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Abstract

A new SIRS epidemic model with infection age and relapse on a scale-free network is introduced. The
basic reproduction number R, is defined. Asymptotic smoothness of solution and uniform persistence
of system are proved. It is shown that the disease-free equilibrium is globally asymptotically stable by
using Fluctuation Lemma if Ry <1 and the endemic equilibrium is globally asymptotically stable by
constructing suitable Lyapunov functional if R, > 1. Effects of two immunization schemes are studied.
Numerical simulations and sensitivity analysis are performed. Results manifest that infection age and
degree of node play a significant role in controlling the emergence and spread of the epidemic disease.
© 2019 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.

1. Introduction

As revealed by the transmission history of epidemic disease, epidemic disease is increas-
ingly threatening health of people and destroying harmony of society. Therefore, it has aroused
extensive attentions of many researchers. In order to enact appropriate control strategies,
compartmental models are proposed. Kermack and McKendrick [1-3] firstly came up with
classical SIS and SIR compartment models. Most of these models are computed under the
assumption that everyone within a compartment behaves identically, regardless of how much
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time they have spent in their compartment. For example, it suppose that everyone in infected
compartment has the same waiting time. In fact, the waiting time for everyone in infected
compartment differs from one to one, which may rely on the types of epidemic disease and in-
dividuals’ status. To be more realistic and relevant, some compartment models are generalized
with continuous age assumption by introducing infection age.

Recently, many works [4—15] have been made for investigating the transmission dynamics
of epidemic disease with age structured. Li et al. [5] considered an SIVS epidemic model
with treatment and age of vaccination, and they obtained the stability and bifurcation of the
model. McCluskey [6] studied a model of disease transmission with continuous age struc-
tured for latently infected individuals and infectious individuals and obtained that disease-free
equilibrium and endemic equilibrium were globally asymptotically stable. Chen et al. [7] con-
sidered an SIRS model with infection age and proved that disease-free and endemic equilibria
were globally asymptotically stable. Duan et al. [8] considered an SVIR epidemic model with
age of vaccination and shown that the global stability of the infection-free and the endemic
equilibria depended only on the basic reproductive number Ry(v). Liu et al. [9] proposed an
SEIR epidemic model for a disease with age dependent latency and relapse and obtained the
local stability and global stability of the infection-free and the endemic equilibria. Chen et al.
[10] studied an SIR epidemic model with infection age and saturated incidence and proved that
disease-free and endemic equilibria were globally asymptotically stable. Chu et al. [11] ap-
plied the recently developed normal form theory for abstract Cauchy problem with non-dense
domain [12] to study normal form for an age structured model and provided detailed com-
putations for the Taylor’s expansion of the reduced system on the center manifold. Thieme
[13] introduced concepts of “integrated semigroups” which have been developed in the the-
ory of weakly continuous semigroups on dual Banach spaces, and researched the relation
to integrated solutions of homogeneous and inhomogeneous abstract Cauchy problems. Ma-
gal et al. [14] analyzed the global asymptotic behavior of a two-group SI (susceptible and
infected) epidemic model with age of infection. They proved that the model exhibited the
traditional threshold behavior where the disease-free equilibrium was globally asymptotically
stable if the basic reproduction number was less than one, and the endemic equilibrium was
globally asymptotically stable if the basic reproduction number was greater than one. Magal
[15] investigated the existence of compact attractors for time-periodic age-structured models
and researched the eventual compactness of a class of abstract non-autonomous semiflow.

However, above models have an important assumption that everyone is uniformly mixed
and homogenous contacts. Since the contact process of population can not be always uniform
collision, epidemic disease transmission is usually heterogeneous. Therefore, the idea of com-
plex network is introduced to epidemic model. In recent years, many attempts [16-20] have
been made for investigating the transmission dynamics of epidemic disease on complex net-
work. Li and Shuai [16] investigated the global-stability problem of equilibria for the coupled
system of differential equations on network and the systematic approach was applied to sev-
eral classes of coupled systems in engineering, ecology and epidemiology. Liu and Zhang
[17] presented an SEIRS epidemic model on the scale-free network and proved the local
stability of disease-free equilibrium and the permanence of the disease on the network. Zhang
and Jin [18] considered an epidemic model with birth and death on network and the stabil-
ities of the equilibria were analysed. Jin et al. [19] proposed and studied network epidemic
model with demographics for disease transmission and found that demographics had a great
effect on basic reproduction number Ry. Huang et al. [20] investigated a new SIQRS epidemic
model with demographics and vaccination on complex heterogeneous network and proved the
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permanence of the disease. Zhang et al. [21] studied a seasonal influenza-like disease model
by incorporating the interplay between subsidy policies and human behavioral responses, and
their findings showed that the targeted subsidy policy was only advantageous when indi-
viduals prefered to imitate the subsidized individuals strategy. Zhang and Fu [22] studied
the spreading of epidemics on a scale-free networks with infectivity which was nonlinear in
the connectivity of nodes, and showed that the nonlinear infectivity was more appropriate
than constant or linear ones, and gived the epidemic threshold of the SIS model on a scale-
free network with nonlinear infectivity. Yang et al. [23] proposed an SIS epidemic model
with infection age on complex network and proved stability of steady state. Yang and Chen
[24] mainly studied the SIR epidemic model with infection age on the complex network and
proved stability of steady state, but they ignored that the removed individuals were temporary
immunity and relapse. Other epidemic models or drinking models with or without complex
networks, please see [25-31] and references cited therein.

Motivated by the above discussions, the goal of the present paper is to construct a more
realistic SIRS epidemic model with the infection age and relapse on the scale-free network, in
which we assume that removed individuals are temporary immunity and relapse. We obtain
that the globally asymptotical stability of the disease-free equilibrium if Ry <1 by using
Fluctuation Lemma and the globally asymptotical stability of the endemic equilibrium if
Rp>1 by constructing suitable Lyapunov functional. Our results indicate that infection age
and degree of node play a significant role in controlling the emergence and spread of the
epidemic disease.

The remain part of this paper is organized in the following: In Section 2, we introduce
a new SIRS epidemic model with infection age and relapse on the scale-free network. In
Section 3, we define the basic reproductive number, and prove the globally asymptotical sta-
bilities of disease-free and endemic equilibrium. In Section 4, we investigate and compare
two major immunization strategies, uniform immunization and targeted immunization. In Sec-
tion 5, we carry out some numerical simulations. In the last section, we perform sensitivity
analysis on a few parameters and make some discussions.

2. Mathematical model
2.1. System description

The total population N is divided into n groups according to the degree of node, namely,
N=N+N,+---+N,. 2.1)

Furthermore, we divide everyone groups into three compartments:Si(?), (¢, a), Ri(¢t). Si(?)
represents the density of susceptible vertices of degree k at time #; Let I;(¢, 0) denote infected
vertices of degree k who have just become infected at time t. a is age of infection. As time
progresses, this group of people has the same age of infection a, so Ii(t, a) denotes the
density of infected vertices of degree k with age of infection a at time ¢. If we consider time
frames that are comparable with the age of infection of all the population, we can assume
that the age is infinity [32,33]. Then, the total population of infected vertices of degree k in
all infection-age classes is fooo Ii (¢, a)da; Ry(f) represents the density of removed vertices of
degree k at time t. Ni(7) represents the total number of vertices of degree k at time ¢ and

Ni (1) =Sk(t)+/ I (t,a)da + Rk (), (2.2)
0
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Fig. 1. Flowchart for an SIRS epidemic model with infection age and relapse on a scale-free network.
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Fig. 2. Flowchart for an SIRS epidemic model with infection age and relapse and supposing that there is an empty
node.

where n is the maximal degree of the scale-free network and k € N, £ {1,2,...,n}

The model structure is shown in Fig. 1.

According to [24,34-36], we suppose that every individual is spatially distributed on the
network. Each node of the network is empty or occupied by at most one individual. We give
each node a number: 0, 1, 2 or 3. 0 means empty state; 1 is occupied a susceptible individual;
2 is occupied a infected individual and 3 is occupied a removed individual. The state of the
system at time ¢ can be described by a set of numbers, 0, 1, 2 or 3. Each node changes its
state with a certain rate. An empty node gives birth to a susceptible individual at rate A. A
susceptible individual can be infected by contact at rate 8 if there are infected individuals in
its nearest neighbors. An infected individual can be cured at rate p. A removed individual
can be relapsed at rate €. A removed individual can be transformed susceptible individual at
rate y. u is the natural death rate. If an individual dies, there is an empty node left. The
model structure is shown in Fig. 2.

