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A B S T R A C T

Scheduling has been extensively applied to remanufacturing for the organization of production activities, and it
would directly influence the overall performance of the remanufacturing system. Since the conjunction of Petri
net (PN) and artificial intelligence (AI) searching technique was demonstrated to be a promising approach to
solve the scheduling problems in manufacturing systems, this study built a transition timed PN combined with
heuristic A* algorithm to deal with the scheduling in remanufacturing. The PN was applied to the formulation of
remanufacturing process, while the A* algorithm generated and searched for an optimal or near optimal feasible
schedule through the reachability graph (RG). We took the high value-added cylinder block of engine as a
research object to minimize the makespan of reprocessing a batch used components. This scheduling problem
involved in batch and parallel processing machines, and the uncertain processing time and routes will com-
plicate the scheduling problem. Three heuristics were designed to guide the search process through the RG in PN.
To avoid state space explosion and select promising nodes, a new rule-based dynamic window was developed to
improve the efficiency of the algorithm, and this rule was examined to outperform the conventional one. Under
the determined scheduling strategy, the dynamic behavior of energy consumption rate during the processing
time was simulated using PN tool, which would assist remanufacturers to develop potential strategies for energy
efficiency improvement. Considering the uncertainty of processing time, the Monte Carlo simulation method was
adopted to statistically analyze the distributions of makespan and total energy consumption, which would
contribute to the comprehensive production scheduling and energy profile assessment for sustainable re-
manufacturing.

1. Introduction

The rapid development of vehicle industry in China enables a higher
living standard national-wide, while simultaneously brings issues like
ecological degradation and energy consumption. As a new manu-
facturing paradigm, remanufacturing has been a rising industry with
remarkable potentials and widely recognized as an outstanding end-of-
life (EOL) alternative to extend the life cycle of products [1–3]. Based
on the report from China Automotive Technology and Research Center
(CATARC), the total amount of scrapped vehicles in 2020 is projected to
be 99.5 million [4]. These substantial decommissioned vehicles are
expected to fulfill the requirement of remanufacturing sources and
enlarge the production scale of engine remanufacturing.

Different from conventional manufacturing, remanufacturing takes
the scrapped products as workblank, which results in higher inherent
uncertainties of the remanufacturing system. The decommissioned
products experienced varying operation conditions during their service
lives. Thus, a batch of returned products usually has diverse damage
types and degrees. The stochastic returns and quality variations would
lead to uncertainties in the remanufacturing process, such as operation
time, reprocessing routes, and remanufacturing cost. Guide et al. [5]
had confirmed that, compared with the traditional manufacturing, the
planning and controlling of remanufacturing system are more complex
because of the higher degree of variability. Additionally, in a typical
manufacturing process, one machine is allowed to process one com-
ponent at a time, while the remanufacturing cleaning equipment could
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clean multiple parts simultaneously, which complicates production
modeling and scheduling. Current shop scheduling problems mainly
focused on conventional manufacturing, devoid of the specific un-
certainty and operation characteristic of remanufacturing. Although the
production schedule applied to remanufacturing cases have been ad-
dressed by [6–8], they mainly involved in the optimization of com-
pletion time without the consideration of energy consumption behavior
under uncertainty. Similarly, their algorithms solving remanufacturing
scheduling problems are also the intelligent algorithms such as the ar-
tificial bee colony algorithm and genetic algorithm (GA), which is ex-
clusively appropriate for off-line scheduling due to the time-consuming
computation process, particularly solving large-scale problems. There-
fore, efficient approaches are desirable for rapidly solving scheduling
problems in the remanufacturing system.

For a specific used component, it generally has multiple re-
manufacturing routes due to varying damage types and degree.
Additionally, operations of the remanufacturing process could be pro-
cessed on parallel machines (machine flexibility), which forms a typical
flexible manufacturing system (FMS). Since FMS could be regarded as a
discrete event system (DES) including loading, unloading, processing,
and machine failures [9], the Petri net (PN), as a graphical tool and
mathematical formalism, can be an effective option to deal with the
modeling, analysis, and scheduling of remanufacturing system. For
example, the constraint that a machine processes multiple-components
at a time significantly increases the difficulty in conventional sche-
duling model, while it could be easily described and embedded in
scheduling through PN representation. PN-based scheduling has been
widely performed on diverse FMS including the semiconductor manu-
facturing [10], crude oil operation [11], and automobile manufacturing
[12]. Nonetheless, these studies were limited in conventional

manufacturing field.
The development of remanufacturing inevitably demands tre-

mendous energy consumption. Currently, energy modeling has been a
hotspot in the field of sustainable manufacturing. Energy simulation
allows the intuitive display of dynamic consumption behaviors and
examination of the effectiveness of energy conservation techniques. For
the flexible manufacturing systems, their energy consumption evalua-
tion and analysis are more complex. Additionally, the uncertainties in
manufacturing system would complicate the energy modeling. Previous
studies [13–15] have developed simulation methods to present and
characterize the dynamic energy or emission flows of the conventional
manufacturing system. However, these works merely examined the
energy or emission flows in conventional manufacturing and failed to
consider uncertain factors. With the scheduling scheme, PN technique
enables swift and holistic simulation of energy consumption under
uncertain environment. Systematic development and analysis of energy
consumption model are of great importance in manufacturing to un-
derstand realistic consumption behaviors and identify potential energy
reduction opportunities.

The literature review indicates that studies [16–19] applied PN to
remanufacturing practice were primarily for the disassembly process.
Few researches have incorporated the PN into the modeling and sche-
duling remanufacturing process. We developed a novel stochastic PN
method to model the remanufacturing of cylinder block, which is a
prerequisite of the scheduling with the objective of makespan mini-
mization. Since the flexible job-shop scheduling problem (FJSP) be-
longs to an NP-hard combinatorial optimization problem, A* search
technique based heuristic search algorithm was adopted to seek the
optimal or near-optimal solution, i.e., the firing sequence in reach-
ability graph (RG) of stochastic PN. Compared with the intelligent

Acronyms

AI Artificial Intelligence
CATARC China Automotive Technology and Research Center
DES Discrete Event System
DWS Dynamic Window Search
ECR Energy Consumption Rate
EOL End-of-Life
FIFO first in and first out
FMS Flexible Manufacturing System
GA Genetic Algorithm

HDR Heuristic Dispatching Rules
IEA International Energy Agency
LPT Longest Processing Time
MC Monte Carlo
MPRT Maximal Perfect Resource-Transition
PN Petri net
PRT Perfect Resource-Transition
PTPN Place-timed Petri net
RG Reachability graph
SPT Shortest Processing Time
TTPN Transition-timed Petri net

Fig. 1. A brief illustration of the undertaken work.
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algorithms, this algorithm enables more efficient searching and is ap-
propriate for real-time scheduling without much compromising of the
accuracy of solution [20]. In this study, we merely concerned the ma-
kespan in the determination of scheduling scheme. According to the
onsite survey at SINOTRUK, Jinan Fuqiang Power Corp. Ltd., a large
engine remanufacturer in China, the processing time of each operation
in cylinder block remanufacturing is statistically presented in the form
of triangular distribution. Under the scheduling strategy and the un-
certain processing time, the energy consumption behavior during the
processing period was simulated with PN model. The Monte Carlo (MC)
simulation results concerning total energy consumption and completion
time were statistically analyzed to figure out their distributions under
uncertainty. A brief description of the present study is shown in Fig. 1.

