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Abstract: In this study, the fully distributed adaptive iterative learning coordination control of the uncertain non-linear leader–
follower multi-agent systems with input saturation is studied. Under the alignment initial condition and Lyapunov theory, a novel
adaptive distributed control protocol with a fully saturated parameter learning law is designed. Despite the existence of input
saturation, the global perfect consensus tracking can be realised over a finite time interval. Besides, the consensus tracking
problem is extended to the formation control problem as well. Ultimately, the validity of theoretical analysis of this study is shown
by two examples.

1 Introduction
In the past few decades, the distributed coordination control for
multi-agent systems (MASs) has earned considerable concerns
from multidisciplinary researchers on account of its broad use in
transport systems, distributed wireless communication networks,
service robots, spacecraft formation flying [1] and so on. Based on
different collaborative tasks, the coordination control is divided
mainly into two kinds of controls, one of which is the consensus
control [2] that the states of agents arrive at a common state
through their interactions, the other is the formation control [3]
which is about manoeuvring many floating single agents to operate
and keep a predesigned form. Up to now, as a basic problem of
MASs, the consensus problem has been extensively researched by
scholars from different perspectives, such as the switching [4, 5] or
fixed [6, 7] topology, the known [8, 9] or unknown [10, 11]
directions, with [12–14] or without [15, 16] a leader and so on.
While the consensus problem with a leader is named as the
consensus tracking.

It should be noted that the above literature on MASs are
executed relying on the implicit assumption, i.e. all agents can run
without any limitations, which is apparently impossible in practical
applications. Since most physical actuators in the actual control
systems may suffer amplitude saturation due to hardware
restrictions, which is called input saturation. It means that the
amplitude of input is finite over a bounded domain and cannot be
arbitrarily large. The performance of systems would be caused by
instability or destroyed by this sort of saturation non-linearities
[17]. Therefore, it is significant and necessary to analyse the
system with input saturation. Many works with respect to input
saturation have been reported in [18–25]. Lin and Lin [18] solved
the control problem of an individual linear system with actuator
saturation using the low gain feedback technique. Later, the authors
[19, 20] applied this method to achieve the semi-global consensus,
while the global consensus was obtained in [21–23]. Different from
[18–23], the author in [24, 25] utilised the distributed optimal
control scheme to make the tracking errors uniformly ultimately
bounded.

However, all the aforementioned studies realised the asymptotic
consensus on the infinite time interval. If the arbitrary high
accuracy is required for the coordination control of MASs over a
finite time interval, these works cannot resolve. As is well known,
iterative learning control (ILC) is a sole and valid control technique
realising repetitive control task on a limited temporal interval for

accurate tracking requirements. Interested readers please refer to
survey papers [26, 27] for an excellent review of the progresses on
ILC, and the reference therein. ILC for an individual non-linear
system [28, 29], there are also some papers on input saturation. For
instance, an ILC method for a kind of non-linear uncertain systems
with input saturation was designed in [30], and the non-linearly
parametric systems with input saturation were investigated in [31–
33]. Moreover, as an important branch of ILC, optimal ILC has
been widely investigated in [34–36]. The authors of [34, 35]
proposed some model predictive control (MPC)-based ILC
schemes by incorporating input saturation and output constraint
into the optimisation problem, and Chi et al. [36] considered a
constrained data-driven optimal ILC for a class of non-linear
systems with input saturation and output constraint directly.
Recently, ILC has been utilised to deal with the coordination
problem of MASs [37–41], where the authors of [37–39] solved the
formation control problem via ILC but the authors of [40, 41]
handled the consensus tracking problem using ILC and distributed
optimal ILC. In addition, the adaptive ILC for MASs without input
saturation has been reported in [42–47]. The authors in [42, 43]
addressed the consensus problems of the first- and high-order non-
linear MASs with constraints, respectively. Chen and Li [44]
investigated the perfect consensus problem for second-order
linearly parameterised MASs with imprecise communication
topology structure and Bu et al. [45] proposed a distributed model
free adaptive ILC method for a class of unknown non-linear MASs
to perform consensus tracking. An adaptive ILC of consensus
problem for the leader–follower non-linear MASs was presented in
[46] and the consensus tracking in LT

2 -sence was obtained, and Li
and Li [47] introduced the fully distributed adaptive ILC to tackle
the coordination control of MASs.

By the above observations, although numerous papers went into
MASs with input saturation or ILC, the coordination control for
MASs with input saturation has not been addressed under the
framework of ILC. Therefore, it is highly desirable for us to
develop a new ILC protocol for MASs with input saturation. This
inspires us to put forward the fully distributed coordination control
for the uncertain non-linear leader–follower MASs with input
saturation utilising an adaptive ILC algorithm.