The transfer diagram leads to the following system of ordinary and partial differential
equations:

BO = Ak(1 = Ne ()@ (@) + yRi(t) — koS ()O U (t, ) — S (), (2.3a)

U B0 = —p(a)]i (1, a) — uli(t. @), (2.3b)

B0 = / p(@I(t, a)da — (y + ju + &)Re (1), (2.3¢)
0

with the boundary condition I (¢,0) = ko Si(t)® ([ (¢t, -)) + eRy(¢) for >0 and the initial
conditions Sy (0) = Sko, It (0, a) = Ip(a), R, (0) = Ry for a>0 and k € N,,. Here, S €(0,
00), Rio €10, 00) and I (a) € L [0, 00), where L} [0, 00) is the space of function on [0, o)
that are nonnegative and Lebesgue integrable.

o is the effective exposure rate of a susceptible to the infected individuals; Bi(a) is the
transmission rate vertices of degree k with infection age a from the susceptible people to the
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infected people; p(a) is the transmission rate with infection age a from the infected people

to the removed people. O(Ii (¢, -)) which means the infection force is denoted by

i1 (k= Dpk) [ Bu(@)i(t, a)da
(k) ’

Similar to be [19], the probability of fertility contacts between nodes with degree k and their
neighbours with degree j is

OU(t,)) = e N,. 24)

n 1
)= PUK=N;@). k. j €N, (2.5)

Ak(1 — Ni(t))p(t) represents the density of new born individuals per unit time for k € N,,.
For the degree uncorrelated scale-free network, the conditional probability of a node with
degree k linking to a node with degree j is p(jlk) = i (J), where the degree distribution
pk)y =cf(k)k™", (2 <r <3), ¢ is any constant satlsfymg ZZ:I p(k) =1, and the value
(k) = Z:l kp(k) is the mean degree. Due to each infected node, there must be one edge
pointing to another infected node, the conditional probability of an infected node with degree
J linking freely with a susceptible with degree & is p'(jlk) = m k,jeN,.
From system (2.3), we obtain

dNi (t dSi(t > 9] dR
k() _ Si(®) +/ k(t’a)da+ w (1)
di di , o d

AL (t, a)da
ot

Ak(L = Ne(@)g(t) + yRi (1) — ko Sp ()OO Ui (2, -)) — uSi(t) +/0

+/ p(@)(t,a)da — (y + u+ )Ry (t)
0

Ak(1 = Ni(@)p(t) — koS ()OO U (1, -)) — Sk (1) +/ p(a)l(t, a)da — (u + €)Ry (1)
0

ol (t, a) >da
da

- / <,0(a)1k(t, a) + (1, a) +
0

= Ak(1 = Ne () (t) — ko Sp(1)O Uk (2, ) — S (#) — (1 + )R (1)
> > 0L (t, a)
— ,u/ I(t,a)da —/ da
0 0

da
= Ak(1 = Ne(0)p(t) — ko Sp(1)O Uk (2, ) — wSi(t) — (1 + )R (1)

o0
- M/ I (t, a)da + I (2, 0)
0

= Ak(1 = Ne(@)p@) — uSi(t) — uRi (1) — M/O Ii(t, a)da

= Akp(t) — (Ake (1) + )N (1), (2.6)

for k € N,,. According to [24,37], when A > u, Eq. (2.6) has a positive equilibrium meeting

Nf = ujr\lzc\iw* ,k € N,. Pluging N/ into ¢*, we yeild

h(p) =

L) 3 kp®)Ae . .7)

(k) &= 1+ Ak’
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Note that

1 < kplk)A
}:’“) <1, keN, (2.8)

1) = —
h(1) (k) &~ 1+ Ak

k=1

1 i:kmmAu

"= 2 Gt Akey?

i >0, keN,, 2.9)

k=1
thus 2/ (0) = % > 1 if A > pu. This indicates that & has a unique fixed point ¢*. Therefore,

Akg*

———, keN,. 2.10
u+ Akop* ( )

lim Ni(t) =

—>0o0

If A<, there is lim Ni(t) =0, k € N,,. Furthermore, the population becomes extinct and
=00

there is no other dynamical behaviours any more. Therefore, we only need to consider the
following limiting system which satisfies Si(¢) + fooo Ii(t, a)da + Ry (t) = N} as following,

LD — AR(1 — N7 )p* + yRi(1) — ko Sp()O U (1, ) — 1S (), 2.11a)

M B = —p(a)]i(1, a) — uli(t. @), (2.11b)

R / p(@I(t, a)yda — (v + 1t + )R (0), @2.11c)
0

with the boundary condition I (¢,0) = ko Sy (t)® Ik (¢, -)) + &Ry (¢) for >0 and the initial
conditions Sy (0) = Sko, I (0, a) = Ip(a), R, (0) = Ry for a>0 and k € N,,. Here, Sy € (0,
00), Ry €10, 00) and [p(a) € LL[O, 00), where L}r [0, 00) is the space of function on [0, co)
that are nonnegative and Lebesgue integrable.

Assumption 2.1.1. For system (2.11), we assume that

(i) p(a) € LT[0,00) with essential upper bound p and pi(a) € LL[0,00)()
Upc ([0, 00), [0, 00)) (k € N,)), where Upc([0, 00), [0, 00)) is a set of all bounded and uni-
formly continuous functions from [0, co) to [0, co) with essential upper bounds E, namely,

P = esssup p(a) < 00, By = esssup fi(a) < oo;
a€(0,00) a€l0,00)

(i1) p(a), Br(a) are Lipschitz continuous on [0, co) and Bi(a) is nondecreasing, k € N,;;
(iii) there exist mq € (0, m] and myg € (0, my], such that p(a) >mg and B(a) > myy for a>0,
keN,;
(iv) lim || = )
—>00
probability of the infected individuals still staying in the infected compartment;
(v) system (2.11) satisfies the coupling condition Io(0) = ko Sko® (lxg), for k € N,,.

ﬂiﬂ = 0, where 7 (a) = e~/ #9495 $(a) = p(a) + p, for ac[0, co), is the
o

2.2. Basic properties

To show that system (2.11) is epidemiologically meaningful, we will prove that all solu-
tions of system (2.11) with initial conditions Sy >0, 0 < fooo Iig(a)da < 0o, and Ryy >0 are
nonnegative and bounded for >0 and k € N,. Thus, we have the following Lemmas.
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2.2.1. Positivity of solutions and infection force

Lemma 2.2.1. Solutions Si(t) and Ri(t) of system (2.11) with initial conditions Sy >0 and
Ry >0 are positive for t>0 and k € N,,.

Proof. Similar to Appendix A of [20], we will prove that Si(f)>0 for >0 and k € N,,.
Assume that Si(#) is not always positive when #>0 and k € N,,. Notice that S¢(0)>0. Due
to Eq. (4.2a) and the continuity of Si(?), there is a sufficiently small & >0, such that Si(#) >0
for t€(0, ¢) and k € N,,. Furthermore, there exist j € N,, and the first time #; >¢ >0, such
that S;(#;) = 0 and S;(r) >0 for te (0, 11), k € N,,. Combining with Eq. (4.2a), we reach

S;®) + (w+ko®U;(t, )S;(t) > 0, t € (0,1), k €N, (2.12)
Therefore, we have
S;(t) > S;(0)e “ T >0, 1€ (0,1)), keN,. (2.13)

From Eq. (4.2c), we obtain

Ri(t)+ (v + WR;(t) >0, t € (0.17), k €N, (2.14)
Thus, we have

Ri(t) > Rj(0)e YT >0, t € (0,1), ke N,. (2.15)

Obviously, due to the continuity of R;(?), j € N,, we yield R;(t;)>0, j € N,. Furthermore,
Eq. (4.2a) indicates that

Si(t) = Aj(1 = N;)¢* +yR;(t) > 0, j €N, (2.16)
Thus,
Sj(6) <Sjt) =0, 1 €t —7.1) C(O.01), jeN, 2.17)

where 7 is an arbitrarily positive constant. It is an apparent contradiction. By using the method
of step-to-step, we have Si(f)>0 for >0 and k € N,,.

Correspondingly, from Eq. (4.2c), we get Ry(f)>0 for +>0 and k € N,,. This completes
the proof. O

Lemma 2.2.2. O([(t, -)) with O) >0 and solution fooo I.(t,a)da of system (2.11) with
initial condition 0 < fooo Iio(a)da < oo are positive for t>0 and k € N,,.

