
A discrete gravitational search algorithm for the blocking flow shop
problem with total flow time minimization

Fuqing Zhao1
& Feilong Xue1

& Yi Zhang2
& Weimin Ma3 & Chuck Zhang4

& Houbin Song1

Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
The blocking flow shop problem (BFSP) is one of the key models in the flow shop scheduling problem in the manufacturing
systems. Gravitational Search Algorithm (GSA) is an algorithm based on the population for solving various optimization
problems. However, GSA is scarcely applied to solve the BFSP as it is designed to solve the continuous problems. In this paper,
a Discrete Gravitational Search Algorithm (DGSA) is presented for solving the BFSP with the total flow time minimization. A
new variable profile fitting (VPF) combined with NEH heuristic, named VPF _NEH(n), is introduced for balancing the quality
and the diversity of the initial population to configure the DGSA. The three operators including the variable neighborhood
operators (VNO), the path relinking and the plus operator are implemented during the location updating of the candidates. The
objective of the operation is to prevent the premature convergence of the population and to balance the exploration and
exploitation in the process of optimization. The expected runtime of the DGSA is analyzed by the level-based theorem. The
simulated results indicate that the effectiveness and superiority of the DGSA.

Keywords Gravitational search algorithm . Blocking flow shop problem . Total flow time . Constructive heuristic . Variable
neighborhood search

1 Introduction

The permutation flow shop scheduling (PFSP) is a typical
model for various manufacturing and service systems when
there are no buffers between consequent machines [1, 2]. In
general, the objective of the PFSP is to find the best sequence
of jobs on the machines with the minimization makespan. For
the PFSP, if the buffer storage capacity among consequent
machines is not available, the problem becomes a blocking
flow shop scheduling problem [3]. In the BFSP, a machine
is blocked by a job that has been processed if the next machine

is occupied. Hence, an effective scheduling sequence in-
creases the productivity by minimizing machine blocked and
idle time. In the real world, the various industrial production
processes are modeled as the BFSP, such as iron and steel
industry [4], chemical and pharmaceutical industry [5], and
in-line robotic cells [6]. Over the past years, the BFSP has
attracted increasing researches and practitioners in endeavor-
ing to construct satisfactory models and solution methods [7].

In Hall, Sriskandarajah [5], the BFSP is proven to be
a strongly NP-hard problem when m > 2. Various heuris-
tics and meta-heuristics are developed for solving the

* Fuqing Zhao
Fzhao2000@hotmail.com

Feilong Xue
767098126@qq.com

Yi Zhang
1049440546@qq.com

Weimin Ma
mawm@tongji.edu.cn

Chuck Zhang
chuck.zhang@isye.gatech.edu

Houbin Song
523712418@qq.com

1 School of Computer and Communication Technology, Lanzhou
University of Technology, Lanzhou 730050, China

2 School of Mechnical Engineering, Xijin University, Xi’an 710123,
China

3 School of Economics and Management, Tongji University,
Shanghai 200092, China

4 H. Milton Stewart School of Industrial & Systems Engineering,
Georgia Institute of Technology, Atlanta, GA 30332, USA

https://doi.org/10.1007/s10489-019-01457-w
Applied Intelligence (2019) 49:3362–3382

Published online: 9 April 2019

http://crossmark.crossref.org/dialog/?doi=10.1007/s10489-019-01457-w&domain=pdf
http://orcid.org/0000-0002-7336-9699
mailto:Fzhao2000@hotmail.com

BFSP by numerous researchers and practitioners. For
the heuristic, a profile fitting (PF) heuristic for solving
the BFSP with the minimization cycle time was present-
ed in Mccormick et al. [8]. Fernandez-Viagas et al. [9]
presented a constructive heuristic based on beam search
for solving the BFSP with minimizing the total flow
time. In Ribas, Companys [7], the authors proposed
two heuristics, named HPF1 and HPF2, for the BFSP
with the total flow time minimization. Pan, Wang [10]
proposed various heuristics based on the PF method for
solving the BFSP with the makespan minimization.
Regarding the meta-heuristic, Ribas et al. [11] proposed
a discrete artificial bee colony algorithm, named
DABC_RCT, for the BFSP with the total flow time
minimization. In Nouha, Talel [12], the authors pro-
posed a particle swarm optimization meta-heuristic for
the BFSP with the total tardiness minimization. A scat-
ter search algorithm for the mixed BFSP with the
makespan minimization is proposed by Riahi et al.
[13]. Other meta-heuristics were proposed for solving
the BFSP such as a memetic algorithm [14], an artificial
immune system [15], a simulated annealing algorithm
with three-phase operators [16] and a hybrid harmony
search [17].

The evolution criterion, which used as the objective
of the BFSP, is the makespan minimization. However,
there are other related criteria such as the total tardiness
and the total flow time in the application. The
makespan minimization criterion is found in various lit-
eratures. Two mixed binary integer programming models
are presented in Moslehi, Khorasanian [18]. Three ver-
sions of the hybrid iterated greedy algorithm for the
distributed BFSP are introduced by Ying, Lin [19]. An
iterated greedy algorithm is developed in Tasgetiren
et al. [20]. A modified fruit fly optimization algorithm
is presented in Han et al. [21] and a population-based
local search with differential evolution is developed in
Tasgetiren et al. [22]. The total tardiness criterion is
aimed at minimizing the waiting times of jobs among
machines to finish the manufacturing processes as early
as possible [23]. Regarding the total tardiness criterion,
a multi-objective discrete invasive weed optimization for
the multi-objective BFSP is developed in Shao et al.
[24]. A self-adaptive discrete invasive weed optimiza-
tion is presented in Shao et al. [25]. Nouri, Ladhari
[26] presented a hybrid meta-heuristic for the BFSP. A
branch and bound algorithm is introduced in Toumi
et al. [27]. For the total flow time criterion, an iterated
greedy algorithm is presented in Khorasanian, Moslehi
[28] and other literatures are found in [7, 9, 11].

In the past decades, evolutionary algorithms (EAs)
play a significant role in solving optimization problems,
especially in complex problems. EAs are inspired by

biological systems or physical processes [29]. EAs in-
clude particle swarm optimization (PSO) [30], differen-
tial evolution algorithm (DE) [31] and other typical hy-
brid evolutionary algorithms [32–36]. Meanwhile, cer-
tain novel algorithms were proposed by different re-
searchers including Quasi-Affine Transformation
Evolutionary (QUATRE) algorithm [37] and Jaya algo-
rithm [38]. The experiment results show that the perfor-
mances of QUATRE algorithm and Jaya algorithm are
better than the correspondingly compared algorithms. In
numerous evolutionary algorithms, a new population-
based intelligent optimization algorithm that has been
successfully applied to various optimization problems,
named Gravitational Search Algorithm, was proposed
by Rashedi et al. [39]. A comprehensive survey of the
GSA published up to 2017 and its applications were
found in Rashedi et al. [40]. In Zhao et al. [41], a
hybrid GSA, named SGSADE, is presented to solve
the single-objective real parameter optimization problem.
The simulated results of SGSADE showed that the
SGSADE outperformed the compared algorithms.
Choudhary et al. [42] proposed a hybrid GSA for bi-
objective workflow scheduling in cloud computing,
named HGSA. The simulations through analysis of var-
iance show that HGSA outperformed the compared al-
gorithms in all cases. Lee et al. [43] applied GSA to the
bi-objective flow shop scheduling using the weighted
dispatching rules. In Narang [44], an integrated gravita-
tional search algorithm predator-prey optimization tech-
nique was presented for solving the hydro-thermal gen-
eration scheduling problem. Özyön, Yaşar [45] applied
GSA to a fixed head hydrothermal power system with
transmission line security constraints. Pelusi et al. [46]
presented the design of a Neural and Fuzzy GSA,
named NFGSA. The experiment results on benchmark
set showed that NFGSA outperformed the compared al-
gorithms. In Mittal, Saraswat [47], the authors presented
an exponential Kbest GSA for multi-level image thresh-
old segmentation.

