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Abstract
Particle filtering is one of the most important algorithms for solving state estimation of nonlinear systems and has been widely
studied in many fields. However, due to the unknown complex noise in the actual system, its estimation performance is degraded.
Moreover, when the number of particles increase, the real-time performance of the algorithm is poor. For these two problems
above, this paper proposed a parallel acceleration CRPF (cost-reference particle filter) algorithm based on CUDA (Compute
Unified Device Architecture). CRPF does not need known noise statistics in nonlinear system state estimation, which can reduce
the influence of unknown noise on state estimation accuracy. Combined with GPU’s (Graphics Processing Unit) multi-thread
parallel computing capability, CRPF parallel acceleration can be realized. Since the data association can’t be parallel resampled,
all the particles are evenly distributed to multiple blocks, and resampling process can be parallelized by block parallel computing,
so as to improve the speed of the algorithm. At the same time, in order to reduce the global particle performance degradation
caused by block resampling, the particles with low probability mass in each block are optimized by using a portion of global high-
quality particles. Through two sets of simulation experiments, it is proved that the proposed method has improved in estimation
accuracy and the real-time performance has been improved significantly, which can provide a new idea for the practical
application of nonlinear filtering method.
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1 Introduction

Particle filtering is based on Bayesian estimation and Monte
Carlo sampling to solve the state estimation problem of non-
resolvable nonlinear and non-Gaussian systems. The method
is theoretically suitable for any nonlinear, non-Gaussian sys-
tem, and effectively extends the application range of filtering
techniques in parameter and state estimation. It has been wide-
ly used in many fields, and many improved algorithms for
particle filtering have been proposed [1–4]. For example,
UPF (Unscented Particle Filter), RPF (Regularized Particle
Filter), APF (Auxiliary Particle Filter),GPF (Gaussian

Particle Filter), MPF (Marginalized Particle Filter) etc. But
the current PF algorithm has two core problems.

On the one hand, it is assumed that the statistical proper-
ties of process noise and measurement noise are known. In
fact, the true statistical properties of noise depend not only
on the system modeling error and the sensor measurement
accuracy, but also on the environmental and human interfer-
ence factors. So the priori information of system noise and
measurement noise are unknown. When using the assumed
noise for state estimation, it introduces a random error,
which will cause the accumulation of errors in the process
of multiple iterations, resulting in greatly reduced the filter-
ing accuracy. To address this problem, the literature [5] first
proposed a cost-reference particle filter (CRPF). CRPF does
not need known statistical characteristics of process noise
and measurement noise and achieves state estimation in the
particle filter framework. It is an efficient method to solve
the problem of high nonlinearity and unknown statistical
characteristics of noise, and has received good results in
research. The literature [6–8] introduced the principle and
characteristics of CRPF algorithm in detail and proved the
superiority of the algorithm in nonlinear, non-Gaussian sys-
tems and unknown statistical characteristics of noise through
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experiments in communication systems and target tracking.
In [9], against the characteristics of large intensity and un-
known statistical characteristics of sky-wave radar back-
ground noise, CRPF was used to estimate the target state
of sky-wave over-the-horizon radar. Literature [10] proposed
a filtering algorithm combining H∞ and CRPF, which was
used in the state estimation problem of nonlinear dynamic
systems with unknown non-Gaussian noise and achieved
good results.