Proof. According to the definition of @(Ii(¢, -)), we have

Ao, ) . i~ /‘X’ A (t, a)
— =W <k2=1:(k Dp(k) B —5— da)

" 0 Al (t,
= (k)" <Z<k - l)p(k)/O ﬂk(a)<—p(a)1k(t, a) — puli(t, a) — %)da)
k=1

n e e} aI s
> = PO, )=uOU(t, ) — (|)' (Dk -0p® [ S md“)

k=1
= -+ O, "))

- (k)l(Z(k— l)p(k)<ﬂk(a)1k(t,a) =0 —/0 Ik(t,a)dﬂk(a))>
k=1
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> — (WO, ) + k)~ (Z(k ~ DpR)BO)i t, 0))

k=1
=—(@+rwOU, )

+ (k! (Z(k — Dp(k)B(0) (koS (O Ui (t, ) + eRk(r»),

k=1

for k € N,,. Clearly ©(Ig) > 0, Sk(#) >0, R() >0, for t > 0, k € N,,. This, combining with the

above differential inequality, we get @ (I (¢, -)) > O (Ixo)e P > 0, for >0 and k € N,,.
Next, for k € N,,, it follows from system (2.11) that

d [;° L(t, a)da _/00 ot a)
dt A a
°° (1, a)
=—/ p@I(t,a) + ul(t,a) + ———— |da
0 da
® 3 (t, a)

z—(ﬁ+u)/ Ik(t,a)da—/ 5 da
0 0 a

== (5+M)/ I (t, a)da + I (t, 0)
0

-+ u)/ L(t, @)da + ko Sy OUt, ) + eRe (1),
0

for k e N,. As Oi(t, -))>0, Sp(®)>0, R () >0, for te (0, o0) and k € N, it follows that
fooo I (t,a)da > 0, for >0 and k € N,,. This completes the proof. O

2.2.2. Invariant region
Define the space of function X as

X = (R")" x (L1 [0, 00))" x (R)", (2.18)

which is equipped with the norm
G x2, x3) [ = <|x1| +/ %2 (a)lda + |x3|>. (2.19)
k=1 0

The initial conditions Sy >0, 0 < fooo Iyp(a)da < 0o, Ry >0 for k € N, that belong to the
positive cone of X can be rewritten as xxo = (Sko, lxo(-), Rro) € X for k € N,,. According to
the theory of functional differential equation [38], it is clearly proved that system (2.11) with
initial conditions Sy >0, 0 < fooo Iio(a)da < 00, Ry >0 for k € N, has a unique nonnegative
solution. Therefore, we have a continuous semi-flow associated with system (2.11), namely,
D: (R*)" x X — X which is generated by system (2.11) takes the following form

D (t, xk0) = D; (x0) = (Sk (@), L (2, ), Ri(1)) t = 0,x00 € X, k €Ny, (2.20)

with
n

1D (ko) I = ISk @) ek, ), Re@) iy =) (ISk(t)I +/0 [l (t, a)lda + IRk(t)I>, (2.21)

k=1
for a>0 and k € N,,.
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Set

r ={<Sk(t),/ Ik(t,a)da,Rk(t)) eX:0< Sk(t),/ LI (t,a)da, Ry (1)
0 0

= S8k() +/001k(l,d)da+Rk(f) =< 1},
0

for k € N,. Thus, I is a positive invariance for &, i.e., ®(t, x0) €', V=0, x0T, for
k e N, and T is point dissipative and attracts all solutions with initial conditions Sy >0,
0 < f;" In(a)da < 0o, Ryp>0 of system (2.11) in X, for k € N,

3. Analysis of the model
3.1. Disease-free equilibrium and the basic reproductive number

Clearly, the disease-free equilibrium of system (2.11) is
Ak(l — N})op*

£ = {(st 0. R, = | (FEE
Next, according to the biological meaning of Ry, we define the form of R, as following,

oG- DSIp()) [y Bila)m (a)da .

(k) ’
where Z’;:, j(j — 1)/({k) denotes the total contacts by an infected individual in the net-
work consisting of susceptible individuals only. Bj(a)7(a) is the transmission ability of an
infected individual still staying in the infected compartment with infection age a. Hence,
f0°° Bj(a)m (a)da denotes the total transmission ability of an infected individual during the
infected period and o fooo Bj(a)m (a)da means the effective transmission ability.

,o,o)} JkeN,. 3.1)
k

Ro eN,, (3.2)

3.2. Stability of disease-free equilibrium

Theorem 3.2.1. Disease-free equilibrium E° of system (2.11) is locally asymptotically stable
if Ry <1, and is unstable if Ry > 1.

Proof. The linearized system of system (2.11) around the disease-free equilibrium E° =
[(S0,1°(), RO}, k € N, is

WO = —pS(t) — koSPOU(t, ) + YR (1), (3.3a)
) 4 M0 = —p(@) (1, @) — pli (1, @), (3.3b)
o0
RO = / p(@)I(t,a)da — (y + p + )R (1), (3.3¢)
0

with the boundary condition I (¢,0) = kaS,?@(Ik (t,-)) + eRy(t) for k € N,. Substituting
Si(t) = Swoe™, I (t, a) = L (a)e, Ry (t) = Ryoe, k € N, into system (3.3), we have

0=—(+ wSko — ko SYOU () + ¥ Ryo, (3.4a)

D = —(h+ p(a) + W), (3.4b)

0= / p(@I(@da— (h+y + i+ )R, (3.4¢)
0
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with the boundary condition /; (0) = koS,?@(IkC)) + &Ry (1), for k € N,,. Therefore, the char-
acteristic equation of system (2.11) is

A+ wE, * —VvE,
0 E,— A 0 =0, (3.5)
0 0 (A+y +u+ekE,
for k € N,,, where E, — A =
1 _$0p@) [§° b2 (@ (@)e”*da _280p0) J§° B3 (@ (@)e*da = )S)p) [5° pul@)m @eda
(k) ) (k) T (k)
0 1— 259p2) [5° B (@7 (@)eda _ 489p(3) J5° B3 (@7 (a)e™*da _ 2(n=1)8Yp(n) J5° Bu(a)m (a)e da
(k) (k) e (k)
0 _ n89p2) Jg° B2 (@ (a)e*da _ 2n89p(3) J5° B3 (@)m (@)e " da 1— n(n—=1)SIp() [5° Bu(@)w (@e *da
(k) (k) e (k)
(3.6)
By simple calculation, we have
noocs 0,0 [P y
Y i =DSIp() fy Br(a)e M (a)da
1- = / =0, (3.7)

(k)
for k, j € N,. We suppose that Eq. (3.7) has a root Xy with Re(x9)>0 if Ry<1. Thus, we
have
Y1 iU = DSIp() [y Brl@)e ™ n (a)da
- = —0, (3.8)

for k, j € N,,. Then

Y iG =S [y Bul@)e ™ w (a)da - Y iG = DS [y Brla)w (a)da
(k) - (k)

= Ry, (3.9)

for k, j € N,,. It is an apparent contradiction. Thus, we obtain that all roots of Eq. (3.7) have
negative real parts if Ry <1. According to Routh—Hurwitz criteria [39], we prove that the
disease-free E° is locally asymptotically stable if Ry < 1.

Next, if Ry > 1, we denote the left-hand side of Eq. (3.7) as F(A). Namely,

iU = DSIp() [y Bel@)e ™ (a)da

1 =

FLO) 21— , (3.10)
(k)
for k, j € N,,. Obviously, F(A) is a continuously integral function and satisfies
n e/ . 0 . o0 _(()+a)
i1 — DS;p(j) (a)e n(a)da
FOY)=1— 2= J P Jo” B —1-Ry <0, 3.11)
(k)
and
n N 0 . 00 —(+o00a)
. J(—=DSp()) (a)e w(a)da
F(+oo)=1—zj_1] = DSipG) o B — 1, (3.12)

(k)

for k, j € N,. Therefore, Eq. (3.7) has at least one positive root, then the disease-free E° is
unstable if Ry > 1. This completes the proof. (]
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t t>a

t<a

0,1

(a,0) a
Fig. 3. Characteristic line. Red solid line is # > a; black solid line is 7 = a; blue solid line is 7 < a. (For interpretation

of the references to color in this figure legend, the reader is referred to the web version of this article.)

Lemma 3.2.1 Fluctuation Lemma [40]. Let f: R, — R be a bounded and continuously
differentiable function. Then there exist sequences {s,} and {t,}, such that

lim 5, = 00, lim f(s,) = liminf £() = fuc, lim f'(s,) =0,

lim 1, = oo, lim f(t,) = limsup f(t) =: £, lim f'(¢,) = 0.

—>00

Lemma 3.2.2. /32] If f : R, — R be a bounded function and k € L' (R,.), we have
t
liminf/ k@) f (@ —06) > |lk||; liminf f(z) =: ||k]|1fo0,
—>00 0 —00

1
limSUP/ k@) f @ —0) < |lkll1 limsup f(t) =: |[k|[1 f>.
t—00 0 t—00

Theorem 3.2.2. Disease-free equilibrium E° of system (2.11) is globally asymptotically stable
ifR() < 1.