In summary, GSA and its variants have been success-
fully applied to the fields of the real applications and
scheduling domains. However, little literature presents
GSA or its variants to solve the BFSP. In this paper,
a discrete GSA, named DGSA, is proposed for solving
the BFSP with the total flow time minimization.
Usually, the constructive heuristic method is an effective
method of initialing population for solving the BFSP.
The excellent initial population enhances the perfor-
mance of the algorithm. In DGSA, a new variable pro-
f i le f i t t ing combined with the NEH heuris t ic ,
named VPF _ NEH(n), is applied to generate the initial
population with balancing the quality and the diversity.
The VNO is a significant method which has an effect

3363A discrete gravitational search algorithm for the blocking flow shop problem with total flow time...

on the performance of algorithms. In the current re-
searches, the insert operator and swap operator are the
common neighborhood operation for solving the BFSP.
However, the different neighborhood structures have the
inherent drawback in various instances. In the position
update phase of DGSA, three operators (the variable
neighborhood operators, the path relinking and the plus
operator) are applied to update the position of the can-
didate to enhance the exploitation and construct the self-
improvement method. The simulated results of DSGA
on the Taillard’s benchmark suite [48] show that the
performance of the DGSA outperform the state-of-art
algorithms.

The remainder of the paper is organized as follows. The
related work is described in Section 2. Section 3 gives a de-
tailed introduction of the proposed DGSA. Section 4 shows
the parameter calibration. The experimental results are intro-
duced in Section 5. Section 6 gives the conclusions and the
future work.

2 Related work

The notations in this paper are described as follows.

2.1 Blocking flow shop scheduling problem

The BFSP is modeled as Fm|block|∑ Ci based on the
notation proposed by Graham et al. [49]. In the BFSP,

a set of n jobs are processed on m machines with the
same order from the first machine to the last machine
without an intermediate buffer. Each job i,i ∈ {1, 2, … ,
n}, has a fixed positive processing time on every
machine j, j ∈ {1, 2, … ,m}, which is denoted as pi, j.
In the BFSP, if the job i has been completed on the
machine j and the machine j + 1 is being used, then
the job i will be blocked on the machine j until the
machine j + 1 is idle. Only one job is processed on each
machine in the same time. In this paper, the objective is
to find a permutation of a job that minimizes the total
flow time (TFT). TFT is concluded according to the
following equations.

D1 πð Þ;0 ¼ 0 ð1Þ

D1 πð Þ;k ¼ D1 πð Þ;k−1 þ p1 πð Þ;k k ¼ 1;…;m−1 ð2Þ

Dj πð Þ;0 ¼ D j−1ð Þ πð Þ;1 j ¼ 2;…; n ð3Þ

Dj πð Þ;k ¼ max Dj πð Þ;k−1 þ pj πð Þ;k ;D j−1ð Þ πð Þ;kþ1

n o
j

¼ 2;…n; k ¼ 1;…;m−1 ð4Þ

Dj πð Þ;m ¼ Dj πð Þ;m−1 þ p j πð Þ;m j ¼ 1;…; n ð5Þ

TFT πð Þ ¼ ∑n
j¼1Dj πð Þ;m ð6Þ

where Dj(π), 0, j = 1,… , n denotes the starting time of jth job
on the first machine in the sequence π, Dj(π), k, k = 1,… , m is
the departure time of jth job on kthmachine. In this paper, the
objective is to find a sequence π∗ to satisfy the
inequality TFT(π∗) ≤ TFT(π) ∀ π ∈ T, T donates the set of
all sequences π. The Gantt chart of the BFSP is show in
Fig. 1(An instance of the BFSP is shown in Fig. 1).

In the scheduling problems, insertion and swap
neighborhood structures are two basic neighborhood
structures and the computational complexity of both
neighborhood structures is O(n3m). Based on Li et al.
[50], a speed-up method for the TFT calculation of the
BFSP is proposed in this paper. Suppose that a se-
quence π = {1, 2, 3, 4, 5}. First, the departure time matrix
donated as dπ, k(k = 1, 2, 3, 4, 5) is calculated for π.
Second, a new sequence π1 = {1, 2, 5, 3, 4} is obtained
after insert operator. Due to the position of job1 and

n the number of jobs

m the number of machines

π a processing sequence of jobs on the machine

Xi the position of the ith agent

xid
the position of ith agent in the dth dimension

vid
the velocity of the ith agent in the dth dimension

fiti(t), Mi(t) the fitness and the mass of the ith agent at the current tth
iteration

Ri, j(t) the Euclidian distance between agent i and agent j at the
current tth iteration

ε a small constant

G0 the initial value of the gravitational constant

G(t) the value of the gravitational constant at tth iteration

aid
the acceleration of ith agent in the dth dimension

num the number of the initial solutions

HRi, j(t) the hamming distance between the sequence i and j in the
iteration t

ra the control parameter of the acceleration update formula

vc the control parameter of the velocity update formula

3364 F. Zhao et al.

job2 aren’t changed, the departure time until position 3
isn’t repeated calculation. Finally, in order to calculate
the TFT (π1), the departure time starting from position
3 to 5 are calculated. The details about the fast TFT
calculations are shown in Algorithm 1.

2.2 Gravitational search algorithm

The GSA is a novel meta-heuristic algorithm that is
inspired by Newton’s law of gravity and motion. In
the GSA, each agent presents a solution of the problem.

The main steps of the standard GSA are described as
follows. First, the initialized population is randomly
generated.

Xi ¼ x1i ;…; xdi ;…; xDi
� �

for i ¼ 1…N ; ð7Þ

Second, the mass of each agent is calculated by the fitness
of the current population.

qi tð Þ ¼
fiti tð Þ−worst tð Þ
best tð Þ−worst tð Þ ð8Þ

Machine1

Machine2

Machine3

Machine4

job1

job1

job1

job1

job2

job2

job2

job3

job3

job3

job3job2

Blocking timeFig. 1 An instance of the BFSP

3365A discrete gravitational search algorithm for the blocking flow shop problem with total flow time...

Mi tð Þ ¼ qi tð Þ
∑N

j¼1qj tð Þ
ð9Þ

For a minimization problem, worst(t) and best(t) are de-
fined as follows.

best tð Þ ¼ fit j tð Þ ð10Þ
worst tð Þ ¼ max

j∈ 1…Nf g
fit j tð Þ ð11Þ

Third, at iteration time t, the force acting on ith agent from
jth agent in dth dimension is defined as follows.

Fd
ij tð Þ ¼ G tð ÞMi tð Þ �M j tð Þ

Ri; j tð Þ þ ε
xdj tð Þ−xdi tð Þ
� �

ð12Þ

G(t) (is)

G tð Þ ¼ G0� e−α
t
T ð13Þ

The total force of all agents acting on the ith agent in the
dth dimension is defined as follows.