In this study, the stochastic PN modeling, scheduling, and analysis
were performed through the remanufacturing case of cylinder block.
Amongst the primary components of engine, cylinder bock has the
largest mass, highest price, and complicated structure. Its re-
manufacturing process is high value-added and results in significant
material and energy savings. The minimization of makespan implies
higher production efficiency and the energy modeling reveals the
evolution of energy consumption process of entire cylinder re-
manufacturing process, which would benefit the comprehensive pro-
duction scheduling and energy profile assessment for sustainable re-
manufacturing. The contributions lie in the following points: (1) to the
best of our knowledge, it is the first attempt to apply the stochastic PN
to the modeling and scheduling of remanufacturing process; (2) the
transition timed PN of FMS rather than place timed PN in previous
studies would avoid deadlocks during the dynamic variation of mark-
ings; (3) different from traditional PN using a pair-wise place and token
to represent a machine tool, the net in the present study employs dis-
tinguishable tokens in a place to represent the parallel machines, which
would simplify the model without compromising its capability of for-
malized system description; (4) a heuristic A* search algorithm is de-
veloped to efficiently obtain the scheduling scheme, and a new rule-
based window search technique is embedded in the algorithm to shrink
search space; and (5) based on the processing parameters collected from
the real-world case, the total energy consumption and makespan under
uncertainty are obtained through MC simulation.

2. Fundamental concepts and definitions

2.1. Basic definitions of PN

A PN is a bipartite, weighted, directed graph comprised of places,
transitions, and arcs that connect place and transition, either from
transition to place or the opposite [21]. It can be presented by a five-
tuple PN = (P, T, F, W, M0), where the P and T denote the finite and
disjoint set of places and transitions, respectively, namely, =P T ,
P≠ ∅, T≠ ∅. F refers to the set of directed arcs, F⊆ (P× T)∪(T× P).

W and M0 are the weighting function and initial marking, respectively.
A k-weighted arc can be regarded as k parallel unit arcs and label of the
unit arc is generally omitted. The marking or state of PN could be de-
noted by M = [M(p1), M(p2), …, M(pm)], in which the m-th element M
(pm) means the number of tokens in the pm place. A five-tuple PN would
be presented as PN = (N, M0), where N = (P, T, F, W) refers to PN
structure without initial marking. For t∈ T, · t(t · ) means the set of pre-
places (post-places) of the transition t. For p∈ P, · p(p · ) means the set of
pre-transitions (post-transitions) of the place p.

A transition t∈ T is enabled or fireable if ∀p∈ · t: M(p) ≥w(p, t), and
presented as M[t> . w(p,t) denotes the weight of directed arc from p to
t. Similarly, w(t, p) means the weight of arc from t to p. Firing of an
enabled transition would result in the generation of reachable marking
M′ from the marking M, and it could be presented as M[t > M′. The
successive marking M′ could be determined by Eq. (1). If > +M t M[i i i 1,
i= 0, 1, 2, …, k, the path from M0 to Mk+1 can be presented by a
sequential string = t t t t. .. k1 2 3 , and this path can be called a circuit if
M0 = Mk+1. The set of all possible reachable markings of PN from M0 is
denoted as R(N, M0). A sequence of firings on enabled transitions results
in a sequence of token distributions, i.e., the marking in a net, which
can be completely presented by the RG. Therefore, dynamic behaviors
of systems could be tracked by the RG of a PN [22]. In this transition
enabling rule, the underlying assumption is that unlimited amounts of
tokens can be accommodated in each place, which is also called infinite
capacity PN. As opposed to the finite capacity net considering the upper
limitation of tokens in each place, the infinite capacity net is more
frequently used in FMS cases.

=
+
+

M p

M p w p t p t t
M p w t p p t t
M p w t p w p t p t t
M p p t t

( )

( ) ( , )
( ) ( , )
( ) ( , ) ( , )
( ) (1)

2.2. Structure of the timed PN

According to the time property adopted in the PN, the timed PN
primarily includes place-timed PN (PTPN) and transition-timed PN
(TTPN) [20]. The structure of TTPN is shown in Fig. 2(a). Each tran-
sition in the PN is associated with firing time. The tokens are taken from
input places at the beginning of the firing time while deposited in the
output places at the end of firing time, and the tokens can be supposed
to remain “in” the transition during the firing time interval [23]. Dif-
ferent from the TTPN, each transition in PTPN is fired and completed
instantly and time delay is associated with the places instead of tran-
sitions. The instantaneous transition can be regarded as a special
transition with zero delay. As shown in Fig. 2(b), the instantaneous
transition ts fires immediately, and the token is considered to sojourn in
the place ts• rather than in the transition for a delay time. Subsequently,
the transition te fires to remove token in •te and deposit tokens in te•. The

Fig. 2. Structure of PNs with different types of transitions: (a) transition-timed PN, (b) place-timed PN.
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typical interpretations of places and transitions in modeling is that
place represents condition and transition refers to event [21]. Ex-
planations of TTPN and PTPN of a specific case are slightly different.
Let us take the example of milling a part on the machine tool. In the
TTPN of Fig. 2(a), place r with (without) a token indicates the milling
machine is (not) available. The transition t represents the milling pro-
cess. •tr and t•\r mean the buffers holding the input components and
milled components, respectively. In the PTPN of Fig. 2(b), both •ts\r and
te•\r indicate the buffer area for components. The place ts• represents the
component is in processing. Transitions ts and te denote the state
changes from being held in buffer to beginning of processing and from
processing to the buffer, respectively. For the PN of an FMS, places
could be classified into operation places ((o)t or t(o)) and resource places
((r)t or t(r)).