In this paper, we focus mainly on the distributed coordination
control for the uncertain non-linear leader–follower MASs with
input saturation using adaptive ILC. Under the alignment
condition, a novel adaptive distributed control protocol, which is
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independent of any global information is presented, and a fully
saturated parameter learning law for coupling gains is designed.
Meanwhile, even though there exists input saturation in the system
dynamics of each follower agent, the global perfect consensus
tracking can be achieved on [0, T]. Furthermore, we extend the
consensus results to the formation control problem. Finally, two
examples testify the efficiency of theoretical analysis in this paper.
In conclusion, the main contributions of the paper can be
summarised as follows: (i) unlike the literatures on MASs with
input saturation, such as [19–25], in this paper, the global perfect
consensus tracking can be gained on [0, T]; (ii) literatures [30–33]
investigated the convergence problem of an individual system with
input saturation under the identical initial condition, whereas we
take into account the coordination control problem of MASs with
input saturation under the alignment condition, which is more
practical; and (iii) [44, 47] settled the fully distributed coordination
control for MASs without input saturation. To be applied more
highly to the real world, we have tackled the coordination problem
of the ILC-based MASs with input saturation, at the same time, the
fully distributed coordination control protocols are also proposed.
It is the first time to solve the distributed coordination problem of
the uncertain non-linear MASs with input saturation using adaptive
ILC under the alignment condition.

The remainder of the paper is divided into the following
sections. The preliminaries are given in Section 2. Section 3 is the
problem formulation. In Section 4, the distributed consensus
algorithm for the uncertain MASs with input saturation is
presented. Section 5 is the extension of the consensus results to the
formation control and Section 6 enumerates two illustrative
examples. At last, the conclusion is provided in Section 7.

2 Preliminaries
An undirected graph is denoted as Ḡ = V̄ , Ē, Ā , where
V̄ = {v̄1, …, v̄N} is the set of vertices and Ē ⊆ V̄ × V̄  is the set of
edges. Ā = [ai j] ∈ RN × N is the weighted adjacency matrix of the
graph Ḡ. If there is an edge between agents vi and vj, i.e.
vj, vi ∈ Ē, then ai j = aji = 1, otherwise ai j = aji = 0. Moreover, it

is assumed that aii = 0. The set of all neighbours of the ith agent is
Ni = {vj: vj, vi ∈ Ē}. The Laplacian matrix of Ḡ is L = D − Ā,
where D = diag{d1, …, dN} with di = ∑ j = 1

N ai j. A path is a
sequence of connected edges in the graph. For the undirected graph
Ḡ, the adjacency matrix Ā is symmetric and the graph Ḡ is
connected if there is a path between any two vertices.

In what follows, we mainly concern G′ associated with the
system consisting of N follower agents whose topology graph is
denoted by Ḡ and one leader (labelled as 0). bi denotes the access
of the ith agent to the leader, i.e. bi = 1 if agent vi has direct access
to the full information of the leader, otherwise, bi = 0. It is obvious
that H = L + B is a symmetric matrix associated with G′, where L
is the Laplacian matrix of Ḡ and B = diag{b1, …, bn}.

 
Lemma 1: If graph G′ is connected, then the symmetric matrix

H associated with G′ is positive definite [4].
 
Definition 1: For a scalar u(t), a saturation function sat(u(t), u*)

is defined as

sat(u(t), u*) =
Δ u(t) u(t) ≤ u*

sign(u(t))u* else, (1)

where u* > 0.
To facilitate the subsequent analysis, three properties in regard

to saturation function will be given below.
 
Property 1: For a given u0(t), satisfying maxt ∈ [0, T] u0(t) ≤ u*,

then

[u0(t) − sat(u(t), u*)]2 ≤ [u0(t) − u(t)]2 [30] . (2)
 

Property 2: For h =sat(μ, b) + s, where b > 0, then the
following inequality is established [30]. i.e.,

sat(h, b) − h ≤ s . (3)
 
Property 3: For m, r ∈ R, if m satisfies m < r*, then

[m − sat(r, r*)][r − sat(r, r*)] ≤ 0 [48] . (4)

3 Problem formulation
In view of a set of N identical follower agents with a leader in the
repetitive environment, at the kth iteration, each follower agent is
governed by

ẋi
k(t) = η(xi

k(t), t) + sat(ui
k(t), u*), (5)

where i = 1, 2, …, N; xi
k(t) ∈ R and ui

k(t) ∈ R are the state and input
of the ith agent; η(xi

k(t), t) is an unknown time-varying global
Lipschitz continuously differentiable function in xi

k(t) and
piecewise continuous in t; and sat(ui

k(t), u*) is a saturation function
defined in Definition 1.

The leader whose state is denoted as x0(t) ∈ R satisfies the
following dynamic

ẋ0(t) = η(x0(t), t) + u0(t), (6)

where u0(t) ∈ R is the leader's input.
 
Remark 1: Literatures [12–14, 44–47] on the leader–follower

MASs, there is a tacit assumption that the input of the leader
u0(t) = 0. This assumption might be rigorous in different
circumstances. Actually, to refrain from dangerous barriers or get
an ideal consensus, non-zero control can be exerted on the leader.
Also, this part aims to deal with the ordinary form of the leader–
follower consensus, i.e. the input of the leader is non-zero. From
now on, we will give the assumption on this.

 
Assumption 1: The control input of the leader is finite, i.e.

u0(t) ≤ u* .
Define the consensus error for the MASs (5) and (6) as

δi
k(t) = xi

k(t) − x0(t) . (7)

The ultimate target of the paper is to find a series of appropriate
control protocols {ui

k(t), 0 ≤ t ≤ T , i = 1, 2, …, N; k ∈ Z+} such
that xi

k(t) → x0(t) when k → ∞, i.e. limk → ∞ δi
k(t) = 0,

i = 1, 2, …, N . In other words, each follower agent can perfectly
track the leader in the iteration domain, i.e. the global perfect
consensus tracking can be achieved.