Proof. For any solution [(¢, -) with [i(-)eT, for k € N,, integrating Eq. (4.2b) along
the characgeristic line t —a=c where ¢ is a any constant is [(a+c,a) = I(a+
@, a)e ") PO% for k € N, where ¢ is determined by the signal of ¢. According to Fig. 3,
we get

(pz{o, C>0,Ik(t’a):{Bk(t_a)ﬂ'(a), t>a,

—¢, ¢<0, ho(a—1)75%, t <a,

(3.13)

for keN,, where By(t—a)=L(t—a,0)=koS,(t —a)OU;(t —a,-))+ eR(t —a).
Therefore, we obtain
By (t) =1 (t,0)
=koSi()O Ui (2, ) + R (1)
k

= %Sk(l) > k- 1)1!7(16)/0 Bi(@)l(t, a)da + R (1), (3.14)
k=1

and By(f) is nonnegative, bounded and differentiable for k£ € N,,. Therefore,
oAl — NH)e*
(k)

eAk(1 — N?)g*

B (1) = Z(k - 1)p(k)/0 Br(@)i(t, a)da +
k=1
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Ko Al —N)e* [ :
_T (;(k — Dp(k) (/0 Br(a)By(t — a)rm (a)da

7 (a)

+/ Br(@o(a —t)———da

)) n eAk(l — N})o*
w(a—t)
EkzoA(l — N})g* (

7

0 > k- 1>p(k>( /0 Bi(@)By(t — a) (a)da

k=1

*° Ak(1 — N})op*
+ e—¢’/ Bi(a) o (a — t)da)) + M, (3.15)
t w
for k € N,,. Applying to Lemma (3.2.2), we obtain B* <B*A, where
B*® = (lim sup Bk(t)) , (3.16)
=00 1xn

_ (k%A(l — N)e*

o0 Ak(j — D) (1 —NHo*
/ k(G = Do) B (@ (@da + 2K = DA = NDg ) ,
" ;

uw
(3.17)

for k € N,,. It is easy to verify that p(A) = Ry < 1,k € N,,, where p(A) is the spectral radius
of matrix A. Thus, B*® =0, for k € N,,.
First, we prove (¢, -)— 0 in L}r[O, o0) as t — 00, k € N,,. Namely,

o0

lim Ii(t,a)da =0, k e N,. (3.18)

—>0o0 0

Combining with Eq. (5.1), we yield

o] t o] JT(H)
Ii(t,a)da= [ Bi(t —a)m(a)da+ Liw(a—t)————da
0 0 ‘ w(a—1)
t o0
5/ Bi(t —a)n(a)da + e / Lio(a —t)da, (3.19)
0 '
for k € N,,. According to Lemma 3.2.2, we get
oo
1
lim sup/ I(t,a)da < B®||x||; < =B* =0, keN,. (3.20)
=00 0 ¢

Therefore, lim, o0 [, Ik (t, a)da = 0, for k € N,

Next, we prove that lim;_, o, S () = M(I_TW, lim;_, o R (t) = 0 for k € N,,. According
to Lemma 3.2.1, there exist sequences {s,}, {#,}, such that

lim s, = oo, lim S (s,) = liminf Sy (¢) := Sieo, lim S,’C(sn) =0, (3.21)
n—o0 n—o00 n—o00 t—o0
lim #, = oo, lim Si(7,) = limsup Sg(7) := S;°, lim S, (z,) =0, (3.22)
n— 00 n— o0 t— 00

n— o0

lim s, = oo, lim Ri(s,) = liminf R (1) := Ryoe, lim R} (s,) = 0, (3.23)
n—oo n—oo t—00

n— o0
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lim #, = oo, lim Ri(t,) = limsup R () := R;", tlim R (t,) =0, (3.24)
n— 00 —00

n—oo n— 00

for k € N,,. Hence, we have

[0¢] [o¢]
lim / Bi(@)I; (s,, a)da = 0, lim / p(@)(sy, a)da =0, (3.25)
n— 00 0 n—0o0 0
o0 [e ]
lim / Br(@) I (t,, a)da = 0, lim / p(a)I(t,, a)da =0, (3.26)
n— o0 0 n—o0 0
for k € N,,. From Eq. (4.2b), we obtain
dRy (sn) °°
Z—t = / p(@)(sn, a)da — (y + p + )Ry (sn), (3.27)
0
de (tn) o
- p@)(ty, a)da — (y + p + &)Ri (1), (3.28)
0

for k € N,. It follows that 0 = —(y + )Rieo, 0 = —(y + n)R® for k € N,. This gives
Rioo =0, R° =0, for k € N, which indicate that lim,_ . Rx(t) =0, k € N,,. According to
Eq. (4.2a), we have

S (s,
,;(ts ) _ Ak(1 = NY)@* + yRi(52) — ko Sk (s.)O Ui (s, -)) — 1Sk (), (3.29)
ds n
th . Ak(1 = N})g™ + yRi(t) — ko Sk (t)O i (t, ) — 1Sk (1), (3.30)

for k € N,. Hence, 0= Ak(l — N,:‘)(p* — USkoo, 0= Ak(l — N,f)(p* —uSe, for keN,.

Ak(1=N} ) g* Ak(1=N} ) g*

It follows that Skoo:T, S = for ke€N,, which imply that

lim,, o Si(t) = M k € N,,. In a word, we have shown that
(Sx(®), I (¢, ), Re(1)) = E* in X as t — 00,k € N, (3.31)

which suggests the solutions S(¢), fooo I (t,a)da, Ry (t) of system (2.11) with initial con-
ditions Sio, lxo(-), R € are attracted in I, for k € N,,. Combining with Theorem 3.2.1,
disease-free equilibrium E° of system (2.11) is globally asymptotically stable if Ry < 1. This
completes the proof. O

3.3. Existence of endemic equilibrium

Theorem 3.3.1. System (2.11) has a unique positive endemic equilibrium if Ry> 1.

Proof. We assume that E** = {(S}*, I;*(-), R}*)} . k € N, is the endemic equilibrium of sys-
tem (2.11), then we have

0= Ak(1 = N})g* + yR* — ko SO () — uSi*, (3.32a)
WO — —p@IF () — ul* (), (3.32b)
0= /" p(@I*()da— (y + 1 + &R}, (3.32¢)
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with the boundary condition 1;*(0) e Bf* = ko S;*OUI}*(-)) + eR;* for k € N,. According to

Eq. (3.32b), we get

L) = [0yt o p9ds — B gmna=ip)ds — gosg (g, (3.33)

for k € N,. Substituting it into the expression of B;*, we have

B — Ak(1 — N,f)(p*(fk(k)_1 fooo Br(a)m (a)day y_,(k — 1)p(k)Bi* (334)
C O utpoe Be0bk™ [Xx@)da [T u@m (@da Y k= DpoBrT

for k € N,. Let > ;_,(k — D)p(k)B}* =S B;*;*, k € N,. Eq. (3.34) becomes

B o Ak(1 = N))g*o [° B(a)m (a)da Z Ij(k - 1)p(k)B7;*oo _
k) — 14 e W oagkk)™" [ (a)da [ Bi(a)m (a)daBy*

(3.35)

for k € N,,. We define the right-hand side of Eq. (3.35) as g(B:,‘;*), that is to say, g(BNZ*) =

Ak(1 — Nj)op*o fooo Br(a)m (a)da i k(k — l)p(k)Bi*

(k) 1+ e Dagk(k)™" [ m(a)da [;° Pi(a)m (a)daBix

(3.36)

for k € N,,. Obviously, g (B*)

_ Ak = Ni)g'o [5° Bela)m (@)da k(k = Dp(k)

k) — (1 4 e~m=2agk (k)™ [ 7 (a)da [;° Br(a)7 (a)daBi*)?’

(3.37)

for k € N,. ¢'(B)
_ Ak =N)g*o [ Br@m(@)da s 2k(k = Dpk)e™ “ D okik)™ [7 w(@)da [i° pi(a)m (a)da

wik) = U+ e okl [ m(@da [;° Bi(@)w (a)daBi*)}
(3.38)
for k € N,. Therefore, g’(B}*) < 0,
lim g (By) =0, 539
Bz*—>+oo

Jim g/(B;f*) _ Ak(1 = Nfo*o [)° Br(a)m (a)da

g e Y k(k—1ptk) =Ry > 1, (3.40)

k=1

for k € N,.. Then ¢'(By") > 0, limg. . g(By) =0, limg._, . g(By")

_ Ak(1 = N))g*o 1o Bela)m (a)da X": k(k — 1)p(k)
p k) — 1+ e raokik)™ [T w(a)da [;° B(a)m (@)da’
(3.41)
for k € N,,. It follows that Eq. (3.35) has a unique positive solution. Due to Egs. (3.32a) and
(3.32¢), we have
5 = Ak(1 = Nj)o* + yR,’g*’RZ* _ [ p@)* ()da
u+ ko ®UF(+)) Yy +tute

(3.42)
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for k € N,,. Hence, system (2.11) has a unique positive endemic equilibrium, if Ry > 1. This
completes the proof. O

3.4. Analysis of the endemic equilibrium

3.4.1. Asymptotic smoothness

Lemma 3.4.1 [6]. Let D" C R", suppose
|fi (o) < My | fi o) — fi(a2) | < K,
then

1f1./2001) — fifa(a2)| < KiiMia + KoM,
i=1,2, keN,, for V xi, xp1,xp € D".
Definition 3.4.1. [41] A semi-flow
d(t,x0) 1 (RT)" xX - X, keN,,

is asymptotically smooth, if, for any nonempty, closed bounded set ACX for which
d(r, A) CA, there is a compact set Ag CA, such that Ay attracts A.