Fd
i tð Þ ¼ ∑

j∈Kbest; j≠i
rand j Fd

ij tð Þ ð14Þ

In the beginning, all agents apply the force as time pass,
and Kbest is linearly decreased. There are only two agents
applying force to the others at the end. Finally, the accelera-
tion, the velocity and the position are updated.

adi tð Þ ¼ Fd
i tð Þ

Mi tð Þ ð15Þ

vdi t þ 1ð Þ ¼ randi � vdi tð Þ þ adi tð Þ ð16Þ

xdi t þ 1ð Þ ¼ xdi tð Þ þ vdi t þ 1ð Þ ð17Þ

where randiis a random variable in the interval [0, 1].
The pseudo code of the standard GSA is given in

Algorithm 2.

3 The proposed discrete GSA

3.1 Solution representation

In the BFSP, a natural representation is the permutation of n
jobs. In the permutation, the ith number denotes the job ar-
ranged at position i. In the DGSA, an agent at the tth iteration
is denoted as X t ¼ xt1; x

t
2;…; xtn

� �
, which xti is the index of

the job that arranged at position i.

3.2 Population initialization

In this paper, the DGSA starts with the generation of num
initial solutions. Each agent is donated as a sequence of the
job and the quality of the agent is evaluated by TFT. In the past
decades, the three methods are proposed for generating initial
solutions in the literature. The first, Han et al. [51] and Wu
et al. [52] proposed a random generation of the initial solu-
tions to guarantee the diversification of the solutions. The
second, one solution with a certain quality is generated by a
heuristic procedure [18, 20, 23]. The last, one solution is

3366 F. Zhao et al.

obtained by a based problem heuristic search method and the
remaining solutions or other methods [11, 21] are randomly
generated to guarantee the quality and diversity of the initial
solutions.

A new method is proposed for the initial solutions
based on the above three methods. The details of the
new method are shown as follows.

In this paper, the VPF _ NEH(n) heuristic is proposed
to generate the initial solutions for the DGSA. It is a
novel modification of the tPF _ NEH(x) heuristic that

has been presented in Tasgetiren et al. [23]. In
the tPF _ NEH(x), an initial order of jobs based on x
jobs as the separate first job is determined in the
starting. However, in the VPF _ NEH(n), the initial order
of jobs is different with tPF _ NEH(x). The following
equation is employed to establish the initial order of
jobs as in Ribas et al. [11]. In this paper, the construc-
tive procedure to create a solution is named VPF.

ind i; kð Þ ¼ μ* ∑
m

j¼1
Dkþ1; j σ*ið Þ−Dk; j σð Þ−pi; j
� � !

þ 1−μð Þ* Ci−C k−1½ �
� �

ð18Þ

The generate steps of the initial order of jobs are described
as follows.

Step 1: According to the number of jobs, a sequential inte-
ger sequence is generated. Set t = 1,… , n, the tth
job of the sequence is selected as the first position of
the new sequence σ. Set k = 1.

Step 2: When k < n, ind is calculated based on eq. 18 for
each unscheduled job i. Select the job with
minimum ind. In case of ties, the job which leads
to the partial sequence with the minimum TFT is
selected.

After the generation of the initial order of jobs, the NEH
heuristic [53] to the partial sequence is applied to generate the
initial solutions as in Tasgetiren et al. [23]. The details of VPF
_NEH(n) are shown in Algorithm 3.

In the DGSA, the population is constructed based on
the VPF _ NEH(n) heuristic. The number of the popula-
tion is determined as if (n ≤ 20), num = 20; else num =
50. Based on the results of the VPF _ NEH(n) ,
TFT(πk)(k = 1, … , n) is sorted with an increasing order.
Top num sequences are selected as the initial solutions
in this paper. The quality and diversity of the popula-
tion are guaranteed by the VPF _ NEH(n) heuristic
mechanism.

3.3 New particles

In Wang, Tang [54], the simple principle of the updated
model of velocity based on a list of moves is introduced
in the discrete particle swarm optimization algorithm to
solve the permutation flow shop problem with blocking.
According to the mechanism, the updated methods of
the acceleration, the velocity and the position in the
DGSA are modified in this paper.

3367A discrete gravitational search algorithm for the blocking flow shop problem with total flow time...

3.3.1 Acceleration calculation

Based on eq. 12–15, the updated formula of the acceleration is
modified.

ai tð Þ ¼ ∑
j∈kbest; j≠i

HRi; j tð Þ*rand*G tð Þ*M jð Þ
raþ HRi; j tð Þ

n

⨂ x j tð Þ⊝xi tð Þ
� �

ð19Þ
where rand is a uniformly distributed random variable in the
interval [0, 1]. G(t) is the gravitational coefficient. M(j) is the
value of the sequence j after normalization.

The definitions of the operators and the notations used in
eq. 19 are as follows.

(1) The subtract operator(⊝)
The details of this operator are shown in Fig. 2(a). If

the jth position values of xi(t) and xj(t) are same, the jth
position values are set to 0; otherwise, it is set to be the
jth position value of xj(t). If HRi, j(t) is zero, all values of
the array are set to 0.

(2) The multiply operator(⨂)

Let k ¼ HRi; j tð Þ*rand*G tð Þ*M jð Þ
raþHRi; j tð Þ

n

� 	
(if k > HRi, j(t), k =

HRi, j(t)). Then k non–zero elements from (xj(t)⊝ xi(t))
are randomly selected, and other elements are set as zero.
The details are shown in Fig. 2(b).

(3) The summation operator(∑)
According to step 1 and step 2, the kbest arrays are

obtained. The summation operator is used to combine
these arrays into one array as the acceleration. The pro-
cedures of combination are shown in Algorithm 4 and
Fig. 2(c). In Fig. 2(c), the second, the third and the ninth
position is 0 because job1 and job6 repeatedly appeared.

Fig. 2 The illustration of the operators. (a) The subtract operator. (b) The
multiply operator. (c) An example of a combination. (d) The position
update operator

3368 F. Zhao et al.

3.3.2 Velocity calculation

Based on eq. 16, the velocity formula is modified as follows.

vi t þ 1ð Þ ¼ vi tð Þ⨀ai tð Þ ð20Þ

The notation ⨀ is used to update the velocity of the agent.
Two steps are included in this operator.

Step 1. Set vc is a constant (0 < vc < 1). For j = 1,… , n, if
rand < vc,vi(t + 1)[j] = vi(t)[j], else vi(t + 1)[j] = ai(t)[j].

Step 2. If vi(t + 1) has multiple identical elements, the same
operation is applied as the summation operator.

3.3.3 Position operation

According to eq. 17, the updated formula is modified.

xi t þ 1ð Þ ¼ xi tð Þ⨁vi t þ 1ð Þ ð21Þ

The position update operator (⨁) has three different oper-
ations. The operators are shown as follows.

(1) A particle is the same as the best particle in the popula-
tion, namely, two sequences are the same particles. A
local search method, named variable neighborhood op-
erators (VNO), is applied in the DGSA. The details about
the VNO are introduced in Section 3.4.