Furthermore, the agent only knows the information from its
neighbours. Hence, we should define the distributed error for the
ith agent as

ei
k(t) = ∑

j = 1

N
ai j(xj

k(t) − xi
k(t)) + bi(x0(t) − xi

k(t)) . (8)

According to the definition of (8), the compact form of the error
can be expressed as

ek(t) = − (L + B)[xk(t) − 1Nx0(t)] = − Hδk(t), (9)

where
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1N = [1, 1, …, 1]T ∈ RN,
ek(t) = [e1

k(t), e2
k(t), …, eN

k (t)]T,
xk(t) = [x1

k(t), x2
k(t), …, xN

k (t)]T,
δk(t) = [δ1

k(t), δ2
k(t), …, δN

k (t)]T .

(10)

 
Remark 2: It can be seen that the consensus tracking problem of

this paper is the typical tracking issue when N = 1. It is non-trivial
from an individual system to MASs. On the one hand, the state of
the leader can be only acquired by some follower agents.
Therefore, the error (7) is unable to directly design the control
protocol. We define the error (8) for the consensus control purpose.
On the other hand, the communication topology among all agents
plays a crucial role in consensus analyse. While selecting the
Lyapunov–Krasovskii functional, the topology structure should be
considered.

 
Assumption 2: The alignment initial condition is satisfied, i.e.

xi
k(0) = xi

k − 1(T) and x0(0) = x0(T) .
 
Remark 3: Though the authors of [30–33] investigated the

individual uncertain non-linear system with input saturation, only
the identical initial condition (i.i.c) was utilised. Nevertheless, the
i.i.c cannot be applied to the MASs. Since each follower agent
cannot have direct access to the state of the leader, it is hard to
make the i.i.c hold in the MASs. Moreover, the alignment
condition only requires that the initial state of each iteration for the
follower agents equals to the final state of the previous iteration,
regardless of the leader. As far as the leader is spatially closed.
Therefore, it is less restrictive than the i.i.c to some extent in the
MASs. Meanwhile, many existing works including [42–47]
without input saturation have utilised the alignment initial
condition to the MASs. Consequently, it is of great value to assume
this condition in the MASs with input saturation.

 
Assumption 3: η(x′, t) is an unknown function which satisfies

η(x1′, t) − η(x2′, t) ≤ l x1′ − x2′ , (11)

for all x1′ and x2′ in R, where l > 0.
In what follows, the variable t will be omitted when no

confusion would arise.

4 Distributed consensus scheme via adaptive ILC
for uncertain MASs with input saturation
During the kth iteration, the error dynamic of the ith agent can be
calculated as

δ̇i
k = η(xi

k, t) + u~i
k − η(x0, t) − u0, (12)

where u~i
k = sat(ui

k, u*) . Then, the vector form is

δ̇k = η(xk) + u~k − 1Nη(x0) − 1Nu0, (13)

where

η(xk) = [η(x1
k, t), η(x2

k, t), …, η(xN
k , t)]T,

u~k = [u~1
k, u~2

k, …, u~N
k ]T .

(14)

For the sake of working out the consensus issue of MASs (5) and
(6), the distributed learning-based protocol is

ui
k(t) = ϕ

^
i
k(t)ei

k + sat(ui
k − 1, u*), ui

−1(t) = 0, ∀t ∈ [0, T], (15)

with a fully saturated difference adaptive learning law for adjusting
the coupling control gain

ϕ
^
i
k(t) = sat(ϕ^

i
k − 1(t) + qi(ei

k)2, ϕ*), ϕ
^
i
−1

(t) = 0, (16)

where ϕ
^
i
k(t) is the time-varying control gain among neighbouring

agents for the ith agent with ϕ
^
i
0
(0) > 0; qi > 0 is a designed

constant and ϕ* is the saturation bound of ϕ
^
i
k(t), which can be

chosen by the designer.
 

Remark 4: It should be noted that the control protocol (15) is a
novel distributed adaptive ILC protocol, which includes the
adaptive term ϕ

^
i
k(t)ei

k and the saturation term sat(ui
k − 1, u*). The

adaptive term has the time-varying control gain ϕ
^
i
k(t), which can

make the control protocol fully distributed; and sat(ui
k − 1, u*) is

used to obtain the perfect consensus tracking over [0, T]. At the
same time, it can be seen from the saturated difference adaptive
law (16), when ϕ

^
i
k(t) reaches the upper bound ϕ*, the control

protocol (15) becomes the closed-loop P-type ILC law in [30].
Furthermore, it is obvious that ϕ

^
i
k(t) is bounded. Then, ϕ

^
i
0
(0) > 0

can guarantee ϕ
^
i
k(t) > 0.