Lemma 3.4.2 [42]. Let A" C (LP[0, o0))* be bounded and closed where p>1. Then A" is

compact if the following conditions hold true.

(i) lim,_ ¢ fooo | fe (& + x) — fr (x)|Pdt = O uniformly for f, A", k € N,;
(ii) limy_, oo fxoo | fe(0)]Pdt = O uniformly for fy e A", k € N,,.

Theorem 3.4.1. The semi-flow

D1, x10) = ¢(t, Xp0) + Y (t, 100)  (RY)" x X — X,k € N,

is asymptotically smooth in X, if the following two conditions hold.

(i) There exists a continuous function
fi: (RY)" % (RY)" — (RT)",
such that
Tm fe(t, ) =0, llp(t, x0)llx < fit, h),
if |Pollx <h, for k € N;

(ii) Y (t, xpo) is completely continuous, for t>0, k € N,,.

Proof. Similar to [43-45], we decompose ®(f, xy) : (R*)" x X - X,k € N, into the fol-
lowing two operators ¢ (¢, xx), ¥ (¢, Xxo) : (]R+)" x X — X,k € N, namely,

gﬂ(t,.Xk()) = (Oa ylk(t7 '), 0)7 Ip(tv-xko) = (Sk(t), _),)\lk(tv ')7 rk(t))7 ke Nﬂa (343)
where

_}0, t>a>0, . _ i@, a), t>a=0,
ylk(t?a)_ {ik([,a), aZtZO, ylk(tva)_ {0’ aZIZO, (3‘44)
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for t>0, k e N,,.
Next, let fi(t, h) = he "0+t W! > 0,k € N,,. It is clearly that lim,_ o fi(t, h) =0,k €
N,,. Therefore,

0, t>a>0,

7 (a)

. k e N,. 3.45
lko(a_t)n(a_l)v aEI‘EO, ( )

Yie(t,a) = {

For xi €™ and ||xpollx <h, k € N, we get

n

o, x0)llx =Y <|0| +/0 Y (, a)lda + |0|)
k=1
[ 7 (a)
_Z/ lk()(a—t)md
=Z/ ikO(T)%
n 00 +7
=3 [ fiomen(~ [ o0ian)

for k € N,,. Note that ¢(a) > my + u,a > 0, we have

a

da

dr, (3.46)

n

o0
o (2, xi0)llx < e oty (|0| +f (., a)lda + |0|>
0

k=1
=" ol < he” "N £ fi(e, ), (3.47)
for k e N,,.

Finally, according to Lemma 3.4.2, we obtain that ¥/ (¢, B) is compact, for any closed and
bounded set BCX. Due to Lemma 2.2.2, we get that Si(?), fooo I (t,a)da and Ry(t) are in

M] C [0, M], where M > w is a bound for B, k € N,,.

the compact set [O, m

Meanwhile, [;° Bi(a)l(1, a)da < M <BM 2 L, k € N,, which suggests that

ko
(k)

AP (1 = NY)p*o

<= KT 2Nk —1)pk)nL

(k) ,; :

Ak(1 — Nj)g*

w

and O (t, ) = (k)" Sp_ (k= Dpk) [y Be(a)i(t, a)da < nL;, then

Se(t Ak(1 = NHe*  Ak(1 — NY)g* Ak(1 = N)p* Ak(1 = N¥)g*
() < ( e +y ( (9l T ko ( (ol nLi + ( )@
dt 7

Ak(1 — N})g*

Bt = 50 Y (k= Dp() [ A@i axda
k=1 0

< konL, < koMnL, £ L,, (3.48)

(I —N)e*

Ak
=2Ak + (y +konLy)

Ak(1 = N})g*

<2Ak + (y +konL )M = L3, (3.49)
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for t € R™, (Sio, Lio(a), Ryo) €T, k € N,,. Note that L, L, and L3 are independent of ¢ and
the initial conditions. Therefore, it is shown that y; (¢, a) remains in a compact subset of
(L}r[O, oo))n, which is independent of x;9 €I, k € N,,. It is clearly that Lemma 3.4.2 holds
true.

From Egs. (5.1) and (3.44), we obtain

Bt —a)m(a), t >a>0

0. a>1>0, k e N,. (3.50)

0 <y, a)= {

Let t € Rt and 7 >0, we have

B (t + h) — By (1)]

B <:> — Dpk) / Bu(@)ii(t + h, a)da + eRy(t + h)
0

k - &0
~ %Sk(t)Z(k— Dpk) /0 Bi(@)ii (1. a)da — eRy (1)
k=1

< (k#‘; > k- 1)p(k><sk(r + h) /0 (@)t + h, a)da
k=1

+ |eRi(t + h) — eR(2)]

S / ﬂk(aﬂk(t,a)da)

k
<=7 Z(k— 1)p(k>‘<sk<r+h) Sk(r»/ Bu(@)(t + h. a)da

k
+ 22 Z(k— 1p(k)

Sk(t)</ Br(a)l(t + h, a)da—/ Br(@)i(t, a)da>

skcr

=

M/ Bu(@)I(t + h, a)da

)

/ Br(@)Br(t + h — a)m (a)da

)

/ Be(@) i (t + h,a)da

Z(k - 1)p(k)<L1L3 h+

Ak(l —N*)(p

/ Be(@) I (t + h, a)da—/ Bi(a) i (t,a)da

cko Ak(1 — N*)fﬂ

0 ; § j(k - l)p(k)<L1L3 h ———
Ak(l —N*)(p

+ — / Br(a)l (t + h, a)da—/ Bi(a@) i (t, a)da

ska

=

Ak(l — N*)(p

Z(k — Dp(k) <L1L3 h+LLy h+

)

Z(k — Dp(k)(LiLs h+ LiLy h

—/ Br(a)k(t, a)da

ska

Tk
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Ak(1 — N)g*
g TRV

), (3.51)
"

for k € N,. By Eq. (5.1), we have L (t +h,a+h) = L(t,a)T4E0 (1,h,a) e R}, k € N,.
Thus

eko Z(k_ Doy M MN*)w

(Bx(a+ Wt +h,a+h) — Br(@)i(t, a))da

/ (Br(a+ M)t +h,a+h) — Br(@)(t, a))da
0

_ck Ak(1 = N} h

S Z(k— Dpio 2L = NOe / (ﬂk(a+h>1k(r pdchal ﬂk(aﬂk(r,a))da
M 0 7 (a)

sko Z(k_l)p(k)w( Bila+ WL, Q)M_Ik(t’a) da
M 0 7 (a)

+ [T - gt wda)
<%0 Z(k— o (7 a1 e )i ada

+/0 Iﬁk(d+h)—,Bk(a)llk(t,a)da)

- N — ko AL ¢h _
Z(k Dy MR ZNOGT 5 ko ALGh L oMLgh, (3.52)
m
for h>0, k e N,. Then Ve>0, 3§ = L h+L1Lj ke MLah’ such that
|Bk(l + h) — Bk([)| < 8’,[ (S RJr, he (0, 8), (Sk(), Iko(-), RkO) eI, k € N,,. (353)

Furthermore, we have

/ODO [Pk (t, a + h) — $i(t, a)|da =/Ot I (t,a+ h) — L (t, a)|da
=/Oth |Bi(t —a — h)w (a+h) — By(t — a)w (a)lda
—i—/ttth(t—a)n(a)da
5f0th |Bi(t —a—h) — Bi(t — a)|n (a)da
+/Ot_th(t—a—h)|rr(a+h)—rr(a)|da+L2h

t—h
<@t —h)L, h$+/ |Bi(t —a — h) — By(t — a)|
0

x m(a)da—+ L, h, (3.54)
for h>0, k € N,,. Combining with Eqs. (3.51) and (3.54), we have

;i“})/ P (t, a+h) = u(t, a)|da = 0, (3.55)
—=0Jo
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then Vx€B, y1x(f,a) remains in a compact subset By, of LL[O, o0), k e N,. Thus,
¥ (t, B) C [0, M] x By, x [0, M], which is compact in X, k € N,. Then, ¥(t, xw), k € N,
is completely continuous. This completes the proof. (]