Compared with the TTPN, PTPN has been more extensively em-
ployed in the modeling and scheduling of FMS such as the work of
[10,22,24,25]. However, TTPN is more advantageous over the PTPN to
refrain from deadlock. Xing et al. [26] characterized the deadlock in a
PN model as a maximal perfect resource-transition (MPRT) circuit sa-
turated at a reachable marking. The resource-transition circuit θ, as the
name suggests, only contains transitions and resource places. In the
example of an FMS shown in Fig. 3(a), the path θ = r1t22r2t12r1 belongs
to a resource-transition circuit. Let R[θ] and T[θ] denote the sets of
resource places and transitions in the circuit θ, respectively. A circuit θ
is considered as perfect resource-transition (PRT) if ((o)T[θ]) • = T[θ]. A
PRT circuit is saturated if it satisfies the M((o)T[θ]) = M0(R[θ]). The
theorem to identify the existence of deadlock is shown as follows.
Theorem 1. [26] A system of simple sequential processes with resources is
alive if and only if, at any reachable markings of (N, M0), no PRT circuit is
saturated.

The initial marking of PTPN in Fig. 3(a) is
M0 = 3p1s + p2s + 2r1 + r2, and deadlock will occur at the reachable
marking of M= p1s + 2p11 + p21 when the circuit θ is saturated, i.e., M
((o)T[θ]) = M0(R[θ]) = 3. However, as shown in Fig. 3(b), the
equivalent TTPN of the PTPN would avoid the deadlocks in terms of the
occasions implied in Theorem 1. In the case (Fig. 3) of two operations
performed on r1 and r2, the essential reason for getting stuck in dead-
lock is that release of the processing machine (token in r) requires the
availability of next machine, while the resource would be released di-
rectly after the completion of operation.

2.3. Transition timed PN for scheduling

Let us suppose the FMS is comprised of m types of resources for the
processing of n types of components. Each type of resource generally
refers to a machine for processing one operation of parts. The resource
set is denoted as R = {ri|i= 1, 2, …, m}, where ri is the set of machines
for the ith operation. This set can be presented by ri = {ris|s= 1, 2, …,
k}, where ris means the serial number of machines for the ith operation.

The capacity of ri is marked as C(ri), namely, the amounts of parts
processed simultaneously on one machine. Let the Q = {qj| j= 1, 2, …,
n} denote a component set, in which qj is the set of type-j components to
be processed. The type-j part has a specific processing route prj which
can be expressed as a sequence of operations prj = oj1oj2oj3 … ojL(j). oji

means the ith operation in prj and L(j) denotes the length of prj. Each
machine in charge of processing one specific operation, i.e., one op-
eration requires only one resource (machine) and successive operations
need different resources. Considering that different route may share the
same operation, these identical operations emerge into one single op-
eration. In the present study, processing route of type-j component is
expressed by the firing sequence of transitions αj = tj1(r1,s1)tj2(r2,s2) …
tjL(j)(rL(j),sL(j)), where the ri,si in parentheses indicates the serial number
of machine for the transition tji. For simplicity, the resource place
holding resource (machine) ris is also denoted as ri. Initial marking of
this resource place is the length of ri set, i.e., the number of machines in
ri. Let PR and PO represent the set of all resource places and operation
places, respectively. For a marking Mf ∈ R(N, M0), if

=M t M t( ) ( )j j j f jL j0 1 ( ) and Mf (ri) = M0 (ri), Mf is called the final
marking of (N, M0). If a sequence of transitions τ satisfy M0[τ > Mf,
then τ is called a feasible schedule.

In the timed PN, delays with regard to transitions or places are se-
lected deterministically. While delays in stochastic PN are randomly
chosen under specified possibility distributions. It is assumed that the
processing time of each operation or transition, denoted by d(t(r)), sa-
tisfies triangular distribution. The data regarding these distributions
were mainly obtained from workers with abundant processing experi-
ence of over 5 years in Jinan Fuqiang Power Corp. Ltd.

3. System and problem description

3.1. Cylinder block remanufacturing

Seven primary components in an engine, also refer to “seven
pieces,” include cylinder block, cylinder head, connecting rod, crank-
shaft, flywheel housing, gearbox, and flywheel. Engine re-
manufacturing mainly engages in the first six components, while the
reassembly adopts a totally new flywheel rather than a remanufactured
counterpart. The investigated cylinder block (Fig. 4) belongs to the
WD615-87 Diesel Engine. Cylinder block possesses the largest weight
amongst these major components, which necessitates the re-
manufacturing for material conservation and cost-saving.

The remanufacturing process generally includes disassembly,
cleaning, testing, reprocessing, and reassembly. Reprocessing, however,
suggests a process chain or route in which multiple machines and
processes are performed jointly to recover the dimension and shape of
used parts. Each type of component has a specific route for reproces-
sing. After the inspection of returned cylinder blocks, two processing
routes are conducted for the slight and severe abrasion of spindle holes,

Fig. 3. An illustrative example of FMS in the form of PTPN and TTPN.
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respectively, to recover the design dimensions ( +1080
0.022 mm). Details

regarding the reprocessing of used cylinder blocks are displayed in
Fig. 5. The severely damaged parts share all the operations the slightly
damaged parts possess, and they have two additional operations (O3

and O4). Apart from the O1, O3, and O4, other operations were pro-
cessed on a single machine.

Detailed operations and relevant machines are presented in Table 1.
Considering the variations of damage degree, parallel equipment, and
workers’ operation, the processing time of each operation would be
varying during the whole processing period. As listed in Table 1, pro-
cessing time is presented in the form of triangular distribution with
three parameters: optimistic value, most plausible value, and pessi-
mistic value. Since the O1 and O8 operations are performed manually,
the rated powers of corresponding equipment are considered as 0. The
power measurements of milling machine tool [27], turning lathe [28],
and laser cladding equipment [29] indicated that the ratio of idle power
to operation power is roughly 25%–70%. In the present study, we as-
sume the idle powers of machines are 30% of the rated power due to the
difficulty of accurate power measurement of all the machines. Time
consumption of O1, O3, and O4 are significantly greater than others,
thus parallel machines are arranged for these operations.

The states of a machine usually include starting up, idle, processing,
and shutdown. Due to the short duration of starting up and shutdown,
energy consumption of these stages is neglected in the present study,
which is consistent with prior works [13,30,31] regarding the de-
termination of energy use. Therefore, energy consumption of a com-
ponent is determined by the duration of operation and idleness as well
as specific machines, as shown in Fig. 6. The area under solid line of
power (Pr

o
i and Pr

I
i ) indicates the total energy consumption of re-

processing a part. The reduction of the operation time (Tji
o) and idle

time (Tji
I ) will decline the processing time and energy consumption,

which requires an appropriate scheme of machine selection and pro-
cessing sequence. The variables of energy use and completion time are
interrelated, and we would investigate the dynamic behavior of energy
consumption under the scheduling strategy for makespan minimization.