The control protocol (15) is represented as the compact form

uk = u~k − 1 + Φ^ kek = u~k − 1 − Φ^ kHδk, (17)

where

uk = [u1
k, u2

k, …, uN
k ]T ∈ RN,

u~k − 1 = [sat(u1
k − 1), sat(u2

k − 1), …, sat(uN
k − 1)]T ∈ RN ,

Φ^ k = diag{ϕ
^

1
k(t), ϕ

^
2
k(t), …, ϕ

^
N
k (t)} ∈ RN × N .

(18)

 
Theorem 1: Consider the connected graph G′ of the MASs (5)

and (6), Assumptions 1–3 hold, then N follower agents expressed
by (5) under the protocol (15) and the learning-based updating law
(16) for the coupling control gains can perfectly track the leader (6)
in the iteration domain on [0, T], i.e. the global perfect consensus
tracking can be achieved, and the variables involved in the closed
system are all bounded.

Proof: First of all, a Lyapunov function is constructed as

Vk(t) = 1
2(ek)TH−1ek

= 1
2(δk)THδk .

(19)

Taking the derivative of (19) and recalling the error dynamic
(13) and the protocol (17) yield

V̇k(t) = (δk)THδ̇k

= (δk)TH(η(xk) + u~k − 1Nη(x0) − 1Nu0)
= (δk)TH(η(xk)− 1Nη(x0) + u~k − uk +uk − 1Nu0)
= (δk)TH(η(xk) − 1Nη(x0) + u~k − uk + u~k − 1

−Φ^ k(t)Hδk − 1Nu0) .

(20)

From Assumption 3, we know
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(δk)TH[η(xk) − 1Nη(x0)]

= − ∑
i = 1

N
ei

k[η(xi
k) − η(x0)]

≤ ∑
i = 1

N
ei

k [ η(xi
k) − η(x0) ]

≤ l∑
i = 1

N
ei

k δi
k

= l ek T δk

= l −Hδk T δk

≤ l∥ Hδk ∥∥ δk ∥
≤ lλmax(H)(δk)Tδk .

(21)

Thus, (20) becomes

V̇k(t) ≤ lλmax(H)(δk)Tδk − (δk)THΦ^ k(t)Hδk

+(δk)TH(u~k − uk + u~k − 1 − 1Nu0) .
(22)

Select a Lyapunov–Krasovskii functional as

Ek(t) = Vk + ∑
i = 1

N 1
2qi

∫
0

t
(ϕ~i

k(τ))
2
dτ

+ ∑
i = 1

N ∫
0

t 1
2ϕ

^
i
k(τ)

(δui
k)2 dτ,

(23)

where ϕ
~

i
k(t) = ϕ − ϕ

^
i
k(t) with ϕ > 0 and δui

k = ui
k − u0.

Now, the difference of Ek(t) can be written as

ΔEk = Ek − Ek − 1

= Vk + ∑
i = 1

N 1
2qi

∫
0

t
[(ϕ~i

k(τ))
2
−(ϕ~i

k − 1(τ))
2
] dτ

+ ∑
i = 1

N ∫
0

t 1
2ϕ

^
i
k (δui

k)2 dτ

− ∑
i = 1

N ∫
0

t 1
2ϕ

^
i
k − 1 (δui

k − 1)2 dτ − Vk − 1

= ∫
0

t
V̇kdτ+ ∑

i = 1

N 1
2qi

∫
0

t
[(ϕ~i

k)
2
− (ϕ~i

k − 1)
2
] dτ

+ ∑
i = 1

N ∫
0

t 1
2ϕ

^
i
k (δui

k)2 dτ + Vk(0)

− ∑
i = 1

N ∫
0

t 1
2ϕ

^
i
k − 1 (δui

k − 1)2 dτ − Vk − 1 .

(24)

Noting that ϕ
^
i
k(t) ≥ ϕ

^
i
k − 1(t), (24) becomes

ΔEk(t) ≤ ∫
0

t
V̇k dτ + ∑

i = 1

N 1
2qi

∫
0

t
[(ϕ~i

k)
2
− (ϕ~i

k − 1)
2
] dτ

+ ∑
i = 1

N ∫
0

t 1
2ϕ

^
i
k [(δui

k)2 − (δui
k − 1)2] dτ

+Vk(0) − Vk − 1(t) .

(25)

With the help of the relation
( f − g)2 − ( f − y)2 = (y − g)[2( f − g) + (g − y)] and (16), it can be
obtained that

∑
i = 1

N 1
2qi

∫
0

t
[(ϕ~i

k)
2
− (ϕ~i

k − 1)
2
] dτ

= ∑
i = 1

N 1
2qi

∫
0

t
[(ϕ − ϕ

^
i
k)

2
− (ϕ − ϕ

^
i
k − 1)

2
] dτ

= ∑
i = 1

N 1
2qi

∫
0

t
(ϕ^

i
k−1 −ϕ

^
i
k)[2(ϕ−ϕ

^
i
k) + (ϕ^

i
k − ϕ

^
i
k − 1)] dτ

= ∑
i = 1

N 1
qi
∫

0

t
ϕ
~

i
k(ϕ^

i
k − 1 − ϕ

^
i
k)) dτ

− ∑
i = 1

N 1
2qi

∫
0

t
(ϕ^

i
k − ϕ

^
i
k − 1)

2
dτ

≤ ∑
i = 1

N 1
qi
∫

0

t
ϕ
~

i
k(ϕ^

i
k − 1 − ϕ

^
i
k) dτ

(26)

= ∑
i = 1

N 1
qi
∫

0

t
ϕ
~

i
k(ϕ^

i
k − 1 + qi(ei

k)2 −qi(ei
k)2 −ϕ

^
i
k) dτ

= ∑
i = 1

N 1
qi
∫

0

t
ϕ
~

i
k[ϕ^

i
k − 1 + qi(ei

k)2 − ϕ
^
i
k] dτ

− ∑
i = 1

N ∫
0

t
ϕ
~

i
k(ei

k)2 dτ .