3.4.2. Uniform permanence

In this section, we build the attractivity of the endemic equilibrium E** by using Lyapunov
functional. Therefore, we need the following permanence of system (2.11). According to [46],
we introduce the following concepts. Define p : I' — (R*)", with

Y k= Dp(k) [ Bi(@)By*w (a)da
B (k) ’

p(S1, 82, ... Sy 1 (a), Lb(a),....I,(a); Ri,Ry, ..., Ry)
(3.56)

for (S1,8,,...,8:; L(a), L(a),...,I,(a);R,R,,...,R,) € T'. Meanwhile,

Iy = {(Sko, Lio(a), Rio) € T : 319 € R, 5., p(D(to, (Sko, Lo(a), Rio)) > 0,k € N,,}. (3.57)

Easily, if (S¢(t), Ik (¢, ), Re(t)) € T\Do, k € N, (Se(®), L(t, -), Ri(t))— E**, as t — 00, k €
N,

Definition 3.4.2. For system (2.11), we obtain

(1) If 35 >0, independent of the initial conditions, such that
lim sup p (® (¢, (S0, Iko(a), Rio)) > 1,
11— 00
system (2.11) is uniformly weakly p-persistent, for (Sio, Iro(a), Rio) €y, OUxo(-))>0
and k € N,;;
(ii) if 37 >0, independent of the initial conditions, such that

litrgigf,o(@(t, (Sk0» Ixo (@), Ro)) > 1,

system (2.11) is uniformly strongly p-persistent, for (Sxo, Iro(a), Rio) € Lo, OLio(-))>0
and k € N,,.

Theorem 3.4.2. If Ry> 1, system (2.11) is uniformly weakly p-persistent, for (Sw, Iw(a),
Rip) €Ty, OUio(-)) >0 and for k € N,,.

Proof. Due to Ry > 1, we find an 25y > 0, such that

Ak(1 — N)o* ko ~—n /oo )
— =210 | — k—Dpk mdd I,keN,. (3.58
( r— M) 2 ® = DPK) | B@m @ da > (3.58)
We assume, by way of contradiction, that system (2.11) is not uniformly weakly p-persistence.

Then 3 (Sio, Iio(a), Rio) €Ty and 1y > 0, such that
lim sup p(® (¢, (Sko, Iro(@), Rko))) < 1o, k € N,,. (3.59)

1—>00
Furthermore, 3ty € R™, such that p(® (¢, (Sko, Lio(a), Rw))) < 219, for t > to, k € N,,. With-
out loss of generality, we suppose fo = 0. We achieve it by replacing the initial condition with
(¢, (Swo, Iro(a), Rio)), for k € N,,. Thus, if 1 > 1) = 0, we get

ko " o0
Bi(t) = msk(f) Z(k - 1)P(’¢)A Br(@)i(t, a)da
k=1
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Ko A(l — N})o* < /°°
k—Dplk I, (t,a)d
< o ;( )p(k) i Br(@)i(t, a)da

2mokPo A1 = N)g*
< k—1)pk
< o ;( )p(k)

. 2nnok*o A(1 - N)o*
- u
for k € N,,. According to Eq. (4.2a), we have
dSi(t)
dt

) (3.60)

= Ak(1 = NO)¢™ + yRe(t) — ko Sk (1) O Uk (2, ) — Sk (1)

> Ak(1 = N)@" — koS (1)OUk(t, ) — uSk(t)
= Ak(1 = Ni)o™ — 2nkong + w)Si (@), (3.61)

for k € N,,, which indicates that liminf,_, , S;(t) > %, k € N,,. Then 3¢t >1ty, such

nko no+up
Ak(1-N})p*
that S]((t) = W

we suppose that Si () >
obtain

— 2no, for t > t;, k € N,. Again, by replacing the initial conditions,
Ak(1—=N})p*

ko 2n, for t € RY, k € N,,. Combining with Eq. (5.1), we

(k)

- Ak(1 = NHo
2nkony + 1

k - *°
But) = 7-5i(1) Y (k — Dp(k) /O Be(@)(t, a)da
k=1
kO' n 00
- 2no> P Z<k — Dp(k) /0 Bi(@)Ii(t. a)da
Ak(1 = N))g* 7 (a)
z(m ) Z(k—l)p(k)/ Br@hot —a)— _t)d
(Ak(l—N,j)go

2nkong + 1

_ (AR =NHe* ko~ ! 7w
—(—MU% = 2no) P 1)p(k></0 prl@latt ~ @) da

_ no)%Z(k— Dpk) / Bu(@Bi(t — a)m (a)da
k=1 !

+/Ooﬂ(a)Bk(t - a)ﬂ(a)da>, (3.62)

for k € N,,. Note that both B;(-) and B(-)m(-) are bounded functions on R*. Therefore, due
to Eq. (3.62), their Laplace transforms on R* are

Ak(1 = N})g*

Bi(M) >
k3 = ( 2nkong

ko ! — —
no> & 2= D0 (BB + BB (). (.63
k=1

for A > 0, k € N,,, where™ means the Laplace transform of a function. As By(-) is not identical
zero on RY, we get By(A) > 0, A > 0,k € N,,. From Eq. (3.63), it follows that

(Ak(l ~N)g*

ko " — —
2nko o 77())@ kXZI:(k — D)p(k) (ﬂ()») + B(M)m (A)) <1L,A>0,keN, (3.64)



H.-F. Huo, P. Yang and H. Xiang/Journal of the Franklin Institute 356 (2019) 7411-7443 7431
It is clearly a contradiction with Eq. (3.58) by taking A = ng. This completes the proof. [

According to Lemma 2.2.2, Definition 3.4.1 and Theorem 3.4.1, we clearly obtain following
result.

Theorem 3.4.3. There exists a global attractor A for the solution semi-flow ® of system
(2.11) in T, if Ry> 1.

With the assistance of Theorems 3.4.2, 3.4.3 and 3.2.2 of [47], we get following
Theorem 3.4.4.

Theorem 3.4.4. If Ry> 1, system (2.11) is uniformly strongly p-persistent, for (Si, Ixo(a),
Rw)ely, OUio(-)) >0 and for k € N,,.

Since the global attractor A is invariant, it contains all points with total trajectories
through them. A total trajectory of ® is a function X : R" — (R1)" x (LL[O, 00))", such
that ®(s,X (1)) =X(t +s) for t € R" and s € (RT)". For a total trajectory, I(¢,a) =
It —a)w(a), for t € R" and a € (RT)". The « limit set of a total trajectory X(¢f) passing
through X (0) = X, is

aXo) =(JX©S) € A(\To.keN,.

1<0 s<t
Corollary 3.4.1. (Si(2), Ii(t, a), Ry (1)) is a total trajectory in A, if Ry>1, k € N,.

Proof. According to Eq. (4.2a), we have

dSi(t) .
= AR = N — koSO, ) — uSi(t)

= Ak(1 — Nj)¢* — ko (nLy + w)Si (1), (3.65)

which implies lim inf, .o Si (1) > $o % := ¢ k € N,. By Theorem 3.4.4, 3&, >0, such

that &, < p(Sk(t), Ik (t, ), Re(t)), t € R,k € N,,. Then

ko

I;(t,0) = (k)

Se ) Ytk — 1)p(k) /0 Bu@l(t, a)da
k=1
ko < o
=i Y= 0pd) [ A@G, ada
k=1

k n
> 8182(70; > (k= Dpk) = eresko . k € N,. (3.66)
k=1

From Eq. (4.2¢), we obtain

dRi (1) _ pAK( = N)¢*
dt — %

—(y +p+ R (1), keN,, (3.67)

. . . PAK(1-N?)g*
which implies liminf,_ . Ri(t) > %—Jr[\;k)if := &3,k € N,,. Therefore, we take gy =

(e1,€182ko, €3), such that Sp(¢), I (¢,0), R (t) > €9,t € R,k € N,. This completes the
proof. (]
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3.4.3. Stability of endemic equilibrium

Theorem 3.4.5. Endemic equilibrium E** of system (2.11) is locally asymptotically stable if
R() > 1.

