International Journal of ELECTROCHEMICAL SCIENCE www.electrochemsci.org

Phase Structure and Electrochemical Performances of $La_{0.63}Gd_{0.2}Mg_{0.17}Ni_{3.0-x}Co_{0.3}Al_x$ (x = 0.0, 0.1, 0.2, 0.3, 0.4) Alloys

Zhijie Gao^{1,*}, Yongchun Luo^{2,*}

¹ Department of Chemical Engineering and Safety, Binzhou University, Binzhou 256600, PR China
² School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, PR China

*E-mail: gaozhijie1983@126.com, luoyc@lut.cn

doi: 10.20964/2019.09.35

Received: 5 April 2019 / Accepted: 27 June 2019 / Published: 31 July 2019

The influences of Al substitution for Ni on the phase abundance, structures and electrochemical properties of La_{0.63}Gd_{0.2}Mg_{0.17}Ni_{3.0-x}Co_{0.3}Al_x (x = 0.0, 0.1, 0.2, 0.3, 0.4) alloys have been investigated. The main phase of Al-free base alloy is Ce₂Ni₇-type phase, Gd₂Co₇-type phase and CeNi₃-type phase. After a little Al substitution, AB₃ phase shifts to A₂B₇ phase. Further Al addition promotes the formation of CaCu₅-type phase over the A₂B₇-type phase. The sample of x = 0.1 (AB₃ to A₂B₇) increases cycling stability and its discharge capacity almost unchanged. The further addition of Al (A₂B₇ to CaCu₅) still increases cycling stability, but decreases the maximum discharge capacity and high rate dischargeability. The substitution of Al elements increases the phase abundance of A₂B₇-type or CaCu₅-type so as to improve the cycling stability. The ability of phase pulverization resistance of the metal hydride alloy at the negative electrode appeared to be the intrinsic reason of failure mode of this series of alloys.

Keywords: La-Mg-Ni-based hydrogen storage alloy, Al substitution, Microstructure, Electrochemical properties

FULL TEXT

© 2019 The Authors. Published by ESG (<u>www.electrochemsci.org</u>). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).