3.2. Problem description

In this FJSP, the returned cylinder blocks are classified into two
types: severely damaged (q1) and slightly damaged parts (q2), and the
component set can be presented as Q = {q1, q2}. Their processing
routes and the relevant optional machines are presented in Fig. 5. The
common constraints of machines and jobs also applied in this sche-
duling include: (1) any jobs cannot be processed on multiple machines
at a time, (2) an operation cannot be interrupted until the completion
on the machine, (3) all the jobs have identical priority, and (4) all the
machines are available at the beginning time. In the present study, we
employed the case of remanufacturing three severely damaged and six
slightly cylinder blocks and assume that the cleaning equipment can
process three components at a time. Fig. 7 displays the PN model of
cylinder block reprocessing in the form of TTPN. The p1s and p2s denote
the starting place holding severely damaged and slightly damaged
components, respectively, and pe means place holding the completed
parts. ∀t∈ T, (o)t= t(o) = 1, (r)t= t(r) = 1. q1 = {1, 2, 3}, q2 = {4, 5, 6,
7, 8, 9}. M0(q1) and M0(q2) equal the length of q1 and q2. Different from
conventional PN, we numbered and colored all the tokens in places of
Fig. 7 and made them distinguishable. For ∀M ∈ R(N, M0), ∀p ∈ P, let
NM(p) represent the set of tokens of M(p). Thus, NM0 (p1s) = q1, NM0

(p2s) = q2, NM0 (r1) = {r11, r12, r13}, NM0 (r3) = {r31, r32}, NM0

(r4) = {r41, r42}, ∀i= 2, 5, 6, 7, 8, 9, NM0 (ri) = {ri}. For
∀f ∈ (P× T)∪(P× T), f ≠ (p18, t19)∪(t19, pe), w(f) = 1. w(p18, t19) = w
(t19, pe) = 3.

The objective of this scheduling problem is to minimize the com-
pletion time of all the used cylinder blocks. More specifically, the
completion time of the last job on machine r9, as presented in Eq. (2):

T j r j q qmin max{ ( , )| }F
9 1 2 (2)

where TF(j, r9) denotes the firing completed moment of the transition •

r9, i.e., the completion time of the jth job on machine r9. The comple-
tion moment of the last job can be presented as max{TF(j, r9)|
j ∈ q1∪q2}. Additional constraints regarding jobs and operations can be
described by Eqs. (3)–(7):

+T j r T T j r j and j q q r NM r( , ) ( , ) , ( )E
im j im

o E
im im i, 1 2 0 (3)

+

<

( )T j r T T j r j q q r and r NM r i

i

( , ) , , ( ),E
im j im

o E
i m im i m i, 1 2 0

(4)

+ =T j r T T j r j q q r NM r( , ) ( , ) , ( )E
im j im

o F
im im i, 1 2 0 (5)

= = =x j r T or x j r for i( , , ) 0 ( , ) 3, 9
j

im
j

im
(6)

x j r T r NM r and i( , , ) 1, ( ) 9
j

im im i0
(7)

where TE(j, rim) and TF(j, rim) indicate the starting time and completion

Fig. 4. The investigated cylinder block.

Fig. 5. Reprocessing routes of the cylinder block.
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time of processing jth job on the machine rim, respectively, Tj im
o
, is the

operational duration of jth job processed on the machine rim, x(j, rim, T)
is a binary variable. When x(j, rim, T) = 1, the jth job is being processed
on the machine rim at time T; otherwise, x(j, rim, T) = 0. Constraint (3)
specifies the precedence of two successive jobs on machine rim. A new
task (jth job) of a machine could only be started after the task (jth job)
completion on this machine. Constraint (4) ensures that a new opera-
tion can be started after the completion of the prior operation. Opera-
tions would be processed continuously without interruption as shown
in constraint (5). The cleaning machine (r9) in the last operation is
capable of processing three components simultaneously (constraint
(6)), and other machines can process at most one single job at a time
(constraint (7)). Considering the processing time is assumed to satisfy
triangular distribution, we adopted the optimistic, most plausible, and
pessimistic processing time values of each machine to determine the
range of makespan.

Aforementioned energy consumption of remanufacturing these jobs
primarily considers the operation part and idleness part by multiplying
the relevant power and time duration. Admittedly, the calculation
process is simple and inaccurate. However, this computation method
could roughly determine energy use and has been extensively adopted
in many prior studies [31–35]. The determination of energy-related
variables is shown in Eq. (8)–(11):

= +E T x j r T P P x j r T

nm r ft r

( ) ( , , )· ·(1 ( , , ))·

( )· ( )

rate
i m j

im im
o

i m j
im
I

im

i im (8)

=nm r NM r
else

( ) 1 ( ( ))
0i

n i n

(9)

=
=

ft r
FT r
FT r

( )
1 ( ) 1
0 ( ) 0im

im

im (10)

=E T E T( ) ( )total
T

rate0 (11)

where Pim
o and Pim

I are the power of machine rim at operational state and
idle state; Erate(T) and Etotal(T) denote the energy consumption rate and

total energy consumption of the reprocessing system at time T; nm(ri)
examines whether the machines (colored tokens) in resource place ri
should be shut down; ft(rim) tests if the machine rim have been started
up; FT(rim) records the number of jobs processed on machine rim. Eq. (8)
indicated that the entire energy power of the remanufacturing system at
every moment considering the different states of machines. As shown in
Eq. (11), the total energy consumption is the integral of total power
with respect to time.

4. Heuristic A* search algorithm

Since the processing sequence reflected in PN is essentially based on
the RG, the A* search algorithm has been applied to the PN-based
scheduling problems [24,36,37] due to its superiority in pathfinding
and graph traversal. The basic idea is to explore the state space by
examining the successors of already-explored states. As a combination
of a marking and the pertinent transition sequence, a vertex (M, α)
denotes the state and transition log of (N, M0), such that M0[α > M.
Two vertexes (M1, α1) = (M2, α2) if and only if M1 = M2 and α1 = α2.
Vertexes (M, α1) and (M, α2) indicate reaching the marking M from M0

through different paths (α1 and α2). For the determination of the best
transition or node to expand next, the heuristic function of processing
time in A* algorithm is defined as follows.
Definition 1. For a vertex (M, α), the estimated makespan f(M, α) from
initial marking M0 to goal marking Mf could be determined by Eq. (12):

= +f M g M h M( , ) ( , ) ( , ) (12)

where g(M, α) is the time fromM0 toM, i.e., firing completion of the last
transition in α; h(M, α) is the unconstrainted minimal time from M to
Mf.