Based on Property 3 and (16), we have

ϕ
~

i
k[ϕ^

i
k − 1 + qi(ei

k)2 − ϕ
^
i
k]

= (ϕ − ϕ
^
i
k)[ϕ^

i
k − 1 + qi(ei

k)2 − ϕ
^
i
k]

= [ϕ − sat(ϕ^
i
k − 1 + qi(ei

k)2, ϕ*)][ϕ^
i
k − 1 + qi(ei

k)2−ϕ
^
i
k] ≤ 0.

(27)

Accordingly

∑
i = 1

N 1
2qi

∫
0

t
[(ϕ~i

k)
2
− (ϕ~i

k − 1)
2
] dτ

≤ − ∑
i = 1

N ∫
0

t
ϕ
~

i
k(ei

k)2 dτ

= − ϕ∑
i = 1

N ∫
0

t
(ei

k)2 dτ + ∑
i = 1

N ∫
0

t
ϕ

^
i
k(ei

k)2 dτ

= − ϕ∫
0

t
(δk)TH2δk dτ + ∫

0

t
(δk)THΦ^ kHδk dτ .

(28)

From Property 1 and the control protocol (15), the third term on the
RHS of (25) is reexpressed as
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∑
i = 1

N ∫
0

t 1
2ϕ

^
i
k [(δui

k)2 − (δui
k − 1)2] dτ

= ∑
i = 1

N ∫
0

t 1
2ϕ

^
i
k [(ui

k − u0)2 − (ui
k − 1 − u0)2] dτ

≤ ∑
i = 1

N ∫
0

t 1
2ϕ

^
i
k [(ui

k − u0)2 − (u~i
k − 1 − u0)2] dτ

= ∑
i = 1

N ∫
0

t 1
2ϕ

^
i
k (u~i

k − 1− ui
k)[2(u0 − ui

k) + (ui
k − u~i

k − 1)] dτ

= ∑
i = 1

N ∫
0

t 1
2ϕ

^
i
k ( − ϕ

^
i
k
ei

k)[2(u0 − ui
k)] dτ

− ∑
i = 1

N ∫
0

t 1
2ϕ

^
i
k (ui

k − u~i
k − 1)2 dτ

= ∑
i = 1

N ∫
0

t
ei

k(ui
k − u0) dτ − ∑

i = 1

N ∫
0

t ϕ
^
i
k

2 (ei
k)2 dτ

= ∫
0

t
(δk)TH(1Nu0 − uk) dτ − 1

2∫0

t
(δk)THΦ^ kHδk dτ .

(29)

Substituting (22), (28) and (29) into (25) results

ΔEk(t) ≤ lλmax(H)∫
0

t
(δk)Tδk dτ −1

2∫0

t
(δk)THΦ^ k(τ)Hδk dτ

+∫
0

t
(δk)TH(u~k − 2uk + u~k − 1) dτ

−ϕ∫
0

t
(δk)TH2δk dτ + Vk(0) − Vk − 1(t) .

(30)

From Property 2 and the control protocol (15), it follows that
ui

k − u~i
k ≤ ϕ

^
i
k(t) ei

k , which leads to the following inequality:

∫
0

t
(δk)TH(u~k − 2uk + u~k − 1) dτ

= − ∑
i = 1

N ∫
0

t
ei

k(u~i
k − ui

k + u~i
k − 1 − ui

k) dτ

≤ ∑
i = 1

N ∫
0

t
ei

k ( u~i
k − ui

k + u~i
k − 1 − ui

k ) dτ

≤ ∑
i = 1

N ∫
0

t
ei

k (ϕ^
i
k

ei
k + ϕ

^
i
k

ei
k ) dτ

= 2∑
i = 1

N ∫
0

t
ϕ

^
i
k(ei

k)2 dτ

= 2∫
0

t
(δk)THΦ^ kHδk dτ .

(31)

Taking (31) into (30), it is obvious that

ΔEk(t) ≤ lλmax(H)∫
0

t
(δk)Tδk dτ + 3

2∫0

t
(δk)THΦ^ k(τ)Hδk dτ

−ϕ∫
0

t
(δk)TH2δk dτ + Vk(0) − Vk − 1(t) .