On the other hand, in order to achieve good estimation accu-
racy, a large number of particles are required, but a huge compu-
tational burden is added. When the real-time requirement is not
met, the filter is meaningless in practical applications. In order to
improve real-time performance, the literature [11] applied a ma-
trix decomposition method to extract a small subset from all
particles, and only calculated the weight of the subset in the
weight calculation step, which greatly reduced the calculation
time while keeping the filtering precision constant. The literature
[12] combined correlative filtering and particle filtering to reduce
computation time by using aminimum number of particles in the
sampling step. Literature [11, 12] started from the basic principle
of the PF algorithm and reduced the calculation time of the
algorithm by optimizing and improving the algorithm steps.
The most effective solution to this problem is to speed up the
particle filtering through the hardware structure. Literature
[13–15] implemented particle filters with FPGAs and embedded
systems, but with high cost and low flexibility. In recent years,
GPUs have been widely used in high-performance computing
with their powerful floating-point computing capabilities
[16–19]. The GPU can realize the large-scale parallel processing
of data by independently assigning tasks in many computing
units, which can significantly improve the computing speed.
The CPU-GPU heterogeneous parallel structure has also become
a new direction for the development of high-performance com-
puter systems. The literature [20, 21] introduced the parallel im-
plementation of the particle filter in CUDA framework and sim-
ulated the filtering precision and acceleration ratio, which proved
the good effect of the method. The literature [18] proposed a
GPU-based distributed computational particle filter algorithm,
which was applied to the control of the robot arm and achieved
tens of times the acceleration ratio in the case of more than one
million particles. The literature [19] introduced in detail the im-
plementation of the GPU-accelerated particle filter and auxiliary
particle filter algorithm inCUDA framework, and proved that the
method can obtain significant computational acceleration under
the condition of ensuring accuracy by simulation of remelting
process.

In summary, this paper considers the above two problems at
the same time. Under the CUDA framework, a GPU-based
parallel acceleratedCRPFalgorithm is proposed to achieve fast
nonlinear state estimation under unknown noise conditions. In
order to obtain the ideal acceleration ratio, it is necessary to
maximize the parallelization of the particle filter algorithm.

The bottleneck that restricts particle filter parallelization lies
in the resampling step. Since it is necessary to calculate the
weights of all theparticles andnormalize theweights for resam-
pling, and then resampling all the particles according to the
normalized weights, the processing of each particle in the re-
sampling phase is not independent. The literature [21] studied
parallel resampling and proposed a dual distribution dependent
(D3) resampling method based on system resampling. The
method increases the particle diversity after each iteration by
utilizing the correlation of the prior distribution, and finally
accelerates the particle filtering in the CUDA environment,
but does not improve the parallel implementation of the resam-
pling part, resulting the acceleration effect of the overall pro-
gram operation is not ideal. The literature [20] proposed a par-
allel resampling method combining FRIM (finite redraw
importance-maximizing) prior editing and localized resam-
pling, which reduced the global operation time. This method
was 5.73 times faster than the classic parallel algorithm.
However, this method did not consider the effect of particle
performance on the weight globally, so it would bring about
particle degradation and reduction of filtering accuracy. Based
on the above discussion, this paper distributes all the particles
evenly to multiple blocks, realizes block parallel resampling,
and improves the running speed of the algorithm. In order to
reduce the global particle performance degradation caused by
block resampling, the particles with low probability mass in
each block are optimized by using a portion of global high-
quality particles, so as to reduce particle degradation andmain-
tain particle diversity while reducing global operating time
consumption.

2 Cost-reference particle filter

Considering a nonlinear, non-Gaussian stochastic state-space
model as follows:

xk ¼ g xk−1ð Þ þ uk
yk ¼ h xkð Þ þ wk

�
ð1Þ

where k is the sampling instant and xk is the system state
vector at time k; yk is the measurement vector of the system
state at time k; g(g) and h(g) are the system state transfer
function and the measurement function, respectively, and
they can all be nonlinear functions; uk and wk are system
state noise and measurement noise, respectively. Based on
this state space model, the time-varying state sequence {x1,
x2,⋯, xk} of the target is estimated from the measurement
sequence {y1, y2,⋯, yk} obtained at each moment.

Define cost function and risk function to represent
the performance quality of the particle, and the for-
getting factor is introduced. Based on the principle of
cost minimization, a particle weight evaluation
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method with unknown noise statistical characteristics
is given. The cost function is defined as:

c xip0:k jy1:k ;λ
� �

¼ λc xip0:k−1jy1:k−1;λ
� �

þΔc xipk jyk
� �

ð2Þ

Simplify the above formula as:

cipk ¼ λcipk−1 þΔcipk ð3Þ

Where ip is the particle index and λ(0 ≤ λ ≤ 1) is the

forgetting factor, Δcipk is the cost increment, which

represents the accuracy of xipk for a given measurement

yk, calculated by yk−h xipk
� �� �q

(q ≥ 1). Cost-based sto-

chastic measurements are represented by a set of “par-
ticle and cost” sets.