When A* algorithm compares and selects candidate nodes to expand
at stateM, their g(M, α) are identical and the evaluation function f(M, α)
mainly depends on h(M, α). The design of heuristic function h(M, α) is
critical and it would directly affect the performance of A* search al-
gorithm. Calculation of h(M, α) is based on the matrix of minimal
processing time defined below.
Definition 2. ∀p and p’ ∈ PO, α is a feasible transition path from p to p’.

Table 1
Information on the operations and machines.

Serial number Equipment Operation Rated power (kWh) Time consumption (min)

r11, r12, r13 Inspection benches Test and install bowl-shaped plug 0 (69, 77, 86), (73, 80, 90), (79, 85, 94)
r2 Surface grinding Grind the crankcase 7 (42, 45, 48)
r31, r32 Spray machines Recover dimensions 20 (90, 94, 98), (93, 100, 106)
r41, r42 Boring lathes Bore bearing holes 1.1 (50, 56, 61), (56, 60, 67)
r5 Honing lathe Hone main bearing holes 1.6 (21, 25, 29)
r6 Water detector Air-leakage test 20 (22, 25, 28)
r7 Press machine Install cylinder sleeves 2.2 (9, 10, 11)
r8 Bench Install camshaft bush 0 (17, 20, 22)
r9 Cleaning machine Clean cylinder block and oil gallery 120 (28, 30, 32)

Fig. 6. Energy consumption rate during operations of the type-j component.
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Let =D d t r( ) ( ( ))i i im denote the time from p to p’ under path α, in
which ti (rim) refers the transition between p to p’, and d(ti (rim)) is the
delay of transition ti under the machine rim. The minimal processing
time from p to p’ is presented as X(p, p’) = min{D(α)| for all α}. If the
path from p to p’ is unavailable, then X(p, p’) = ∞. Therefore, X(p, p’)
can be regarded as the entry of a matrix reflecting the minimal
processing time between two operation places.

As the place pe in Fig. 7 indicates completion of jobs, for ∀p ∈ PO, X
(p, pe) is simplified as X(p). To ensure that A* search algorithm can find
the optimal solution, the heuristic function h(M, α) should be ad-
missible [38]. For ∀M ∈ R(N, M0), it satisfies 0 < h(M, α) ≤ h*(M, α), in
which denotes the actual minimum processing time from M to Mf, then
h(M, α) is admissible, i.e., h(M, α) never overestimates the time to reach
the goal marking. Three heuristic functions are proposed in this section.
Definition 3. For a vertex (M, α), a job j ∈ q1∪q2 begins its processing
on machine rim at time g(M1, α1) and with the operational duration of d
(ti(rim)). Let RT(j, rim) denote the remaining processing time of j on rim,
and RT(j, rim) = g(M1, α1) + d(ti(rim))-g(M, α). The total remaining
operation time of the system (N, M0), i.e., the gross sojourn time of jobs
on machines, at the moment g(M, α) can be presented as

=RT x j r g M RT j r( , , ( , ))· ( , )i m j im im , if the jth job is being
processed on the machine rim at time g(M, α), then x(j, rim, g(M,
α)) = 1; otherwise, x(j, rim, g(M, α)) = 0.

Definition 4. Jobs at time g(M, α) are sorted by their states: held in a
buffer or processed on a machine. ∀p ∈ PO, define the total completion
time of jobs (tokens) in place p as ∑pM(p) · X(p), and the total residual
time of jobs being processed on machine rim after their completion is
presented as ∑i∑m∑jx(j, rim, g(M, α)) · X(t(ri) · ). t(ri) is the relevant
transition of ri.

According to Definitions 3 and 4, the heuristic function h1(M, α) can
be expressed by Eq. (13) as below:

= +

+

h M x j r g M X t r RT j r

M p X p

( , ) ( , , ( , ))·( ( ( ) ) ( , ))

( )· ( )
i m j

im i im

p

1

(13)

Then, h1(M, α) shows the unconstrainted minimum residual time to
complete all the jobs at time g(M, α). The underlying assumptions re-
flecting the unconstrainted conditions mainly include: (1) all the ma-
chines are available at any time when jobs are scheduled to be pro-
cessed, and (2) all jobs are processed along the path with minimal
processing time, i.e., the most efficient machine is selected at each
operation.

In heuristic function h1(M, α), the determination of X(p) completely

disregards the waiting time of jobs for machines, or resources. To ac-
curately estimate the time of completing a job, the second heuristic
function h2(M, α) would consider the waiting of jobs from g(M, α) to the
possible beginning time of their next operations. The waiting time is
defined and calculated as follows.
Definition 5. For a vertex (M, α), if ∃ a place ri satisfiesM(ri) = 0 andM
(•(•ri)) ≠ 0, then jobs in the place •(•ri) are waiting to be processed on
machine rim ∈ NM (ri). Suppose the job j is being processed on rim at
time g(M, α), and let l(j, rim, g(M, α)) denotes the time rim is available,
i.e., releasing the job j. The minimum waiting time of jobs in •(•ri) can be
expressed as WTi = min {l(j, rim, g(M, α)) - g(M, α)| rim ∈ NM (ri)}. If M
(ri) ≠ 0, then at least one machine in the place ri is available at the time
g(M, α), i.e., the waiting time WTi = 0.

According to Definition 5, the second heuristic function h2(M, α) is
presented in Eq. (14):

= +

+ +

h M x j r g M X t r RT j r

M p X p M r WT M r

( , ) ( , , ( , ))·( ( ( ) ) ( , ))

( )· ( ) (1 sgn( ( )))· · ( ( ))
i m j

im i im

p i
i i i

2

(14)

where sgn is a sign function. Similar to the h1(M, α), the determination
of h2(M, α) also rests on the assumptions mentioned above. The primary
difference is that h2(M, α) takes one step further consideration of the
waiting time of jobs before their next operations. Both h1(M, α) and
h2(M, α) are admissible, and the proof is provided as follows.
Proof. For a vertex (M, α), the actual optimal processing sequence from
M to Mf is denoted by γ*. Let d1(j, γ*, M, α) and d2(j, γ*, M, α) be the
total processing time and waiting time of jth job during the path of γ*.
The completion time of γ* is presented as l(γ*), then it can be
found that l(γ*) - g(M, α) = d1(j, γ*, M, α) + d2(j, γ*, M, α).