(32)

For the positive definite matrix H, (32) becomes

ΔEk ≤ Vk(0) − Vk − 1(t)

−[ϕλmin
2 (H)− lλmax(H) − 3

2ϕ*λmax
2 (H)]∫

0

t
(δk)Tδkdτ

≤ − c∫
0

t
(δk)Tδk dτ + Vk(0) − Vk − 1(t),

(33)

where c = ϕλmin
2 (H) − lλmax(H) − 3

2 ϕ*λmax
2 (H) with ϕ being the large

enough constant, such that c > 0; λmin(H) and λmax(H) are the
minimum and maximum eigenvalues of H. Therefore, we have

ΔEk(t) ≤ − c∫
0

t
(δk)Tδk dτ + Vk(0) − Vk − 1(t) . (34)

Let t = T , according to Assumption 2

ΔEk(T) ≤ − c∫
0

T
(δk)Tδk dτ . (35)

That is

Ek(T) ≤ Ek − 1(T) . (36)

From (34) and (36), we can obtain (see (37)) . Hence, Ek(t) is finite
for any iteration if E0(T) is limited.

Next, the boundedness of E0(t) will be shown.

E0(t)=V0+ ∑
i = 1

N 1
qi
∫

0

t
(ϕ~i

0)
2
dτ+ ∑

i = 1

N ∫
0

t 1
2ϕ

^
i
0 (δui

0)2 dτ, (38)

and
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Ė0(t) = V̇0(t) + ∑
i = 1

N 1
qi

(ϕ~i
0(t))

2
+ ∑

i = 1

N 1
2ϕ

^
i
0 (δui

0)2

≤ lλmax(H)(δ0)Tδ0 − (δ0)THΦ^ 0(t)Hδ0 +(δ0)TH(u~0−u0

+u~−1 − 1Nu0) + ∑
i = 1

N 1
2ϕ

^
i
0
(τ)

[(δui
0)2 − (δui

−1)2]

+ ∑
i = 1

N 1
2qi

(ϕ~i
−1)

2
+ ∑

i = 1

N 1
2qi

[(ϕ~i
0)

2
−(ϕ~i

−1)
2
]

+ ∑
i = 1

N 1
2ϕ

^
i
0 (δui

−1)2

≤ lλmax(H)(δ0)Tδ0 − (δ0)THΦ^ 0(t)Hδ0+(δ0)TH(u~0 − u0

+u~−1 − 1Nu0) − ϕ(δ0)TH2δ0 + (δ0)THΦ^ 0(t)H

+(δ0)TH(1Nu0 − u0) + ∑
i = 1

N 1
2qi

ϕ2

− 1
2(δ0)THΦ^ 0

H + ∑
i = 1

N 1
2ϕ

^
i
0 u0

2

= lλmax(H)(δ0)Tδ0 − 1
2(δ0)THΦ^ 0

Hδ0+(δ0)TH(u~0 − 2u0

+u~−1) − ϕ(δ0)TH2δ0+ ∑
i = 1

N 1
2qi

ϕ2 + ∑
i = 1

N 1
2ϕ

^
i
0 u0

2

≤ lλmax(H)(δ0)Tδ0 + 2(δ0)THΦ^ 0
Hδ0 + ϕ2 ∑

i = 1

N 1
2qi

+ ∑
i = 1

N 1
2ϕ

^
i
0 u0

2 − ϕ(δ0)TH2δ0 − 1
2(δ0)THΦ^ 0

Hδ0

= lλmax(H)(δ0)Tδ0 + 3
2(δ0)THΦ^ 0

Hδ0 + ϕ2 ∑
i = 1

N 1
2qi

+ ∑
i = 1

N 1
2ϕ

^
i
0 u0

2 − ϕ(δ0)TH2δ0

≤ − ϕλmin
2 (H) − lλmax(H) − 3

2ϕ*λmax
2 (H) (δ0)Tδ0

+ϕ2 ∑
i = 1

N 1
2qi

+ ∑
i = 1

N 1
2ϕ

^
i
0 u0

2

≤ −c(δ0)Tδ0+ ∑
i = 1

N 1
2qi

ϕ2+ ∑
i = 1

N 1
2ϕ

^
i
0 u0

2 .

(39)

Since u0(t) is continuous on [0, T]. Therefore, we can denote K as

K = max
t ∈ [0, T]
1 ≤ i ≤ N

∑
i = 1

N 1
2qi

ϕ2 + ∑
i = 1

N 1
2ϕ

^
i
0 u0

2 < ∞ . (40)

Consequently, it follows that

E0(t) ≤ E0(0) + ∫
0

t
Ė0 dτ ≤ 1

2(δ0)THδ0 + TK < ∞ . (41)

The finiteness of E0(t) implies that E0(T) is finite. In the
meanwhile, the uniformly boundedness of Ek(t) is ensured, for all
k ∈ Z+ on [0, T]. Moreover, from the definition of Ek(t), the
uniformly boundedness of δk(t) can be acquired on [0, T]. The
adaptive learning law (16) renders the boundedness of ϕ

^
i
k(t). From

(15), it can be concluded that ui
k(t) is uniformly bounded. Thus, the

boundedness of all arguments involved in the system are
guaranteed.

Finally, let us prove the learning consensus property. Applying
(35) repeatedly, it can be derived that

Ek(T) = E0(T) + ∑
j = 1

k
ΔE j(T)

≤ E0(T) − c ∑
j = 1

k ∫
0

T
(δ j)Tδ j dτ .