(2) A self-adaptive perturbation operator is applied in the
position update operator to prevent the DGSA from the
premature convergence. The current population is dis-
persed when necessary. In Wang, Tang [54], the authors
proposed the diversity coefficient based on the hamming
distance between two sequences, which is a measure of
the diversity of the current population. In this paper, a
new diversity coefficient based on the DGSA is pro-
posed. The formula is given as follows.

div ¼ ∑num
i¼1∑

j¼kbest
j¼1 HR xi tð Þ; x j tð Þ

� �
kbest*num*n

ð22Þ

where HR(xi(t), xj(t)) is the hamming distance between the
sequence i and j in the iteration t. Since HR(xi(t), xj(t))

Fig. 3 The ARPD of the combination μ and δ

Table 1 The factor level of the parameters

Factor level 1 2 3 4

bs 1 2 3 4

bse 10 12 16 18

msc 0.1 0.2 0.3 0.4

t 1 2 3 4

τP 0.1 0.2 0.3 0.4

Table 2 The rank of the parameter

Level Parameters

bs bse msc t τP

1 0.684 0.656 0.631 0.537 0.673

2 0.685 0.684 0.707 0.592 0.661

3 0.708 0.696 0.714 0.696 0.699

4 0.621 0.662 0.647 0.875 0.666

Std. 0.03735 0.018717 0.041892 0.148744 0.016899

Rank 3 4 2 1 5

3369A discrete gravitational search algorithm for the blocking flow shop problem with total flow time...

is within [0, n], the value of the diversity coefficient
div is within [0, 1]. According to eq. 22, the diversity
of the current population keeps as previous status when
div exceeds a given threshold. If div is close to zero,
the current population are trapped in local optimum or

all particles are in the same sequence. Based on the
diversity coefficient, the self-adaptive perturbation prob-
ability sp is calculated by sp = e−K ∗ div, in which K is a
control parameter. The current population has the ten-
dency to fall in premature convergence, the sp increases
as the div decreases. If rand ≤ sp, a strategy called path
relinking is introduced in this phase.

In Glover, Laguna [55], the path relinking is proposed to
explore the path between two sets of solutions as a search
technique. In the DGSA, the path relinking is used to disperse
the current sequence when rand ≤ sp. Select the best sequence

as the destination, and the improved sequence is the path or-
igin. The path is built by inserting movements (include for-
ward insertion and backward insertion) in order to convert the
original sequence into the superior sequence. The details of
the path relinking are outlined in Algorithm 5.

(3) If rand > sp, the position update operator is applied
based on Wang, Tang [54]. The procedure of the po-
sition update operator is shown in Fig. 2(d).

3.4 The variable neighborhood operators (VNO)

The variable neighborhood search (VNS) is proposed by
Mladenović, Hansen [56], and it has been applied to the
scheduling problems [34, 57, 58]. The VNS is an effec-
tive local search strategy when a sequence is trapped in

3370 F. Zhao et al.

a state of stagnation. In Ribas et al. [11], the authors
proposed a new scheme named Three Neighborhood
Operators (TNO). The results of experiments show that
the TNO is a competitive local search strategy. In this
paper, a hybrid local search operator based on the TNO
and the block insertion move operators (BIM) from
Tasgetiren et al. [23] is proposed to enhance exploita-
tion capacity of the DGSA, named VNO. The details of
the VNO are shown as follows.

(1) The selected sequence is processed by the BIM in the
first. The procedure of operators is described in
Algorithm 6.

(2) After the BIM operation, the selected sequence is op-
erated by the TNO. The procedure of operators is
shown in Algorithm 7, Algorithm 8 and Algorithm 9.

After the VNO, a simple simulated annealing type of ac-
ceptance criterion is applied to determine whether the new
sequence is accepted, which is suggested in Tasgetiren et al.
[23]. The formula is shown in eq. 23.

T ¼ ∑n
i¼1∑

m
j¼1pi; j

10*n*m
*τP ð23Þ

3371A discrete gravitational search algorithm for the blocking flow shop problem with total flow time...

3372 F. Zhao et al.

where τP is a control parameter.
The complete procedure of the DGSA is given in

Algorithm 10. The fast TFT calculation method is implement-
ed where the swap operators and insertion operators are
executed.

3.5 Expected runtime of the DGSA

The time complexity of the evolutionary algorithm (EA) is the
number of fitness evaluation or the number of iteration to find
the optimal or approximate solution [59]. In the real world, the
time consuming of EA is spent on the fitness evaluation, in-
stead of the evolution operator (crossover, mutation, and se-
lection). In this paper, the upper bound of the expected
runtime of the DGSA is shown based on Goryajnov [60]
and Sudholt [61]. For convenience, certain definitions are
shown as follows.

Definition 1 The population set is defined as pop = {I1, I2,
… , IN}, the population state S = {x1, x2, … , xN}, where x1,

x2,… , xN is the state of I1, I2,… , IN, respectively. N is the
number of the population.

Definition 2 The population state space consists of all possible
states of the population, SP = {Si = (xi1, xi2, … , xiN)| i = 1, 2,
… ,N}.

Definition 3 The state transition probability, from x1 to x2 in
one step, is recorded as x1→ x2, where x1 and x2 are random
two states in the individual state space.

Definition 4 The state transition probability, from Si = (xi1, x-
i2, … , xiN) to Sj = (xj1, xj2, … , xjN) in one step, is recorded
as P(Si→ Sj).

Lemma 1 In DGSA, the population state sequence

S tð Þjt≥0f g ð24Þ

is the finite homogeneous Markov chains.

3373A discrete gravitational search algorithm for the blocking flow shop problem with total flow time...

Proof In this paper, xi denotes a sequence on the machines
based on Definition 1. Hence, the length of xi is finite.
The population state S = {x1, x2, … , xN} consists of the
state of N sequences, N is a finite positive integer.

Therefore, the population state space SP is finite based
on Definition 2.

According to the process of the DGSA, the population state
transition probability P(Si, (t − 1)→ Si, t) from time (t − 1) to

3374 F. Zhao et al.

time (t) is only related to the population state Si, (t − 1) at time (t
− 1) and independent of time (t − 1).

In summary, the population state sequence has the charac-
teristics of the Markov. The process of population state trans-
fer is a finite homogeneous Markov chain.

From [61], the search space is divided into non-empty sets
A1,… , Am and Am only contains global optima. Then, the
expected runtime is calculated as follows.

E Tð Þ≤∑m−1
i¼1

1

si
ð25Þ

where si is the probability that the agent in Ai is mutated to Aj

with j > i.

Theorem 1 The upper bound of the expected runtime of the
DGSA for the BFSP is O(n2).

Proof Due to the elitism strategy of the DGSA, a sequence is
changed when the sequence transferred fromAi toAjwith j > i.
For a sequence with permutation coding, two elements of the
sequence have changed at least when the sequence is changed.
Hence, the probability that any one element changes for a

sequence is 1
n *C

1
n−1*

1
n. For a sequence, the probability that

the sequence is unchanged is 1− 1
n *C

1
n−1*

1
n

� �n
. For the popu-

lation, the probability si that the sequence reaches a higher

fitness level is num* 1− 1− 1
n *C

1
n−1*

1
n

� �n� �
(num is the number

of sequence).

si ¼ num∗ 1− 1−
1

n
∗C1

n−1∗
1

n

 �n
 �

¼ num∗ 1n− 1−
1

n
∗C1

n−1∗
1

n

 �n
 �

¼ num∗ 1−1þ 1

n
∗C1

n−1∗
1

n

 �
∗ 1þ 1∗ 1−

1

n
∗C1

n−1∗
1

n

 �
þ;…;þ 1−

1

n
∗C1

n−1∗
1

n

 �n−1
 !