Proof. The characteristic equation of system (2.11) around endemic equilibrium E** =
{(sz*, i* (), r,j*)}k, keN, is

B — 5 (1) — ko SPrOU (T, ) — koS (DO UF) + yRi (1), (3.682)
e 4 MLD — —p (@) (1, @) — pli (2, @), (3.68b)
o0
RO = / p(@(t,a)da — (y + u+ )R (1), (3.68¢)
0

with the boundary condition /i (¢,0) = ko S;*O (¢, ) + koS (t)O ) + eRi(t) for k €
N,.. Substituting Sy (t) = Skoe, It (t, a) = I (a)e", Ri(t) = Rwe™, k € N, into system (3.68),
we have

0=—Q+pn+koOU))Sk0 — koSO Uk () + v Ro, (3.69a)
D) = —(a + pla) + Wik (@), (3.69b)
0= [y p@l(@)da— (. +y + p+&)R. (3.69¢)

with the boundary condition [; (0) = ko S;*@ Ui (-)) + ko S; ()OO ) + eRi(t), for k € N,,.
Therefore, the characteristic equation of system (2.11) is

B D —yE,
E C 0 =0, (3.70)
0 0 (A+y+u+eE,
where
A+t by 0 0 b, 0 ... 0
0 A+p+2b ... 0 0 26, ... 0
B= . . . . JE =1 . . . R
0 0 o A+ unb, 0 0 ... —nb,
PO p@r @eda (n— D5y p(n) f° Bu@ (@e ™ da
(k) o (k)
255*p(2) [y~ B2 (@) (a)e da 2(n = 1)s3*p(n) [y~ Bu(a) (@)e da
D= (k) o (k) ,
nsy*p(2) [ B2 (@) (a)e ™ da n(n—1)spn) [y Ba(a)w (@)e*da
(k) o (k)
1 s p(2) fooo Ba(a) (a)e ™ da s7*p(n) fooo Bu(a)m (a)e ™ da
B ) —o= b (k)
0 1 WP B@n@eda (n— 1) P Jo Bu(@7(@)e *da
C= (k) (k)
0 _"53*1’(2) fooo Ba(a)m (a)e ™ da 1_ n(n — 1)sy* p(n) fooo Bu(@) (a)e ™da
(k) o (k)
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kY G- 1)p<j) I Bi@m (@B

where b, = D sk, j e N,. It is clear that Eq. (3.70) has n negative
eigenvalue —(y + u + ¢). By simple calculatlon we have

n

B D|_t kb - . /w ,
=] [o+r+kb — 1 -1 *.* ; Mda+1], (3.71
‘E c‘ E( ® k)(; (A+u+kbk )1(1 )P(j)s; | Bi(a)m (a)e **da ) 3.7D)

for k, j € N,. Therefore, A, = —u — kb, < 0,k € N,,, and the other characteristic roots are
determined by

= kbk co. . /w —A .
l— —— —1 s (a)m(a)e ™da=1, k,jeN,. 3.72
,-E_l( X—i—u—i—kbk)](] )P (j)S; | Bj(a)m (a) J ( )

Combining with Eq. (3.42), we obtain

S (1= 725 ) G = Dp() (Jo OG5 () + 1) [ Bilaym (@eda
Ak(1 = Nf)g*

1 = £ f(),

(3.73)

for k, j € N,. We suppose that Eq. (3.71) has a characteristic root Ay with Xy >0. Thus,
[f0)| < |fiRero)| <|f(0)| < 1. This leads to a contradiction with f (i) = 1. Therefore the en-
demic equilibrium E** of system (2.11) is locally asymptotically stable. This completes the
proof. ]

Theorem 3.4.6. If B = (,Bij), i, j € N, is irreducible, endemic equilibrium E** of system (2.11)
is globally asymptotically stable when Ry > 1.

Proof. From Lemmas 2.2.1 and 2.2.2, we know there exist §;, 8, such that

Si(t I (¢, R (¢
o< XD s s AGD o s RO o en, (3.74)
Si* I (a) Ry

It follows that f (Sg(’)) f (I[k(t(;’)) ) f (ngfi)), k € N, are bounded. We introduce Volterra-type
k k k

function f(x) =x —1—Inx, then fix)>0 for x>0 and f'(x) =1— )1_{ Hence, f(x) has a
global minimum at x = 1 and f(1) = 0. Namely, f{x) is nonnegative. We define

S I R
Vk(t):s,’;*f< gii)) + okSy* Z(J 1)17(1)/ 0, (a)f<;*(:(a))) +R <—,§£i))
k

(3.75)

where 6y (a) = faoo Br($)IF*(s)ds, then 6 (a) = —Br(a)[[*(a), k € N,. According to [43] and
differentiating it, we have

dvi(t) _<1 sy )dSk(t) N (1 Ry )de(t)
dr Se(t)) dt Ru(t)) dt

fIA*gZ)
kSt (k) Zu—np(;)/ 05—/ <’”>

—___* g
= Sk(t)(Sk(t) 5
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LSS L)),
S Sk (@) - 17 (a)

+oks )G = Dp() /0 B (@

J=1

ok -1 " - . 00 ‘ o Ik(l,O) _ Ik(t,a)
+ okS;* (k) ;(1 I)P(j)/o Bj(@) ;" (a) <f( 7(0) ) — f( ) ))da
Cydmte
Re() (Re(t) — R™)
== S0 =SS0 G = De) [ @@

j=1

N (V) Ij*(:,a) ~ Ikit,a) AR
S (@) I (t,0)  I7*(a) I} (a) I (a)
_rtpte
Ry (1)
where Rj* = N — §;* — fooo I}*(a)da, k € N,,. Due to Corollary 3.4.1, we yield

de(l) . ko -1 § . . /OO *ok ( < S;ck* >
= kS (k -1 i(a)I; —
R ,§=1 i (k) JEZI(J p(j) | Bi(@)I;*(a)| —f 5.0

_ (S0 ol ©) ko | Lo Lo ) Lea),
SEI L, 0) ) T @ @ @ @

(Re(t) — RY*)?, (3.76)

(3.77)

for j,k € N,. According to [16,24,48,49], it is verify that % satisfy the conditions of
Theorem 3.1 and Corollary 3.3 in [16]. Furthermore, it is clear that 3 ¢, > 0, k € N,;, such that
V =34, c&Vk > 0 which is a Lyapunov function of system (2.11). It is easy that V'(r) <0,
moreover, the largest invariant set for V'(t) = 0 is E**. Due to [50], the positive solution of

system (2.11) is globally asymptotically stable. This completes the proof. U
4. Immunization strategies

Immunization is very important in controlling diseases. In [51,52], the authors discussed
some immunization strategies. Therefore, in this section we discuss two immunization strate-
gies.

4.1. Proportional immunization

Let w(O<w<1) be the density of immune nodes in the network, and we substitute
Br(a)(1 — w) to Bi(a). Thus, system (2.11) becomes

LD — AK(1 = N})g* + yRe(1) — koS ()OI (1, ) — uSi (), (4.1a)
) 4 B = —p (@) (1, @) — pli (1, @), (4.1b)
o0
R = / p(@I(t, ayda — (v + 1t + )R (1), (4.1¢)
0

with the boundary condition I;(t,0) = ka Sy (#)O (¢, -)) + eRy(t) for +>0 and the initial
conditions Sy (0) = Sko, It (0, a) = Iip(a), R, (0) = Ry for a>0 and k € N,,. Here, S;o€(0,
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00), R €10, 00) and I (a) € L [0, 00), where L. [0, c0) is the space of function on [0, co)
that are nonnegative and Lebesgue integrable, and

Yok = Dpk) [y Br(@) (1 — o) (1, a)da A

OU(t, ) = 0 eN,.
Therefore Ry, becomes
oY i =DSp() [ Bi(a)(l —w)m(a)d
R = i i =DSp() [y Bi(@) (1 — w)m(a) a,kENn.
(k)
That is

R: = (1 —w)Ry.

Therefore, when w =0, namely, R; = Ry, no immunization schemes are done; when
0<w<1, that is, R < Ry, the immunization schemes are done and effective; when w =1,
that is, Rj = 0, A full immunization schemes are done, that is to say, it would be impossible
for the epidemic to spread in the network.

4.2. Targeted immunization

We introduce an upper threshold «, such that all nodes with connectivity k>« are immu-
nized. Therefore, define the immunization rate wy:

1, k>«k,
wr=13¢, k=«,
0, k<«k,

where 0<c<1, and @ = )_;_, axp(k) is the average immunization rate. Therefore, system
(2.11) becomes

50 = A(1 = NP)p* + yRi(t) — koS (DO Ui (. ) — uSe (1), (4.22)
Ule) 4 WOD) = —p (@) (t, a) — pli(t. ), (4.2b)
o0
R0 = / p(@(t,a)da — (y + p + )R (1), (4.2¢)
0

with the boundary condition I (¢,0) = koS (1)® (I (¢, -)) + eRy(¢t) for t>0 and the initial
conditions Si(0) = Sio, I (0, a) = Lip(a), Ry (0) = Ry9 for a>0 and k € N,,. Here, Sy, < (0,
00), Ry €0, 00) and [ip(a) € L}F[O, 00), where L}r [0, 00) is the space of function on [0, co)
that are nonnegative and Lebesgue integrable, and

Yici (k= Dpk) [3° Br(@) (1 — o)l (¢, a)da
(k) ’

Ok, ) = k €N,.