(42)

According to (42) and the positiveness of Ek(T), we can attain that

c ∑
j = 1

k ∫
0

T
(δ j)Tδ j dτ ≤ E0(T) . (43)

On account of the finiteness of E0(T), we have that the series
∑ j = 1

k ∫0
T (δ j)Tδ j dτ is convergent. Then, limk → ∞ ∫0

T (δk)Tδk dτ = 0.

Ek(t) = ΔEk(t) + Ek − 1(t)

≤ − c∫
0

t
(δk)Tδk dτ + Vk(0) − Vk − 1(t)

+Vk − 1(t) + ∑
i = 1

N 1
2qi

∫
0

t
(ϕ~i

k − 1(τ))
2
dτ

+ ∑
i = 1

N ∫
0

t 1
2ϕ

^
i
k − 1(τ)

(δui
k − 1)2 dτ

= − c∫
0

t
(δk)Tδk dτ + Vk(0) + ∑

i = 1

N 1
2qi

∫
0

t
(ϕ~i

k − 1(τ))
2
dτ

+ ∑
i = 1

N ∫
0

T 1
2ϕ

^
i
k − 1(τ)

(δui
k − 1)2 dτ

= − c∫
0

t
(δk)Tδk dτ + Ek − 1(T)

≤ Ek − 1(T)
⋮

≤ E0(T)

(37)
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Recalling the error dynamic (13), it is known that δ̇k is uniformly
finite over [0, T]. Above all, from Barbalat-like lemma [48],
limk → ∞ δk(t) = 0, i.e. limk → ∞ δi

k(t) = 0. Namely, each follower
agent can perfectly track the leader over [0, T], the global perfect
consensus tracking is derived.

 
Remark 5: In the dynamics of each follower agent (5), no input

dynamics and external disturbances are taken into account.
Actually, if there exist external disturbances, we can refer to [44,
47] to handle these problems. Besides, the algorithms presented in
the paper can be extended to a class of uncertain non-linear MASs
having the following form:

Followers: ẋi
k = η(xi

k, t) + Bsat(ui
k, u∗), i = 1, 2, …, N;

Leader: ẋ0(t) = η(x0, t) + Bu0,
(44)

where xi
k ∈ Rn, η(xi

k, t) ∈ Rn is an unknown time-varying global
Lipschitz continuously differentiable vector-valued function in xi

k

and piecewise continuous in t; B ∈ Rn × m is a known column full
rank matrix; the vector-valued function
sat(u(t), u∗) = [sat(u1(t), u1*), sat(u2(t), u2*), …, sat(um(t), um*)] ∈ Rm;
x0 ∈ Rn and u0 ∈ Rm. Then, the consensus analysis is similar to the
proof of Theorem 1. For the general systems, if the uncertain non-
linear function in (5) can be parameterised and B is square and
unknown, we may refer to [49] for further details.

5 Extension to formation control for the uncertain
non-linear MASs with input saturation
The objective of the section is to generalise the previous consensus
results to the formation problem of the uncertain non-linear MASs
with input saturation. Specifically, the necessary and sufficient
condition for the MASs (5) and (6) to realise the formation control
is that all follower agents form a desired formation at a certain
distance from the leader, and the formation control can be
transformed into the consensus control through simple
transformation. Since we have solved the consensus problem, it is
not difficult to deal with the formation control problem.

At present, the position error of the ith agent at the kth iteration
is defined as

x̄i
k = xi

k − Δi, (45)

where Δi indicates the expected distance of the ith agent from the
leader.

The purpose of formation control is to seek a sequence of
protocols ui

k(t) such that each follower agent keeps a desired distant
from the leader in the iteration domain over [0, T].

From (45), we define the formation divergence error of the ith
agent as

δi
k(t) = x̄i

k(t) − x0(t) . (46)

Accordingly, the formation control can be re-expressed as the
consensus control, i.e. limk → ∞ δi

k = 0.
Meanwhile, the local neighbourhood formation error of the ith

agent is

ei
k = ∑

j = 1

N
ai j(x̄ j

k − x̄i
k) + bi(x0 − x̄i

k) . (47)

 
Assumption 4: The alignment initial condition is satisfied, i.e.

x̄i
k(0)= x̄i

k − 1(T), i = 1, 2, …, N; and the leader is spatially closed, i.e.
x0(0) = x0(T) . Thereby, δi

k(0) = δi
k − 1(T).

 
Theorem 2: Consider the connected graph G′ of MASs (5) and

(6), Assumptions 1, 3 and 4 hold, then N follower agents

represented by (5) under the protocol (15) and the learning-based
updating law (16) for coupling control gains with the error (47)
guarantee that the desired formation is formed in the iteration
domain, and all the variables involved in the closed system are
bounded.

6 Simulations
There are two illustrative examples to validate the efficiency of the
protocols designed in this paper. The first example is a numerical
simulation, which includes two cases, i.e. the consensus and
formation control cases for the leader–follower MASs with four
follower agents and one leader. Besides, the multi-vehicle systems
composed of four follower vehicles and one leader vehicle is stated
in Example 2, which can be considered as the MASs. The
communication topology graph between agents both in Examples 1
and 2 is demonstrated in Fig. 1. It is obvious that the information of
the leader can be received by the first and second agents. 