≥num∗
1

n
−
1

n2

 �
∗1

Then,

E Tð Þ≤∑m−1
i¼1

1

si
≤∑n

i¼1

1

num∗
1

n
−
1

n2

 � ¼ 1

num
∗∑n

i¼1

n2

n−1
¼ 1

num
∗

n3

n−1
≤

1

num
∗n2 ¼ O n2

� �

According to the above analysis, the upper bound of the
expected runtime is O(n2).

4 Parameter calibration

4.1 Parameters setting for VPF _NEH(n)

In section 3.2, the VPF _NEH(n) heuristic has two important
parameters, namely μ and δ. A full factorial design experi-
ments are designed to obtain the best parameter combination

(a) (b) (c)

(d) (e)

Fig. 4 Changing tendency of the parameters. (a) bs. (b) bse. (c) msc. (d) τP. (e) t

3375A discrete gravitational search algorithm for the blocking flow shop problem with total flow time...

of the VPF _NEH(n). In order to test the performance of the
parameter combinations, random instances based on the meth-
od in Taillard [48] are generated for each combination of
n ∈ {20,50,100,200} and m ∈ {5,10,20}. Each problem size
has 5 instances. At last, a test benchmark including 60 in-
stances is obtained. To be fair, the experiments including the
following experiments were coded in Java (jdk 1.8) and car-
ried out on the PC with 3.4 GHz Intel(R) Core™ i7–6700
CPU, 8GB of RAM and 64-bit OS. The evaluated values were
μ = {0.5,0.55,0.65,0.7,0.75,0.8,0.85} and δ = {5,10,15,20}.
Hence, there are 28 groups of experiments. The Relative
Percentage Deviation (RPD) is applied to measure the perfor-
mance of the parameter combination. Equation 26 is the cal-
culation formula of the RPD.

RPD ¼ ∑28
i¼1

TFT ið Þ−TFT bestð Þ
TFT bestð Þ ∗100 ð26Þ

where TFT(i) is the total flow time of instance i and TFT(best)
is the minimum total flow time in the instance i of the combi-
nation of parameters. The Average Relative Percentage
Deviation (ARPD) is all obtained from RPDs of each instance
with each parameter combination. The results of the ARPD
are shown in Fig. 3. According to the results of the combina-
tion, the best solution is obtained when μ = 0.75 and δ = 20.

4.2 Parameter setting for VNO

To identify the best parameter combination of the VNO, a
design of experiments method (DOE) [62] is applied in this
paper and 60 instances are employed as the test set in section
4.1. Five parameters are considered in the VNO as the control
parameter. These parameters are the block size in the begin-
ning (bs), the block size in the end (bse), the move size coef-
ficient (msc), the number of cycles in the TNO (t) and the
temperature control parameter τP. According to the number
of parameter and the factor levels, the orthogonal array L16(4

5)
is selected. The factor levels of the parameters are shown in
Table 1.

In the DOE, each parameter combination is run 5 times
independently on each instance and the maximum CPU time
is set as if (n ≤ 20) then cpuTime = 10 ∗ n ∗m else cpuTime =
40 ∗ n ∗m. For each parameter combination, the average rel-
ative percentage deviation of VNO (ARPDVNO) is calculated.

In Table 2, the rank of each parameter combination is listed.
The ARPDVNO is calculated as follows.

ARPDVNO ¼ ∑60
i¼1 ∑5

j¼1

TFTi jð Þ−TFT minð Þ
TFT minð Þ

 �
 �
=5

 �
=60∗100

ð27Þ
where TFTi(j) is the total flow time of the jth time on the ith
instance and the TFT(min) is the minimum total flow time
found among all parameter combination on the test set.

According to Table 2, the main effects plots of the param-
eters are shown in Fig. 4. From Table 2, t is the most signif-
icant parameter among the five factors. The reason is that t has
a significant influence on balancing the time-consuming and
the search ability. From Fig. 4, the best parameter combination
are bs = 4, bse = 10, msc = 0.1, t = 1 and τP = 0.2.

5 Parameter adjustment of DGSA

After determining the basic structure of the algorithm, the five
main parameters are adjusted in Section 4.3. These parameters
are vt, G0 from Algorithm 10, ra based on eq. 19, vc from
Section 3.3.2 and K from Section 3.3.3. In the section, the
experiment is similar with Section 4.2. The factor levels of
the parameters are shown in the Table 3.

In Table 4, the ranks of each parameter combination are
listed.

According to Table 4, the main effects plots of the param-
eters are shown in Fig. 5. From Table 4, vt is the most signif-
icant one parameter among the five parameters. From Fig. 5,
vt = 3, G0 = 1.5, ra = 1, vc = 0.1 and K = 1 are selected in this
paper.

According to the results of the experiments, the final pa-
rameters combination of the DGSA is determined.

6 Experiment and performance analysis

In this paper, the proposed algorithm, named DGSA, is
compared with the state-of-art algorithms including the

Table 4 The rank of the parameter

Level Parameters

vt G0 ra vc K

1 0.423 0.415 0.415 0.387 0.387

2 0.396 0.403 0.400 0.390 0.381

3 0.371 0.386 0.379 0.401 0.409

4 0.384 0.380 0.380 0.395 0.396

Std. 0.02216 0.01598 0.01729 0.006131 0.012176

Rank 1 3 2 5 4

Table 3 The factor level
of the parameters Factor level 1 2 3 4

vt 1 2 3 4

G0 0.1 0.5 1 1.5

ra 0.1 0.5 1 1.5

vc 0.1 0.2 0.3 0.4

K 0.5 1 1.5 2

3376 F. Zhao et al.

Discrete Artificial Bee Colony algorithm [11] (denoted
as DABC_RCT), the Variable Block Insertion Heuristic
[23] (denoted as VBIH), the IG_RIS algorithm from
Tasgetiren et al. [23], the Simulated Annealing Genetic
algorithms [63] (denoted as SAGA), and the Discrete
Differential Evolution algorithm [64] (denoted as
DDE). DABC_RCT, VBIH and IG_RIS are the the ef-
fective methods for the BFSP with the total flow time
minimization. In addition, the SAGA and the DDE,
which are the advanced algorithms for the BFSP or
the distributed BFSP with the different criteria, are also
carried to compare with DGSA. In the VBIH, the μ
value with 0.35 is selected as the compared algorithm.
To make a fair comparison, the compared algorithms are
reprogrammed according to the details in the original
papers and all algorithms were coded in Java (jdk1.8)
and tested on the same computer, a PC with 3.4 GHz
Intel(R) Core™ i7–6700 CPU, 8GB of RAM and 64-bit
OS. The simulation is carried out based on the well-
known flow shop benchmark suite of Taillard [48] and
using the total flow time criterion. For all the compared
algorithms, the maximum CPU time is fixed at 80 ∗m ∗
n milliseconds. In each test, all algorithms are run 5
times independently for all 120 instances. The results
of the DGSA and the compared algorithms are repre-
sented by the average relative percentage deviation

(ARPD) which is the average RPD of the 10 instances
of each n ∗m group. The RPD is computed as follows.