= +h M d j r M d j r M* ( , ) ( , *, , ) ( , *, , )j j1 2 , j ∈ q1 ∪ q2. Let us
prove the admissibility of h2(M, α) firstly. The 1-sgn(M(ri)) in h2(M, α)
indicates that the heuristic function considers waiting time of
partial jobs at the time g(M, α), while irrespective of the waiting
time of all the jobs after the vertex (M, α). Thus,

M r WT M r d j r M(1 sgn( ( )))· · ( ( )) ( , *, , )i i i i j 2 . Since the X(t(ri)•)
in h2(M, α) hypothesizes that jobs are all processed on the
most efficient machines, it suggests that i

+x j r g M X t r RT j r( , , ( , ))·( ( ( ) ) ( , ))m j im i im ≤ ∑jd1(j, r*, M, α).
Based on these two inequations, we can conclude that h2(M,
α) ≤ h*(M, α), i.e., the h2(M, α) is admissible. Since ∀ri ∈ PR,
WTi ≥ 0 and M(•(•ri)) ≥ 0 at time g(M, α), hence h1(M, α) ≤ h2(M,
α), and then h1(M, α) is also admissible.

The third heuristic function satisfies h3(M, α) = 0 at any node (M, α)

Fig. 7. PN model of cylinder block reprocessing.
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of the system, and it is evidently admissible. Even though PN would
reach the goal marking Mf under h3(M, α), the algorithm randomly
searches the next node at (M, α). Thus, A* algorithm with h(M, α) = 0
can be regarded as reprocessing the cylinder blocks with a random
scheduling scheme. Suppose h and h’ are two heuristic functions for a
specific problem, h’ is more informed than h if they satisfy (1) both h
and h’ are admissible; and (2) h’> h at any node (M, α) [39]. Therefore,
the h2(M, α) is the most informed one amongst these three heuristic
functions.

To avoid state space explosion and select the most promising
markings for further exploration, the dynamic window search (DWS)
technique from [40] is adopted to constrain the search space of RG. In a
search window, the depth of a vertex (M, α) is expressed as depth(M, α),
i.e., the amounts of transitions have been fired, or length of α. We
suppose the variables top_depth and bottom_depth refer the maximum
and minimum depths of search window, and the distance between the
top_depth and bottom_depth is a constant D. Let the χe(l) and χu(l) denote
the quantities of explored and unexplored nodes in the l-depth. The
parameter max_node, max_size and max_top refer the maximum number
of nodes generated at each vertex (M, α), the maximum number of
nodes can be explored in each depth, and the maximum number of
nodes contained in the top_depth. Three rules [40] guide the search
window to move deeper towards the goal marking.

Rule 1: if the χu(top_depth) ≥ max_top, then abandon all the nodes at
the bottom_depth, and top_depth = top_depth + 1, bottom_depth = bot-
tom_depth + 1;

Rule 2: if the χu(bottom_depth) = 0, then top_depth = top_depth + 1,
bottom_depth = bottom_depth + 1.

Rule 3: for a new vertex (M, α) generated in l-depth (l-depth is in
current window), if the χe(l) < max_size or f(M, α) < max{f(Mi, αi)|
(Mi, αi) are the vertexes in l-depth}, then insert vertex (M, α) in l-depth,
else reject (M, α).

Since the nodes might be discarded completely at bottom_depth as
shown in Rule 1, this rule could lead to the loss of promising vertexes.
To mitigate this negative effect, we modified the Rule 1 into Rule 1′
which deletes irrelevant nodes through the comparison with average
estimated makespan. Additionally, Rule 4 should be utilized as a com-
plement if Rule 1′ is applied in DWS. If a node in a depth deeper than
top_depth possesses the least estimated f suggests that nodes of bottom
depth deleted Rule 4 are unpromising.

Rule 1′: if the χu(top_depth) ≥ max_top, for a vertex (M, α) at the
top_depth, and its estimated makespan f(M, α), the average f of un-
explored nodes at the top_depth is denoted as fav, if f(M, α)< fav, then
discard the vertex (M, α).

Rule 4: if the depth(M, α) > top_depth, then abandon all the nodes at
the bottom_depth, and top_depth = top_depth + 1, bottom_depth = bot-
tom_depth + 1;

The framework to perform the A* algorithm is performed as follows.
Step 1: Put M0 into the OPEN list, OPEN = {M0}, CLOSED = Ø;
Step 2: If the OPEN = Ø, then terminate the algorithm with failure;
Step 3: Apply Rule 2;
Step 4: Extract the first marking M in the OPEN list (M has the

minimal f value and depth(M)<top_depth) and apply Rule 4 if Rule 1′ is
adopted in step 7.4, put this marking into the CLOSED list;

Step 5: If M = Mf, then find the optimal path (sequence of transi-
tions) from the final marking Mf backwards to the initial marking M0

based on the pointers, and terminate the algorithm;
Step 6: Figure out the enabled transitions te, rank these te with es-

timated makespan f after the firing of te, in ascending order, let Te(M)
denotes the set of the top max_node transitions at the node (M, α);

Step 7: While Te(M) is not empty;
Step 7.1: remove te ∈ Te(M), determine the successive marking M’

after the firing of te, set the pointer from M’ to M, calculate the f(M’, α’)
and g(M’, α’);

Step 7.2: if M’ has been in the OPEN list, then direct the pointer
along the direction with the smallest g(M’, α’). If M’ has been in the

CLOSED list, then ignore this M’, go to step 7;
Step 7.3: ifM’ is neither in OPEN list nor the CLOSED list, then apply

Rule 3 to determine whether put it into the OPEN list;
Step 7.4: apply Rule 1 (or Rule 1′);
Step 7.5: go to step 7;
Step 8: Reorder the markings in the OPEN list in ascending sequence

according to their estimated makespan f;
Step 9: Go to step 2.
The scheduling strategy determined by the A* algorithm is aimed at

the minimization of the makespan. With the scheduling scheme, the MC
method is applied to statistically examine the total energy consumption
and the makespan of cylinder block remanufacturing under the un-
certainty of processing time.

5. Computational results

The A* algorithm was performed on the MATLAB platform and run
on the personal computer with 4.0 GB RAM and 2.4 G CPU under
Windows 10. Parameters setting in DWS technique can be denoted by
DWS(D, max_node, max_top, max_size), and DWS(1, 2, 10, 10) is adopted
in the present study. Since the processing time of each operation is
presented by optimistic value, most plausible value, and pessimistic
value, the makespan optimization is conducted based on corresponding
three situations, which implies the range of makespan under un-
certainty of processing time, as shown in Tables 2 and 3. It should be
noted that results under h3 are the average value of 20 times simula-
tions.