Ξ ¼ xipk ; c
ip
k

n oN

ip¼1
ð4Þ

Where N is the number of particles. The risk function is
defined as:

R xipk−1jyk
� �

¼ Δc E xipk
h i

jyk
� �

¼ Δc g xipk−1
� �

jyk
� �

ð5Þ

The risk function is the prediction of the cost increment

Δcipk . Then, the prediction of the cost function is defined as:

Cip
k ¼ λCip

k−1 þ R xipk−1jyk
� �

ð6Þ

The probability mass function (PMF) is calculated
according to eq. (7).

π
ip

k ∝μ1 Rip
k

� �
¼ 1

Rip
k −min Rip

k

n oN

ip¼1
þ δ

� �β ð7Þ

δ, β > 0, δ is to ensure that the denominator is not zero.
According to the above parameter definition, the CRPF al-
gorithm obtains state estimation by recursive calculation
through risk estimation, selection, particle delivery, cost up-
date steps, and the specific steps are shown in Algorithm
CRPF.

It can be seen from the above algorithm steps that the CRPF
algorithm is similar to the PF algorithm, and is also implement-
ed based on three main steps of importance sampling, particle
weight evaluation, and resampling. The calculation of process
noise and measurement noise is not involved in the recursive
estimation of CRPF algorithm. Therefore, no known statistical
characteristics of noise are needed in the calculation, which
improves the adverse effects of external random interference
on PF based on the likelihood assessment. However, computa-
tional time consumption is an important factor affecting the

Fig. 1 Calculation flow of parallel particle CRPF with 4 particles Fig. 2 Block diagram of the proposed CRPF
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practical application of the algorithm. Using the powerful par-
allel data processing capability of GPU, this paper designs a
parallel implementation method of CRPF algorithm on GPU
based on CUDA framework.

3 CUDA-based parallel acceleration CRPF
3.1 Parallel computing flow of CRPF algorithm

The sampling and weight update in particle filtering are the eas-
iest part of parallelization, and the resampling part is not easy to
parallel due to the correlation between particles. So the usual
practice is to parallelize parts that are easy to parallel, and serial-
ize parts that are not easily parallel. Figure 1 shows the parallel
computing flow of CRPFwith four particles as an example. Each
thread processes one particle, and in the PMF summation, resam-
pling, and state estimation steps, parallel processing cannot be
achieved due to the correlation between the data. Both the PMF
summation and the state estimation have a summation operation,
which is usually completed by the reduction summation, and the
resampling step needs to generate a pseudo-random number by

the CPU, and then transmits it to the GPU to complete the re-
sampling of the global particle. The resampling step occupies
most of the entire particle filtering running time [20].

3.2 Block parallel CRPF

In order to improve the parallelization of the program,
this paper uses the local estimation idea to complete the
filtering process. Set the number of particles to N, and
use m blocks for local estimation, each block processes
N/m particles, PMF summation, state summation, and
resampling are performed independently by each block,
and m local estimation results are obtained. Finally, the
local estimation results are weighted by the formula (8)
~ (10) to obtain the global estimate.

x̂
Global

k ¼ ∑
m

i¼1
x̂
local;i

k π̂
i

k ð8Þ

π̂
i

k ¼
π
i

k

∑
m

j¼1
π
j

k

ð9Þ

π
i

k ¼ ∑
N=m

j¼1
π
i; j

k ð10Þ

In the eqs. (8)~(10), x̂local;ik represents the local estimate of the
i-th block, πi

k represents the sum of the PMF of the i-th block,
π̂i
k is the corresponding normalized PMF value, and x̂Globalk is

the global estimated value at time k. The specific steps are
shown in Algorithm of the Block parallel CRPF.

