbref0034

	A factorial based particle swarm optimization with a population adaptation mechanism for the no-wait flow shop scheduling problem with the makespan objective
	1 Introduction
	2 No-wait flow shop scheduling problem (NWFSP)
	3 The factorial representation based PSO with population adaptation (FPAPSO)
	3.1 Original particle swarm optimization
	3.2 The factorial representation
	3.2.1 Factorial encoding schema
	3.2.2 Factorial decode schema

	3.3 Initial population
	3.4 VNS local search
	3.5 Population adaptation
	3.6 Proposed FPAPSO algorithm
	3.6.1 Particle (individual)

	3.7 Runtime analysis of FPAPSO

	4 The experimental results and analysis
	4.1 Parameter setting
	4.2 Results and analysis

	5 Conclusion and future research
	Credit authorship contribution statement
	Acknowledgment
	References