L =

2 0 −1 −1
0 1 0 −1

−1 0 1 0
−1 −1 0 2

, B = diag{1, 1, 0, 0} . (48)

 
Example 1: Consider the MASs (5) and (6) with

η(xi
k, t) = 2cos(xi

k)cos(πt), t ∈ [0, T], where T = 2, k = 20,
i = 1, 2, 3, 4; and the state of the leader is x0 = 0.6sin(πt). By
computing, u0 = 0.6πcos(πt) − 2cos(0.6sin πt)cos(πt) and
maxt ∈ [0, 2] u0(t) = 0.1150. Thus, we choose u* = 2 in the
simulation. Furthermore, ϕ* = 5.

Case 1: Consensus control for the uncertain non-linear MASs.
Choose x1(0)= x2(0)= x3(0)= x4(0) = 3, and the initial values of the
parameters are ϕ

^
1(0) = 0.8, ϕ

^
2(0) = 0.5, ϕ

^
3(0) = 0.6, ϕ

^
4(0) = 1.

Applying the protocol (15) and the adaptive learning law (16),
select q1 = 1, q2 = 0.8, q3 = 1, q4 = 1. The simulation results for 20
iterations are displayed in Figs. 2 and 3. 

Fig. 2 draws the states of all agents at the 20th iteration. The
consensus errors δi

k(t), designed distributed control gains ϕ
^
i
k(t) and

control inputs ui
k(t), i = 1, 2, 3, 4 are depicted in Fig. 3. From Figs.

2 and 3, we can learn that each follower agent tracks the leader
perfectly on [0, 2], in other words, the global perfect consensus
tracking can be realised even the existence of input saturation.
Simultaneously, the signals involved are finite along the whole
iteration axis. Finally, the above results are not only consistent with
Theorem 1 but also verify the effectiveness of the designed
protocols further.

Case 2. Formation control for the uncertain non-linear MASs.
Here, let us consider the formation control for the MASs (5) and
(6). The initial state of each follower agent is the same as in case 1,
and the initial values of parameters are ϕ

^
1(0) = 2, ϕ

^
2(0) = 3,

Fig. 1  Topology graph (vertex 0 expresses the leader)
 

Fig. 2  States of all agents in case 1
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ϕ
^

3(0) = 2, ϕ
^

4(0) = 2. Applying the protocol (15) and adaptive
learning law (16) with the error (47), we select
q1 = q2 = q3 = q4 = 1, and the desired relative distances are
Δ1 = − 0.1, Δ2 = − 0.2, Δ3 = 0.1, Δ4 = 0.2. The simulation results
for 20 cycles are demonstrated in Figs. 4 and 5. 

It can be learned that four follower agents form the desired
formation in Figs. 4 and 5 describe that the formation errors
asymptotically approach to zero in the iteration domain and
designed distributed control gains, as well as protocols, are all
finite. The validity of this part is obvious.
 

Example 2: In the real world, a set of vehicles need to attain a
common configuration to achieve some kind of coordination task,
such as loading a workpiece [50]. The same velocity is required for
all the vehicles to accomplish this task. Hence, in this part, the
velocity consensus problem of four follower vehicles and one
leader vehicle will be shown in the iteration domain.

The dynamics of all follower vehicles are expressed as
v̇i

k = 1/mi[sat(ui
k) − η(vi

k, t)] where vi
k is the velocity, mi is the mass,

ui
k is the input, η(vi

k, t) = kitanh(vi
k) can be considered as the sum of

resistance, and v0(t) = 0.01sin(πt). By computing,
u0(t) = 0.01πcos(πt) − tanh(0.01sin(πt)) and
maxt ∈ [0, 2] u0(t) = 0.033. Therefore, we choose u* = 2 in the
simulation. The initial states are
v1(0) = − 1, v2(0) = − 0.6, v3(0) = − 1.2, v4(0) = − 2, and the
initial values of the parameters are
ϕ

^
1(0) = ϕ

^
2(0) = ϕ

^
3(0) = ϕ

^
4(0) = 1. T = 2, k = 20, ϕ* = 5,

1/mi = 1, i = 1, 2, 3, 4;
q1 = q2 = q3 = q4 = 2; k1 = 0.5, k2 = 0.2, k3 = 0.4, k4 = 0.3.

Utilising the distributed protocol (15) and learning law (16) to
the multi-vehicle systems, the results for 20 loops displaced in Fig.
6, which show that the algorithms proposed in the paper are also

valid in the multi-vehicle systems, that is to say, all the agents can
achieve the velocity consensus and other arguments involved are
bounded. 

7 Conclusion
The distributed coordination control protocols for the uncertain
non-linear MASs with input saturation using adaptive ILC are
designed. By Lyapunov theory and under the alignment initial
condition, the proposed protocols with fully saturated learning laws
can guarantee the global perfect consensus tracking in spite of the
existence of the input saturation. Also, we have extended the
consensus results to the formation control problem of the MASs.
The algorithms raised in this paper are verified by two illustrative
examples.

Fig. 3  Response curves of agents in case 1
 

Fig. 4  States of all agents in case 2
 

Fig. 5  Response curves of agents in case 2
 

Fig. 6  Responses curves of four follower vehicles in Example 2
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