RPD ¼ ∑R
i¼1

TFT ið Þ−TFT minð Þ
TFT minð Þ

 �
∗100=R ð28Þ

where TFT(i) is the total flow time generated by the
algorithms in ith run, R is the number of runs, and

Table 5 The ARPD of the compared algorithms

n ×m DGSA DABC_RCT IG_RIS VBIH SAGA DDE

20 × 5 0.0389 0.0031 0.0494 0.0003 0.4192 0.5285

20 × 10 0.0118 0.0058 0.0163 0 0.2850 0.2952

20 × 20 0.0091 0 0.0105 0 0.1235 0.3007

50 × 5 0.2481 0.5017 0.6942 0.4655 5.1186 4.0125

50 × 10 0.3004 0.5453 0.6889 0.6562 4.9866 3.4543

50 × 20 0.2102 0.3811 0.4216 0.4323 3.4971 2.3788

100 × 5 0.3696 0.5874 0.4756 0.5618 12.2256 10.2988

100 × 10 0.3832 0.6408 0.7415 0.6081 10.4904 8.3198

100 × 20 0.3849 0.6810 0.7051 0.4290 7.5039 6.0118

200 × 10 0.2735 0.4999 0.5115 0.3492 15.6995 13.6886

200 × 20 0.3470 0.5151 0.4330 0.2457 11.213 9.4556

500 × 20 0.2557 0.4379 0.2461 0.0981 16.2227 15.2911

Average 0.2360 0.3999 0.4161 0.3205 7.3154 6.1696

(a) (b) (c)

(d) (e)

Fig. 5 Changing tendency of the parameters. (a) G0. (b) ra. (c) vc. (d) K. (e) vt

3377A discrete gravitational search algorithm for the blocking flow shop problem with total flow time...

TFT(min) is the minimum total flow time generated by
all algorithms in ith run.

The computational results of the algorithms are shown in
Table 5. The bold values are the minimum ARPD values
which indicate the best algorithm among the compared algo-
rithms. Table 5 shows that the DGSA is the best algorithm
among the compared algorithms. Of the total 12 categories,
the 7 best results are generated by the DGSA and the average
is the smallest among the compared algorithms.

To further demonstrate the performance of the DGSA and
the compared algorithms, certain representative cases of con-
vergence curves are shown in Fig. 6. From Table 5, the per-
formance of the DGSA is better than the compared algorithms
from 50 × 5 to 200 × 10. From Fig. 6(b) and (d), the DGSA

achieved the fastest convergence speed and the best conver-
gence accuracy on Ta 64 and Ta 83. For Ta 44 and Ta 76,
although the convergence speed of the DGSA isn’t the fastest,
the best results are generated in the end. The reason of getting
high-quality solutions with the DGSA on most of the problem
instances is that the DGSA achieves balance exploration and
exploitation between the compared algorithms.

The boxplots of all algorithms are shown in Fig. 7 for Ta
44, Ta 64, Ta 76 and Ta 83. From the above pictures, the
stability and performances of the DGSA outperform the com-
pared algorithms.

The statistical tests are implemented to illustrate that the
DGSA has a statistically significant difference between the
compared algorithms. Two nonparametric statistical tests are

(a) (b)

(c) (d)

Fig. 6 The convergence curve of Ta instances

3378 F. Zhao et al.

selected in this paper, namely the Wilcoxon’s sign rank test
[65] with 99% confidence intervals and the Friedman test.

The Wilcoxon rank-sum test is a paired related data com-
parison method. The p-values of the compared algorithms are
shown in Table 6. In the Wilcoxon rank-sum test, the null
hypothesis H0 is that the p value which is more than 0.01 is
considered as the strong evidence to accept the null hypothesis
H0 that the two algorithms come from distributions with equal
means. If the p-value is less than 0.01, the null hypothesis is
rejected and the right-tailed hypothesis H1 is accepted that the
two algorithms come from distributions with different means,
and it is determined which algorithm is better than another
based on symbol rank sum. From Table 6, the performance
of the DGSA outperforms the compared algorithms.

BYes^ indicates that statistically significant is observed un-
der the corresponding α.

The mean rank of the Friedman test is shown in
Table 7 and the graphical representation of the
Bonferroni-Dunn’s test is shown in Fig. 8. The statisti-
cal tests indicated that the performance of DGSA
outperformed the compared algorithms for solving the
BFSP with the total flow time minimization. First, the
GSA algorithm is a classical population-based algo-
rithm. It has been confirmed to be an effective frame-
work in various domains. The performances of the GSA
are sensitive to the parameters such as the gravitational
coefficient and population size. Therefore, the parameter
combinations of DGSA are analyzed by the orthogonal

(a) (b)

(c) (d)

Fig. 7 The boxplot of Ta instances

3379A discrete gravitational search algorithm for the blocking flow shop problem with total flow time...

experiment. From the experimental results of Section 4,
the optimal parameter combinations are determined.
Second, the performance of algorithm is affected by
the quality of the initial population. For the DGSA,
DABC_RCT, VBIH, and IG_RIS, the initial solution is
generated by the heuristic methods. However, the initial
solution of the SAGA is randomly generated. For the
DDE, the initial solution is generated by the simple
heuristic method or random method. The results are
shown in Fig. 6 due to the differences of initialization
methods. Third, the neighborhood search is a significant
operator which affects the performance of algorithms. In
the DGSA, a new variable neighborhood search, named
VNO, is implemented in the process of the search. The
VNO is a significant reason which enhances the perfor-
mance of the DGSA. Finally, although the SAGA and
the DDE are excellent algorithms for the BFSP with the
makespan criterion or the distributed BFSP, the pro-
posed DGSA outperforms the SAGA and the DDE for
solving the BFSP with the total flow time minimization
duo to the no-free-launch theorem. From Table 6,
Table 7 and Fig. 8, the DGSA outperforms the com-
pared algorithms.

From the analysis of the experimental results, the following
conclusions are obtained.

(a) The performance of DGSA is the best among the com-
pared algorithms. 7 out of the 12 categories are better
than other algorithms, and the ARPD is the smallest
among the compared algorithms.

(b) The convergence ability of the DGSA is stable. From
Fig. 6, especially Fig. 6(d), the DGSA produces the best
results with fast convergence speed among the compared
algorithms. The stability of the algorithms is shown in
Fig. 7. According to the experiment results, the DGSA is
the extreme robust method among the compared
algorithms.

(c) According to Table 6, Table 7 and Fig. 8, DGSA has
significant differences with the compared algorithms
and it is better than the compared algorithms through
the results of two nonparametric statistical tests.

7 Conclusions

In this paper, a discrete gravitational search algorithm is pro-
posed, named DGSA, for solving the BFSPwith the total flow
time minimization. In order to obtain an effective initial pop-
ulation, a new initialization method, named VPF _NEH(n), is
introduced in the DGSA. VPF _NEH(n) is applied in the ob-
tained initial solutions to balance the quality and diversity.
After the initial population constructed, a new update method
of the acceleration and the velocity based on the movement of
the sequence element when the process enters into the main
loop. In the process of position update, three operators are
designed to balance exploration and exploitation. The variable
neighborhood operator, named VNO, is applied to enhance
the exploitation capacity and the solution accuracy. The path
relinking operator based on insertion is executed to prevent
the DGSA from premature convergence when the diversity of
the population declines. The comparison of DGSA with the
compared algorithms show that the effectiveness and superi-
ority of the DGSA for solving the BFSP with the total flow
time minimization.