3.3 Improved parallel optimization resampling

According to the above method, using block parallel compu-
tation for parts that are not easy to calculate in parallel by m
blocks can improve the parallel operation efficiency of the
entire program. However, the descendant particles are obtain-
ed by locally resampling N/m particles in each block. The
lack of consideration of the global optimal particle’s greater

Fig. 3 Flow diagram of the proposed CRPF on CUDA

Table 1 Hardware
information for
evaluation

GPU

Model

CUDA capability

Number of SMs

Number of cores

Bus bandwidth

Clock frequency

GeForce GTX 950

5.2

6

768

105.76Gb/s

1.24GHz
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contribution to the state estimation results will result in local
optimization and particle dispersion. This causes the global
estimation error to increase or even diverge. Based on this,
in order to obtain better filtering performance, the resampling
method is improved in this paper. The particles with the
largest PMF value are extracted from each block to form
the optimal particle set CH. Optimizing the partial particles
with small PMF values in each block according to the given
strategy by the optimal particle set, and finally resampling
the optimized particles in each block. The block diagram of
the proposed algorithm implemented on CUDA is shown in
Fig. 2. The specific improved resampling algorithm is de-
scribed below:

Step 1: According to the size of π
ip
k , the particles whose

PMF is less than the set threshold are selected to
form a small weight particle set CL;

xipk ∈CL; if π
ip

k ≤πT ð11Þ

Let the threshold πT ¼ 1
�
3N (N is the total number of par-

ticles), let xlkL∈CL l ¼ 1; :::;NLð Þ, NL represents the number of
small weight particles. Extract the particles whose PMF value
is greater than 1.5/N, and let the number of those large weight

particles from each block is si, and totally extract ∑
m

i¼1
si parti-

cles from m thread blocks to form a large weight particle set

CH, x
j
kH∈CH j ¼ 1; :::;NHð Þ, where NH ¼ ∑

m

i¼1
si represents

the number of large weight particles.

Step 2: Optimize small weight particles, and xlkS denotes
optimized particles.

xlkS ¼ αxlkL þ 1−αð Þx jkH ð12Þ

The larger parameter α ∈ [0, 1] is, means that more infor-
mation is transferred from xlkL to the descendant particle x

l
kS. If

α = 1, no optimization is performed, and x jkH is randomly ex-
tracted from CH.

Step 3: The PMF π
ip
k is updated and normalized for the

optimized particles, and the optimized particles

are resampled with π
ip
k

n oN

ip¼1
as the particle credi-

b i l i t y t o g en e r a t e a p a r t i c l e c o s t s e t

xipk−1; c
ip
k−1

n oN

ip¼1
.

Improved resampling algorithm has two advantages.
Firstly, optimizing the particles of each thread block
through global high-quality particles can improve the par-
ticle degradation of each thread block, improve the accu-
racy of local estimation, and improve the performance of
global estimation. Secondly, only partial high-quality par-
ticles are extracted from each block, and those particles
with small PMF values in each block are optimized to
move to the high likelihood region, thereby improving
the performance of the global particles and saving the
time consumed by global optimization.
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Fig. 4 Running time comparison of the serial CRPF algorithm, the
ordinary parallel CRPF algorithm and the block parallel CRPF algorithm

Table 2 The speedup ratios of the
three parallel algorithms Number of particles speedup ratios

ordinary parallel CRPF block parallel CRPF optimized block parallel CRPF

1024 0.81 1.12 0.99

3200 2.48 3.95 3.00

6400 3.95 10.19 7.47

9600 5.92 16.51 9.35

12,800 6.24 24.45 10.79

25,600 8.37 55.27 13.21
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3.4 Parallel acceleration CRPF algorithm flow

The block diagram of the block parallel acceleration CRPF
algorithm in the CUDA framework proposed in this paper is
shown in Fig. 3. See Algorithm of the block parallel CRPF
with optimization resampling for the specific steps.