It can be observed from Table 2 that the makespans of three situa-
tions simulated under h1 and h2 are identical, which indicates the ef-
fectiveness of both heuristic functions. However, the number of ex-
plored nodes under h2 is slightly less than that under h1. As the heuristic
function h3 searches the vertexes in deeper depth randomly, the opti-
mization results are significantly greater than those obtained by h1 and
h2. More specifically, the scheduling schemes generated by h1 and h2

would save approximately 1.3 hr in the most plausible situation com-
pared with these by h3. Additionally, to search for the final marking, h3

would explore a greater number of nodes to find the final marking.
Instead of Rule 1 in DWS, Rule 1′ would remarkably reduce the

number of explored nodes under all the three heuristic functions as
displayed in Table 3. Similarly, the simulation results are also identical
when applying h1 and h2. The makespans determined by A* algorithm
incorporating the h3 are also greater than optimization results under
other two heuristic functions. Inspection of Tables 2 and 3 indicates
that the range of the makespan is (9.0667, 10.6667) hr under the un-
certainty of processing time.

To demonstrate the efficiency and effectiveness of this approach, we
applied the traditional GA to solve this scheduling problem. For one
single simulation, its computation time would be approximately 350 s,
while it takes less than 2 s using the algorithm in this study with the
same MATLAB platform. The makespan determined by GA is (9.37,
10.17, 11.20). Therefore, the simulation results in Table 2 and the
computation speed significantly outperform the conventional GA.

Ideally, scheduling scheme integrating the optimistic, most plau-
sible, and pessimistic situations is presented in one single Gantt chart,
i.e., displayed in the form of triangular Gantt chart as in the work of
[41,42]. Nonetheless, it is merely suitable for the Gantt chart of small-

Table 2
Simulation results under three heuristic forms (apply Rule 1).

Situations Makespan (hr) Number of explored nodes
h1 h2 h3 h1 h2 h3

Optimistic 9.0667 9.0667 9.9533 592 537 691
Most plausible 9.8667 9.8667 11.1937 487 487 668
Pessimistic 10.6667 10.6667 11.7217 524 517 675
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scale problems. To explicitly plot the sequences of reprocessing, we take
the most plausible situation as an example to illustrate the re-
manufacturing of cylinder blocks. The makespan in this case is 9.8667
hr and corresponding sequence of transitions in optimal scheduling
scheme is t11(r11), t11(r12), t11(r13), t12(r2), t21(r11), t21(r12), t21(r13),
t13(r31), t12(r2), t21(r11), t21(r12), t12(r2), t13(r32), t21(r13), t22(r2), t13(r31),
t14(r41), t15(r5), t22(r2), t14(r42), t16(r6), t15(r5), t22(r2), t17(r7), t16(r6),
t15(r5), t14(r41), t18(r8), t17(r7), t16(r6), t15(r5), t18(r8), t22(r2), t17(r7),
t16(r6), t15(r5), t18(r8), t17(r7), t16(r6), t15(r5), t19(r9), t22(r2), t18(r8),
t17(r7), t16(r6), t15(r5), t18(r8), t17(r7), t16(r6), t22(r2), t15(r5), t18(r8),
t17(r7), t16(r6), t19(r9), t18(r8), t15(r5), t17(r7), t18(r8), t16(r6), t17(r7),
t18(r8), t19(r9). The rij in the parenthesis indicates the machine or re-
source for the firing of transition. As mentioned above, different from
traditional PN, tokens in the present model are distinguishable and
represent the machines, which would contribute to the simplification of
PN model. Fig. 8 describes the firing sequence of transitions. For ex-
ample, transition t11 has been fired three times at initial time 0 for the
processing of 1st, 2nd, and 3rd job, and the firing time intervals are
from time 0 to 1.28, from 0 to 1.33, and from 0 to 1.42, respectively. As
evident in this figure, transitions t11, t12, t13, and t14 are exclusively for
the severely damaged cylinder blocks, while t21 and t22 are fired for the
slightly damaged components. The transition t19 represents the re-
manufacturing cleaning process and three components are processed
simultaneously.

Similar to the conventional Gantt chart, Fig. 9 explicitly displays the
processing of jobs on each machine along with time. Two successive
operations can be processed continuously irrespective of the inter-
mediate transportations. The Gantt chart for transitions (Fig. 8) and
machines (Fig. 9) are matched with each other. For example, after the
firing of transition t11, machine r11, r12, and r13 process the 1st job, 2nd,
and 3rd job from time 0 to 1.28, from 0 to 1.33, and from 0 to 1.42,
respectively. Bar of transition t11 in Fig. 8 can be regarded as the

overlap of bars of r11, r12, and r13 in this example.
Incorporating the monitor and control of energy and environmental

performance into the manufacturing system has been one of the on-
going efforts and also the prerequisites for promoting manufacturing
sustainability. Real-time measurement of energy consumption can more
clearly identify the potentials of performance improvement. The PN-
based event-driven model in this study would simulate the dynamic
performance of energy use as shown in Fig. 10. The energy consump-
tion rate (ECR) profile (red line) of the cylinder block remanufacturing
system shows a general rising tendency before the starting of all the
machines even though the ECR fluctuates during the processing period.
ECR profile of the system at any time point can be regarded as the sum
of ECR of each machine at its own operation state. Due to the large rate
power of cleaning equipment, the ECR has three remarkable crests, i.e.,
cleaning equipment has been started three times for a batch, as in-
dicated in Fig. 10. The area under the red line denotes the total energy
consumption to complete the reprocessing of all the used cylinder
blocks. Accumulated energy use (blue line) shows the dynamic beha-
vior of energy consumption in the system, and its slope equals the ECR.
The dashed lines in this figure indicate the energy consumption rate and
accumulated energy use profile of another batch of used components.
The solid lines and dashed lines are completely not overlapped, which
implies that the processing of each batch component is not periodical.
Fig. 10 reveals that the utilization of energy efficient remanufacturing
cleaning machines would contribute to the reduction of overall energy
consumption.

To estimate the possibility of makespan and energy consumption for
a batch cylinder blocks to be reprocessed under the uncertain proces-
sing time, the MC simulation is conducted based on the A* algorithm
with h1 and DWS(1, 1, 10, 10). This MC method repeated 500 random
samplings, and numerical results regarding the makespan and energy
consumption are presented by the histograms in Fig. 11. According to
the Kolmogorov-Smirnov (K-S) test of the goodness of fit, the dis-
tribution of makespan satisfies Burr (4P). The average makespan is
9.861 hr, which is consistent with the results in Tables 2 and 3. When
the heuristic function h3 is applied in A* algorithm, the average ma-
kespan obtained by MC simulation is 10.67 hr, which implies that the
scheduling strategy would save about 0.8 hr. Under the scheduling
strategy determined by the A* algorithm, the total energy consumption
is in line with Weibull (3P) distribution as also tested by K-S method,
and 397.16 kWh electricity would be consumed for a batch on average.