Fig. 8 The graphical representation of the Bonferroni-Dunn’s test

Table 7 The mean rank
of the algorithms Algorithms Mean rank

DGSA 1.86

DABC_RCT 2.80

IG_RIS 3.09

VBIH 2.30

SAGA 5.78

DDE 5.17

Table 6 The p-value of Wilcoxon’s rank-sum test for the compared
algorithms

DGSA vs. R+ R- Z p-value α = 0.01

DABC_
RCT

4450 803 −6.087 1.15E-9 Yes

IG_RIS 4828 843 −6.28 3.38E-10 Yes

VBIH 3606 1750 −3.053 0.008 Yes

SAGA 7140 0 −9.467 2.88E-21 Yes

DDE 7140 0 −9.467 2.88E-21 Yes

3380 F. Zhao et al.

In the future research, there is a potential direction of ap-
plying the DGSA to solve the BFSP with other evaluation
criteria, such as the total tardiness minimization or the total
completion time minimization. For solving the scheduling
problem, efficient heuristics is significant for generating the
initial population by balancing the diversity and quality.
Therefore, it is necessary to research in this direction. It is
another research direction that the algorithm is used to solve
other scheduling problems in the future, such as the permuta-
tion flow shop problem or the distributed flow shop problem.

Acknowledgements This work was financially supported by the
National Natural Science Foundation of China under grant numbers
61663023. It was also supported by the Key Research Programs of
Science and Technology Commission Foundation of Gansu Province
(2017GS10817), Lanzhou Science Bureau project (2018-rc-98),
Zhejiang Provincial Natural Science Foundation (LGJ19E050001),
Wenzhou Public Welfare Science and Technology project
(G20170016), respectively.

References

1. Pan QK, Ruiz R (2012) An estimation of distribution algorithm for
lot-streaming flow shop problems with setup times. Omega 40(2):
166–180

2. Ruiz-Torres AJ, Ho JC, Ablanedo-Rosas JH (2011) Makespan and
workstation utilization minimization in a flowshop with operations
flexibility. Omega 39(3):273–282

3. Ronconi DP, Henriques LRS (2009) Some heuristic algorithms for
total tardiness minimization in a flowshop with blocking. Omega
37(2):272–281

4. Gong H, Tang L, Duin CW (2010) A two-stage flow shop sched-
uling problem on a batching machine and a discrete machine with
blocking and shared setup times. Comput Oper Res 37(5):960–969

5. Hall NG, Sriskandarajah C (1996) A survey of machine scheduling
problems with blocking and no-wait in process. Oper Res 44(3):
510–525

6. Sethi SP, Sriskandarajah C, Sorger G, Blazewicz J, Kubiak W
(1992) Sequencing of parts and robot moves in a robotic cell. Int
J Flex Manuf Syst 4(3–4):331–358

7. Ribas I, Companys R (2015) Efficient heuristic algorithms for the
blocking flow shop scheduling problem with total flow time mini-
mization. Comput Ind Eng 87:30–39

8. Mccormick ST, PinedoM,Wolf B,Wolf B (1989) Sequencing in an
assembly line with blocking to minimize cycle time. Oper Res
37(6):925–935

9. Fernandez-Viagas V, Leisten R, Framinan JM (2016) A computa-
tional evaluation of constructive and improvement heuristics for the
blocking flow shop to minimise total flowtime. Expert Syst Appl
61:290–301

10. Pan QK, Wang L (2011) Effective heuristics for the blocking
flowshop scheduling problem with makespan minimization.
Omega 40(2):218–229

11. Ribas I, Companys R, Tort-Martorell X (2015) An efficient discrete
artificial bee Colony algorithm for the blocking flow shop problem
with total flowtime minimization. Expert Syst Appl 42(15–16):
6155–6167

12. Nouha N, Talel L (2015) A particle swarm optimization
metaheuristic for the blocking flow shop scheduling problem:

Total tardiness minimization. Multi-agent systems and agreement
technologies. Springer: 145–153

13. Riahi V, Khorramizadeh M, Newton MAH, Sattar A (2017) Scatter
search for mixed blocking flowshop scheduling. Expert Syst Appl
79(C):20–32

14. Pan QK,Wang L, SangHY, Li JQ, LiuM (2013)A high performing
memetic algorithm for the Flowshop scheduling problem with
blocking. IEEE Trans Auto Sci Eng 10(3):741–756

15. Lin SW, Ying KC (2013) Minimizing makespan in a blocking
flowshop using a revised artificial immune system algorithm.
Omega 41(2):383–389

16. Wang C, Song S, Gupta JND, Wu C (2012) A three-phase algo-
rithm for flowshop scheduling with blocking to minimize
makespan. Comput Oper Res 39(11):2880–2887

17. Wang L, Pan QK, Tasgetiren MF (2011) A hybrid harmony search
algorithm for the blocking permutation flow shop scheduling prob-
lem. Comput Ind Eng 61(1):76–83

18. Moslehi G, Khorasanian D (2013) Optimizing blocking flow shop
scheduling problem with total completion time criterion. Comput
Oper Res 40(7):1874–1883

19. Ying KC, Lin SW (2017) Minimizing Makespan in distributed
blocking Flowshops using hybrid iterated greedy algorithms.
IEEE Access PP (99):1–1

20. Tasgetiren MF, Kizilay D, Pan QK, Suganthan PN (2017) Iterated
greedy algorithms for the blocking flowshop scheduling problem
with makespan criterion. Comput Oper Res 77(C):111–126

21. Han Y, Gong D, Li J, Zhang Y (2016) Solving the blocking flow
shop scheduling problem with makespan using a modified fruit fly
optimisation algorithm. Int J Prod Res 54(22):6782–6797

22. Tasgetiren MF, Pan QK, Kizilay D, Suer G (2015) A populated
local search with differential evolution for blocking flowshop
scheduling problem. IEEE Congress on Evolutionary
Computation (CEC): 2789–2796

23. Tasgetiren M, Pan QK, Kizilay D, Gao K (2016) A variable block
insertion heuristic for the blocking Flowshop scheduling problem
with Total flowtime criterion. Algorithms 9(4):71

24. Shao Z, Pi D, Shao W (2018) A multi-objective discrete invasive
weed optimization for multi-objective blocking flow-shop schedul-
ing problem. Expert Syst Appl 113:77–99

25. Shao Z, Pi D, Shao W (2017) Self-adaptive discrete invasive weed
optimization for the blocking flow-shop scheduling problem to
minimize total tardiness. Comput Ind Eng 111:331–351

26. Nouri N, Ladhari T (2015) Minimizing regular objectives for
blocking permutation flow shop scheduling: heuristic approaches.
441–448

27. Toumi S, Jarboui B, Eddaly M, Rebai (2013) A solving blocking
flowshop scheduling problem with branch and bound algorithm.
International Conference on Advanced Logistics and Transport:
411–416

28. Khorasanian D, Moslehi G (2012) An iterated greedy algorithm for
solving the blocking flow shop scheduling problem with Total flow
time criteria. Int J Indust Eng 23(4):301–308

29. Yang X-S (2018) Mathematical analysis of nature-inspired algo-
rithms. Nature-inspired algorithms and applied optimization.
Springer: 1–25

30. Kennedy J, Eberhart RC (1995) Particle swarm optimization. IEEE
Int Conf Neural Netw 4:1942–1948

31. Storn R, Price K (1997) Differential evolution – a simple and effi-
cient heuristic for global optimization over continuous spaces. J
Glob Optim 11(4):341–359

32. Zhao F, Qin S, Zhang Y, Ma W, Zhang C, Song H (2019) A two-
stage differential biogeography-based optimization algorithm and
its performance analysis. Expert Syst Appl 115:329–345

33. Zhao F, Liu Y, Zhang C, Wang J (2015) A self-adaptive harmony
PSO search algorithm and its performance analysis. Expert Syst
Appl 42(21):7436–7455

3381A discrete gravitational search algorithm for the blocking flow shop problem with total flow time...