4 Simulation and analysis

We take the dynamic model of 160 MW unit [22] as the
object of study, take the opening of fuel control valve,
steam turbine control valve and feed water control valve
as input, take drum pressure and drum liquid density as
state variables, and water level as observation variables.
The state variables are tracked by serial CRPF algo-
rithm, parallel CRPF algorithm and block parallel

acceleration CRPF algorithm proposed in this paper,
and compare and analyze the performance of these al-
gorithms. Equation (13) is the discrete equation for the
fuel unit model.

x1;k ¼ x1;k−1−A1Δt þ v1;k
x2;k ¼ x2;k−1 þ A2Δt þ v2;k
yk ¼ 0:05Bþ wk

8<
: ð13Þ

Among them, the relevant variables are defined as:

A1 ¼ a11u2;kx
9=8
1;k−1−a12u1;k þ a13u3;k

A2 ¼ a21u3;k− a22u2;k−a22
� 	

x1;k−1
� 	

=85
B ¼ b1x2;k þ 100acs þ qe=9−b2

acs ¼
b3x2;k b4x1;k−b5

� 	
x2;k b6−b7x1;k

� 	
qe ¼ b8u2;k−b9

� 	
x1;k þ b10u1;k−b11u3;k−b12
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Fig. 5 Comparisons of x2 estimation results using the serial CRPF
algorithm, the ordinary parallel CRPF algorithm and the block parallel
CRPF algorithm respectively
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Fig. 6 Comparisons of estimation errors of the serial CRPF algorithm,
the ordinary parallel CRPF algorithm and the block parallel CRPF
algorithm
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Fig. 7 Running time comparison of the ordinary parallel CRPF
algorithm, the block parallel CRPF algorithm and the optimized block
parallel CRPF algorithm
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Where x1 is the drum pressure; x2 is the drum liquid densi-
ty; u1 is the fuel regulating valve opening; u2 is the turbine
regulating valve opening; u2 is the feed water regulating valve
opening; y is the drumwater level; vk is the process noise,wk is
the measurement noise, they are non-Gaussian noise with un-
known statistical properties. In this paper, the gamma noise of
eq. (14) is used to simulate the noise in engineering practice.

vk∼0:09� 10−2 � Γ 0:25; 0:5ð Þ
wk∼0:16� 10−2 � Γ 0:25; 0:5ð Þ

�
ð14Þ

Set the initial state x0 = [108 428]T, discrete step size △t =
0.1s, and the sensor sampling frequency is 1 Hz. Model pa-
rameter: a11 = 0.0018, a12 = 0.9, a13 = 0.15, a21 = 141, a22 =
1.1, a23 = 0.19, b1 = 0.131, b2 = 0.068, b3 = 0.00154, b4 = 0.8,
b5 = 25.6, b6 = 1.0394, b7 = 0.00123, b8 = 0.854, b9 = 0.147,
b10 = 45.59, b11 = 2.514, b12 = 2.096, ut ¼ 0:3 0:4 0:5½ �.

State initial prior distribution xip0 ∼N x0;Σ0ð Þ, Σ0 = diag-

(0.01, 0.01), Cip
0 ¼ 0, σ

2;ip
0 ¼ 0:01 0:01½ �T . Other parame-

ters: δ = 0.1, q = 2, β = 2, α = 0.5, λ = 0.85.
Select the average absolute error as the evaluation index of

the algorithm, which is defined as eq. (15).

MAE ¼ 1

NsT
∑
s¼1

Ns

∑
T

k¼1
jxsk−x̂sk j ð15Þ

xsk and x̂sk are the actual and estimated values of the k-th step
state of the s-th simulation, respectively, NS is the total number
of simulations, and T is the number of time steps in one
simulation.

4.1 Experiment 1

The serial CRPF algorithm, the basic parallel CRPF algorithm
and the block-parallel CRPF algorithm proposed in this paper
are used to estimate the state of the fuel unit, and the perfor-
mance of these algorithms are compared and analyzed.
Table 1 is the hardware information for evaluation.