Table 3
Simulation results under three heuristic forms (apply Rule 1′).

Situations Makespan (hr) Number of explored nodes
h1 h2 h3 h1 h2 h3

Optimistic 9.0667 9.0667 9.6533 139 112 176
Most plausible 9.8667 9.8667 11.0433 456 453 170
Pessimistic 10.6667 10.6667 11.3317 445 453 154

Fig. 8. Gantt chart for transitions.
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The computation of energy consumption considered the processing
operation and idleness of machines. For a specific batch, the energy
saving primarily rests on the reduction of the idle period. Since damage
degrees of used components are varying in different batches, a part with
greater damage tend to cost longer time, and energy consumption is
mainly determined by the processing time of operation on each ma-
chine.

6. Discussion and implication

As a mathematical formalized tool, PN is useful to design, model,
and analyze discrete event systems [24]. It can explicitly describe the
movement of jobs and selection of machines throughout the manu-
facturing system. Constraints are easily satisfied in the PN model such
as processing one single or multiple components on a machine at a time,
and a new operation of a job is initiated after the completion of prior
operation. While the conventional scheduling model generally

integrates these constraints into the program design stage, which would
inevitably increase the difficulty of programming. Compared with other
intelligent algorithms solving combinatorial optimization problems, A*
search algorithm is more efficient, particularly in solving large-scale
problems, and it would realize the trade-off between accuracy and ef-
ficiency of the solution by the control of DWS. In the present study,
although the window in DWS is “small,” the simulation also swiftly
obtained a good solution. Therefore, the high efficiency of this algo-
rithm makes it a candidate for real-time scheduling. In manufacturing
practices, new jobs arrivals, machine breakdown, and order changes
could frequently happen at any time. Therefore, scheduling decisions
should be made in real-time. In these cases, the intelligent algorithms
such as artificial bee colony algorithm and genetic algorithm are
usually prohibitive due to the time-consuming computation particularly
in the large-scale problems [43]. In this regard, one promising method
is heuristic dispatching rules (HDR), for example, shortest processing
time (SPT), first in and first out (FIFO), and longest processing time

Fig. 9. Gantt chart for machines.

Fig. 10. Energy evolution behavior of different batches during their reprocessing periods.
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(LPT). The nodes exploration process in A* algorithm essentially be-
longs to HDR. For a specific scheduling problem, its computation effi-
ciency is significantly greater than the intelligent algorithms. As also
confirmed by Jiang [44], the applicability and adaptability of HDR are
superior to the intelligent algorithms. Three heuristic functions were
proposed for the A* algorithm. Even though h2 was demonstrated to be
the most informed heuristic function, it is not always superior in all
cases compared with the other two heuristics. For example, the number
of explored nodes by h1 is less than that of h2 as shown in Table 3. This
phenomenon is consistent with the simulation of [24] which compared
the results under three heuristics in A* algorithm. The selection of
heuristics and setting of DWS parameters will affect the final results
regarding makespan and the number of explored nodes. Counter-in-
tuitively, the larger window, i.e., greater parameter setting would not
necessarily generate better results. Following-up studies about the in-
fluence mechanism of the parameter setting on the final results are
desirable.

Size of the present scheduling problem is 9 × 9 (number of
jobs × number of operations). In this case, the statistical analysis of MC
simulation results indicates that the optimal scheduling strategy would
save approximately 0.8 hr. Since cylinder block is merely one of the
engine components and the quantity of used parts considered in this
study is limited, it is expected that the improvement of production ef-
ficiency would be greater if the scheduling strategy applied to the entire
engine remanufacturing system. The total energy consumption under
the scheduling strategy varies with different batches. MC simulation
indicates that the range in 500 random batches is around 35 kWh. Total
completion time and energy consumption in production scheduling are
usually two conflict factors. In previous bi-objective scheduling studies
[32,33,45] associated with the optimization of makespan and energy
consumption, the source of energy use was confined in the machines
processing components. Actually, the additional energy supporting the
factory facilities such as air-conditioning and lighting are ignored in
these studies. In this regard, the makespan of production is positively
related to, rather than conflict with, the total energy use. Considering
that these two objectives are highly coupled, the present study only
concerned the makespan minimization irrespective of the optimization
of energy consumption.

7. Conclusions

In the present study, we built a transition timed PN for the cylinder
block remanufacturing. Distinguishable tokens in resource places are
utilized to represent parallel machines, which would simplify and
clarify the model without compromising the capability of system de-
scription. PN-based scheduling essentially transforms the problem into
figuring out the optimal sequence of firing transitions. The possible

sequences of firing transitions from initial marking to final marking
create a tree structure. In this hierarchical graph, the optimal solution is
a series of successive “branches” connecting the top “root” and the
bottom. As an AI search algorithm, the heuristic A* algorithm was
adopted to find the optimal sequence by graph traversal of the RG. We
proposed three heuristic functions for this case and demonstrated their
admissibility. To overcome the issue of state space explosion, a new
rule-based DWS was integrated into this algorithm. The PN model could
contribute to examining the evolution of energy use in dynamic re-
manufacturing processes. With the optimal scheduling strategy, the MC
simulation was conducted to analyze the distributions of makespan and
total energy consumption under uncertain processing time.

Simulation results performed with varying heuristics and dynamic
window rules shown that range of the makespan is (9.0667, 10.6667)
hr under optimal scheduling scheme. Makespans of optimistic, most
plausible, and pessimistic situations determined under application of h1

and h2 are identical. Results also demonstrated the superiority of
heuristic function h2 and Rule 1′ which tend to explore fewer nodes. The
dynamic evolution of ECR indicated that the cleaning process is the
dominated contributor to energy consumption and a potential “hotspot”
for improvement of energy efficiency. MC simulation revealed that
distributions of makespan and total energy consumption satisfied Burr
(4P) and Weibull (3P), respectively, through the K-S test. The sche-
duling strategy obtained by A* algorithm would save approximately 0.8
hr on average for a batch used cylinder blocks.

This study only considered the uncertainty of processing time.
However, the uncertainty in remanufacturing is multivariant and others
might include stochastic return, quality and quantity variation, and
uncertain remanufacturing rate. Thus, more efforts should be made to
inclusively integrate these uncertainties into the scheduling of engine
remanufacturing. Additionally, since the present study investigated
only one component, a conceivable scheduling oriented the whole
“seven pieces” of an engine could be remedied in the future. As the
makespan and total energy consumption are highly coupled, the bi-
objective scheduling regarding these two concerns and the exploration
of their relationship are not captured here and remain topics for future
research.
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