34. Zhao F, Liu Y, Zhang Y, MaW, Zhang C (2017) A hybrid harmony
search algorithm with efficient job sequence scheme and variable
neighborhood search for the permutation flow shop scheduling
problems. Eng Appl Artif Intell 65:178–199

35. Zhao F, Shao Z, Wang J, Zhang C (2017) A hybrid differential
evolution and estimation of distribution algorithm based on
neighbourhood search for job shop scheduling problems. Int J
Prod Res 54(4):1–22

36. Meng Z, Pan JS, Kong L (2018) Parameters with adaptive learning
mechanism (PALM) for the enhancement of differential evolution.
Knowl-Based Syst 141:92–112

37. Meng Z, Pan JS, Xu H (2016) QUasi-affine TRansformation evo-
lutionary (QUATRE) algorithm: a cooperative swarm based algo-
rithm for global optimization. Knowl-Based Syst 109:104–121

38. Rao RV (2016) Jaya: a simple and new optimization algorithm for
solving constrained and unconstrained optimization problems. Int J
Ind Eng Comput 7:19–34

39. Rashedi E, Nezamabadi-Pour H, Saryazdi S (2009) GSA: a gravi-
tational search algorithm. Inf Sci 179(13):2232–2248

40. Rashedi E, Rashedi E, Nezamabadi-pour H (2018) A comprehen-
sive survey on gravitational search algorithm. Swarm Evol Comput
41:141–158

41. Zhao F, Xue F, Zhang Y, MaW, Zhang C, Song H (2018) A hybrid
algorithm based on self-adaptive gravitational search algorithm and
differential evolution. Expert Syst Appl 113:515–530

42. Choudhary A, Gupta I, Singh V, Jana PK (2018) A GSA based
hybrid algorithm for bi-objective workflow scheduling in cloud
computing. Futur Gener Comput Syst 83:14–26

43. Lee T, Loong Y, Moslemipour (2017) G gravitational search algo-
rithm optimization for bi-objective flow shop scheduling using
weighted dispatching rules. 2017 7th IEEE International
Conference on Control System, Computing and Engineering
(ICCSCE) IEEE: 127–132

44. Narang N (2018) Hydro-thermal generation scheduling using inte-
grated gravitational search algorithm and predator–prey optimiza-
tion technique. Neural Comput & Applic 30(2):519–538

45. Özyön S, Yaşar C (2018) Gravitational search algorithm applied to
fixed head hydrothermal power system with transmission line se-
curity constraints. Energy 155:392–407

46. Pelusi D, Mascella R, Tallini L, Nayak J, Naik B, Abraham A
(2018) Neural network and fuzzy system for the tuning of gravita-
tional search algorithm parameters. Expert Syst Appl 102:234–244

47. Mittal H, Saraswat M (2018) An optimum multi-level image
thresholding segmentation using non-local means 2D histogram
and exponential Kbest gravitational search algorithm. Eng Appl
Artif Intell 71:226–235

48. Taillard E (1993) Benchmarks for basic scheduling problems. Eur J
Oper Res 64(2):278–285

49. Graham RL, Lawler EL, Lenstra JK, Kan AHGR (1979)
Optimization and approximation in deterministic sequencing and
scheduling: a survey. Ann Discrete Math 5(1):287–326

50. Li X, Wang Q, Wu C (2009) Efficient composite heuristics for total
flowtime minimization in permutation flow shops. Omega 37(1):
155–164

51. Han Y-Y, Quan-Ke L, Qing J, Cao NN, Liang JJ (2013) Effective
hybrid discrete artificial bee colony algorithms for the
total;flowtime minimization in the blocking flowshop problem.
Int J Adv Manuf Technol 67(1–4):397–414

52. Wu B, Qian C, Ni W, Fan S (2012) Hybrid harmony search and
artificial bee colony algorithm for global optimization problems.
Comput Math Applic 64(8):2621–2634

53. Nawaz M, Jr EEE, Ham I (1983) A heuristic algorithm for the m -
machine, n -job flow-shop sequencing problem. Omega 11(1):91–
95

54. Wang X, Tang L (2012) A discrete particle swarm optimization
algorithm with self-adaptive diversity control for the permutation
flowshop problem with blocking. Appl Soft Comput J 12(2):652–
662

55. Glover F, Laguna M (1998) Tabu search. Handbook of combinato-
rial optimization. Springer: 2093–2229

56. Mladenović N, Hansen P (1997) Variable neighborhood search.
Comput Oper Res 24(11):1097–1100. https://doi.org/10.1016/
S0305-0548(97)00031-2

57. Ribas I, Companys R, Tort-Martorell X (2017) Efficient heuristics
for the parallel blocking flow shop scheduling problem. Expert Syst
Appl 74:41–54

58. Zhao F, Liu H, Zhang Y, Ma W, Zhang C (2018) A discrete water
wave optimization algorithm for no-wait flow shop scheduling
problem. Expert Syst Appl 91:347–363

59. He J, Yao X (2001) Drift analysis and average time complexity of
evolutionary algorithms. Artif Intell 127(1):57–85

60. Goryajnov VV (1996) Evolutionary families of analytic functions
and time-nonhomogeneous Markov branching processes. Dokl
Math 53 (2)

61. Sudholt D (2010) General lower bounds for the running time of
evolutionary algorithms. International conference on parallel prob-
lem solving from nature. Springer: 124–133

62. Montgomery DC (2006) Design and analysis of experiments.
Technometrics 48(1):158–158

63. Lebbar G, Barkany AE, Jabri A, Abbassi IE (2018) Hybrid
metaheuristics for solving the blocking Flowshop scheduling prob-
lem. Int J Eng Res Afr 36:124–136

64. Zhang G, Xing K, Cao F (2018) Discrete differential evolution
algorithm for distributed blocking flowshop scheduling with
makespan criterion. Eng Appl Artif Intell 76:96–107

65. Molina D, Lozano M, Herrera F (2009) A study on the use of non-
parametric tests for analyzing the evolutionary algorithms' behav-
iour: a case study on the CEC'2005 special session on real param-
eter optimization. J Heuristics 15(6):617–644

Publisher’s note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

Fuqing Zhao received the B.Sc. and Ph.D. degrees from the Lanzhou
University of Technology, Lanzhou, China, in 1994 and 2006, respective-
ly. Since 1998, he has been with the School of Computer Science
Department, Lanzhou University of Technolgy, Lanzhou, China, where
he became a Full Professor in 2012. He has been as the post Doctor with
the State Key Laboratory of Manufacturing System Engineering, Xi’an
Jiaotong University, Xi’an, China in 2009. He has authored two academic
book and over 50 refereed papers. His current research interests include
intelligent optimization and scheduling.

3382 F. Zhao et al.

https://doi.org/10.1016/S0305-0548(97)00031-2
https://doi.org/10.1016/S0305-0548(97)00031-2

	A discrete gravitational search algorithm for the blocking flow shop problem with total flow time minimization
	Abstract
	Introduction
	Related work
	Blocking flow shop scheduling problem
	Gravitational search algorithm

	The proposed discrete GSA
	Solution representation
	Population initialization
	New particles
	Acceleration calculation
	Velocity calculation
	Position operation

	The variable neighborhood operators (VNO)
	Expected runtime of the DGSA

	Parameter calibration
	Parameters setting for VPF _ NEH(n)
	Parameter setting for VNO

	Parameter adjustment of DGSA
	Experiment and performance analysis
	Conclusions
	References