Figure 4 shows the running time of the three algorithms
when different particle numbers are adopted. It can be seen
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Fig. 9 Comparisons of estimation errors of the ordinary parallel CRPF
algorithm, the block parallel CRPF algorithm and the optimized block
parallel CRPF algorithm
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Fig. 10 Comparisons of x2 estimation results using the serial CRPF
algorithm, the ordinary parallel CRPF algorithm, the block parallel
CRPF algorithm and the optimized block parallel CRPF algorithm with
particle number 6400
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from the figure that the running time of the basic parallel
CRPF algorithm is much shorter than that of the serial
CRPF algorithm. The running time of the block parallel
CRPF algorithm is the least, and as the number of particles
increases, the acceleration effect is better. Table 2 lists the
acceleration ratio of the parallel algorithm when the number
of particles is different. When the number of particles is small,
the acceleration is relatively small, and the acceleration ratio
increases with the increase of the number of particles. When
the number of particles is 25,600, the acceleration ratio of the
basic parallel CRPF algorithm is 8.37, while the block-parallel
CRPF algorithm has an acceleration ratio of 55.27. Figures 5
and 6 are the state estimation results and estimation error
curves of the three algorithms for the steam drum liquid den-
sity, respectively, and the number of particles used is 9600. It
can be seen from the figure that the state estimation error of the
serial CRPF algorithm and the basic parallel CRPF algorithm
is very close, and after the multiple block iteration, the block
resampling may cause a local optimum, the global estimation
performance deteriorates, and the error gradually increase. It
can be seen from the experimental results that the block-
parallel CRPF algorithm proposed in this paper can obtain a
very good acceleration effect compared with the basic parallel
CRPF algorithm. However, block resampling distributes all
particles evenly into m BLOCKs, and performs local resam-
pling in each iteration. As the number of iterations increases,
particle degradation may occur, and some of the BLOCK
particles may have poor overall performance. The correspond-
ing local estimation error increases, which ultimately leads to
a decrease in the accuracy of the global estimation.

4.2 Experiment 2

The basic parallel CRPF algorithm, the block parallel
CRPF algorithm proposed in this paper and the

resampling optimized block-parallel CRPF algorithm
are used to estimate the state of the fuel unit, and the
running time and accuracy of the parallel algorithm be-
fore and after optimization are compared and analyzed.

Figure 7 is a comparison of the running time of
three parallel algorithms in different particle numbers.
The block parallel algorithm has the least running
time, the basic parallel algorithm has the longest run-
ning time, the parallel algorithm of resampling opti-
mization has less running time than the basic parallel
algorithm, but the running time of the block parallel
algorithm is longer. It can be seen from Table 2 that
when the number of particles is small, the accelera-
tion ratios of the three parallel algorithms are not
much different. As the number of particles increases,
the acceleration ratio increases. When the number of
particles is 3200, the acceleration ratios of the basic
parallel CRPF algorithm, the block parallel CRPF al-
gorithm and the resampling optimized block-parallel
CRPF algorithm are 2.48, 3.95, 3.00, respectively.
When the number of particles is 25,600, the acceler-
ation ratio is 8.37, 55.27, 13.21, respectively. The
resampling optimized block-parallel CRPF algorithm
has a lower acceleration ratio than the unoptimized
block-parallel CRPF algorithm, but the acceleration
ratio is significantly improved compared to the basic
parallel CRPF. Figures 8 and 9 are the state estima-
tion trajectory and error curve of the steam drum liq-
uid density respectively. The number of particles used
is 9600. It can be seen that the error of the block
parallel CRPF algorithm gradually increases with the
increase of the number of iterations, and the error is
greater than the basic parallel CRPF algorithm, the
block-parallel CRPF algorithm that introduces resam-
pling optimization has the smallest estimation error
and is smaller than the error of the basic parallel
CRPF algorithm.

Figures 10 and 11 show the results and errors of the
state estimation of the density of the steam drum liquid
x2 using the above four algorithms with particle number
6400. It can be seen from the results that the state esti-
mation error of the optimized block parallel CRPF al-
gorithm is the smallest, and the accuracy of the state
estimation is improved compared with the CRPF
algorithm.