Therefore Ry, becomes

o Y1 JG = DSIpG) [y Bia) (k) — (Kay))m (a)da
(k)

Ry = vk eN,,

where

(Kwp) = o(k*) + (o — @) x [k — (k%) ]wi),
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Fig. 4. (a) Size distribution of degree k of node on a scale-free network with 100 nodes and m = 3; (b) Probability
distribution of degree k of node on a scale-free network with 100 nodes and m = 3.

and ((wx — @) x [k* — (k?)]wy) is the covariance of wy and k*. Therefore, there exists a big
enough «, such that ((wp — @) x [k2 - (kz)]wk) < 0; there exists an appropriate small x, such
that w; — @ and k> — (k%) have the same signs except for w; — @ or k> — (k?) is 0; there exists
an appropriate k, such that ((wy — ) X [k2 — (kz)]wk) > 0. Then

—
—R>.
l—w ©

If we set w = w,

Ry <

Ry <Rj(0<w<1),

which indicates the targeted immunization scheme is more efficient than the uniform immu-
nization scheme for the same average immunization rate.

5. Numerical simulation

In this section, we present some numerical results of system (2.11) that support and ex-
tend our theoretical results by using Matlab. Simulations are based on a scale-free network
[53-56] with P(k) = (r — Dm"~Dk~", where m represents the smallest degree on a scale-
free network nodes; r is variable of power law exponent. Let m = 3, r = 3 and the number
of nodes on a scale-free network is N = 100, and we add each new node with 3 new edges
(see Figs. 4 and 5). We employ iteration method and difference method to calculate density
of Sy, Iy, R, for different degree k as knin =3, k=4, k=5, k=6, k=7, k=8, k=9,
k=10, k=11, k=12, k=15, k=17, k =22, k = 28, kyn.x = 30. Meanwhile, we choose
some other parameters based on Table 1.

Firstly, we select a set of parameters as following:

,o0 =0.08year ', e =0.6year !,y = 0.05year !,

L p =0.01 year_l.

A =0.4year !, u = 0.04 year™!

r=24year ' B =0.002year !, @ = 0.6year !, t = 5year”

Then Ry = 0.8169 < 1. Due to Theorem 3.2.2, the disease-free equilibrium E° is globally
asymptotically stable, as is shown Fig. 6.
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log(P(k))
*

102 *

10'
log(k)
Fig. 5. (a) Evolution of logarithm of node probability P(k) versa logarithm of degree k on a scale-free network with
100 nodes and m = 3; (b) a scale-free network with 100 nodes and m = 3.

Table 1
The parameters description of the epidemic model.
Parameter Description Estimated value Source
A The constant recruitment rate or birth rate 0.028-0.4 year*1 [24]
y The transmission rate from the removed

people to the susceptible people 0.05 year™! Estimate
€ The transmission rate from the removed

people to the infected people 0.6 year™! Estimate
o The effective exposure rate of a

susceptible to the infected individuals 0.08 year~! [23]
n The natural death rate 0.01-0.04 year_1 [24]

0

Density of S,
Density of I,
Density of R,

Days Days Days

Fig. 6. The globally asymptotical stability of disease-free equilibrium E° with different degree if Ry < 1.

Secondly, we choose a set of parameters as following:

1 1

,o =0.08 year_l, e =0.6 year_l, y = 0.05year ",

! 1,p=0.01 year‘l.

A =0.4year' u =0.04year"

r=24 year‘l, B =02 year_l,oe =0.6year” ,t = Syear”

Then Ry = 1.7842 > 1. According to Theorem 3.4.6, the endemic equilibrium E** is globally
asymptotically stable, as is shown Fig. 7, where

a=r,

0, a<rt 0,
oz ’ﬁk(a)={ KB (5.1
p, a>Tt, THak> @>T.

p(a) ={
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Fig. 7. The globally asymptotical stability of endemic equilibrium E° with different degree if Ro > 1.
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Fig. 8. The globally asymptotical stability of disease-free equilibrium E° if Ry < 1. (a) The infected individuals I;(z,
a) with respect to time ¢ and age a. (b)The infected individuals 7;(f) with respect to time.

Here, we assume that the incubation period equals to the cure period. From Figs. 6 and 7,
we know that the susceptible individuals decrease as the degree of node increases, however,
the infected and removed individuals increase as the degree of nodes increases.

Thirdly, we take the transmission rate and the recovered rate as

0, 0<a<10,

p(a) = {30(a — 10)e~ 005625 " 10 < q < 40, (5.2)
0.012, otherwise,

and
0.00002, 0<ac<10,

Br(a) = {0.00002 + 0.00004(a — 10)e‘0'°°8(“‘25>2, 10 < a < 40, (5.3)
0.00004, otherwise.

If we select a set of parameters as following:
A =0.028year !, u = 0.04 year !, 0 = 0.08year !, & = 0.6 year ', y = 0.05year !,
r=24year !, g =02year |, = 0.6year !, r = 5year”!, p = 0.01 year™".
Then Ry = 0.6472 < 1 and the disease-free equilibrium E° is also globally asymptotically
stable, see Fig. 8. If we select A = 0.28, then Ry = 1.5683 < 1 and the endemic equilibrium

E** is also globally asymptotically stable, see Fig. 9. From Figs. 8 and 9, we obtain that the
number of infected individuals reduces almost to 0, and it also increases quickly to a peak.
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Fig. 9. The globally asymptotical stability of endemic equilibrium E** if Ry > 1. (a) The infected individuals I;(#,
a) with respect to time ¢ and age a. (b) The infected individuals 7;(f) with respect to time.

Therefore, the damped occupation phenomenon occurs, and it indicates that infection age
contribute to multiple peaks of infection, which strengthen the difficulty of disease control.
Comparing Figs. 6 and 7 with Figs. 8 and 9, we have different infection age distribution
function and degree of nodes result in different transmission trends for a short time infectious
period. Thus, infection age and degree of nodes play an important role on the disease spread
in initial transmission period.

6. Sensitivity analysis and discussion

According to Theorems 3.2.2 and 3.4.6, we know the dynamical behavior of system (2.11)
is determined by the basic reproduction number Ry. Hence, we perform the sensitivity analysis
of R().

We set that the form of p(a) and Bi(a) is similar to that of (5.1). Therefore,

oners)

1+a
Ry = . 6.1)
0 k) (1 + p)
Therefore,
k=D 5 —put k=Dk> —pt
ARy <Wﬂ‘f 8 S?) 3R, <W€ " S?)
— = 150, —=—"£ >0, (6.2)
do (k) (e + p) a8 (k) (e + p)
(k—Dk* 5 — (k=Dk* o —
ARy < ok Pe ’”S?> 3Ry M(Wﬁe ‘”S?>
—=_—2<0,—=— > < 0. (6.3)
ap (kY(u + p) 0t (kY (n + p)
We take
A =0.028 year‘l, w=0.01 year_l, r=24 year_', p =0.01 year_l, T=35 year_',
o =0.08 year ' (6.4)

From Fig. 10, we obtain that the basic reproduction number R increases when the transmis-
sion rate B8 and exposed rate o increase, however, the basic reproduction number R decreases
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Fig. 10. The relationship between the basic reproduction number Ry and the relevant parameters.

when the removed rate p and t increase. Therefore, decreasing the transmission rate S or
exposed rate o and increasing the removed rate p or t are effective methods to control the
spread of epidemic disease.

From Fig. 11, we know that the infected number [;(f) increases when the relapse rate
e and the exposed rate o increase, though, the infected number I;(f) decreases when the
removed rate p and t increase. Thus, the relapse rate ¢ has an important effect to the spread
of epidemic disease. We know that preventing relapse and the temporary immunization of the
removed individuals are very significant in transmission process of epidemic disease.

In this paper, we consider the effect of the infection age and a scale-free network to
epidemic disease, meanwhile, we take the relapse rate and the temporary immunity of the
removed individuals into consideration to epidemic disease. Hence, we construct an SIRS
epidemic model with infection age and relapse on a scale-free network, then we obtain that the
disease will die out if the basic reproduction number is less than one, otherwise, the disease
outbreaks. Furthermore, we propose some efficient control measures to prevent the spread
of disease on a scale-free network. Deducing number of high risk susceptible individuals
and avoiding the relapse of removed people are effective measures to control the spread
of epidemic disease. It is a challenging work to study the effect of topological structure of
networks on the transmission process of epidemic model, whether there are forward, backward,
Hopf bifurcations or other complicated dynamical behaviours can be explored. On the other
hand, if we consider the physiological age of an individual, it is enough to classify the nodes
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Fig. 11. The relationship between the infected number I;(f) and the relevant parameters.

into several age-groups, such as, child, adult and old people. If we study a discrete version
of our model, age can be considered as the discrete variance rather than the continuous case,
in this situation, the summation can replace the integral. We leave these interesting works for
the future.
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