It can be seen from the experimental results that
when compared with the block parallel algorithm, by
optimizing the inferior particles in each BLOCK by
global optimal particles in resampling, the parallel
CRPF algorithm with resampling optimization im-
proves the global performance of the block parallel
CRPF, and ultimately improves the accuracy of the
algorithm.
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Fig. 13 Comparisons of estimation errors of the parallel particle filter
algorithm, the parallel auxiliary particle filter in [19], the parallel
particle filter and D3 resampling in [21] and the optimized block
parallel CRPF algorithm proposed in this paper
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4.3 Experiment 3

To further verify the performance of the proposed algo-
rithm, the parallel particle filter algorithm, the parallel
auxiliary particle filter in [19], the parallel particle filter
and D3 resampling in [21] and the optimized block
parallel CRPF algorithm proposed in this paper are used
to estimate the state of the fuel unit, and the running
time and accuracy of these algorithms are compared and
analyzed. Figure 12 is a comparison of the running time
of the four algorithms in different particle numbers. As
can be seen from the graph, the running time of the
optimized block parallel CRPF algorithm proposed in
this paper is less than that of the other three algorithms,
and the real-time performance has been significantly
improved. Figure 13 shows the state estimation errors
of the four algorithms. The number of particles used
is 9600. As can be seen from the graph, the errors of
the proposed algorithm are less than the errors of the
other three algorithms, and with the increase of iteration
times, the errors gradually decrease. The experimental
results show that the proposed algorithm can obtain
more accurate results in the case of unknown noise,
and has a good acceleration effect in the CPU and
GPU heterogeneous systems, which effectively improves
the real-time performance.

5 Conclusions

Particle filtering is one of the important methods of state esti-
mation. Real-time and accuracy are the key factors affecting
the practical application of particle filter algorithms. In this
paper, the performance of the particle filter algorithm is deeply
analyzed and studied. The GPU-accelerated block-parallel
CRPF algorithm is proposed, and its acceleration effect is
remarkable. The acceleration ratio reaches 55.27 when the
number of particles is 25,600. In order to improve the accura-
cy of the algorithm while improving the real-time perfor-
mance, this paper further proposes a block-parallel CRPF al-
gorithm based on the block-parallel CRPF algorithm.
Experiments show that the accuracy of the optimized resam-
pling block-parallel CRPF algorithm is significantly im-
proved, and the acceleration ratio is also significantly im-
proved compared with the basic parallel CRPF algorithm.
The main works of this paper are summarized as follows:

& The problems of particle filter in state estimation of non-
linear non-Gaussian systems are analyzed in depth. In
view of the influence of unknown noise on the accuracy
of state estimation in real systems, the performance of
CRPF algorithm is deeply analyzed. And a parallel accel-
erated CRPF algorithm is proposed.

& Aiming at the real-time problem of CRPF algorithm in
state estimation, this paper proposes a block-parallel ac-
celerated CRPF algorithm based on CUDA architecture
by using GPU’s powerful general parallel computing ca-
pability. By distributing particles evenly to m thread
blocks, each thread block can perform local parallel re-
sampling, which solves the problem that the resampling
step is difficult to implement parallel computing due to
data association, greatly improves the parallelization de-
gree of the algorithm, and obtains a good acceleration
effect.

& After multiple iterations, the block-parallel CRPF algo-
rithm has uneven distribution of particle weights, which
leads to the deterioration of the overall performance of
some BLOCK particles, and the corresponding local esti-
mation error increases, which reduces the accuracy of
global estimation. Aiming at this problem, this paper pro-
poses a resampling optimized block-parallel CRPF algo-
rithm, which uses global high-quality particles to optimize
small-weight particles in each thread block, improving the
performance of particles and the accuracy of local estima-
tion in each thread block, which improves the accuracy of
the global estimate. At the same time, the real-time perfor-
mance of the algorithm is significantly improved com-
pared to the basic parallel CRPF algorithm.

& The running time and tracking error of serial CRPF algo-
rithm, basic parallel CRPF algorithm, block parallel CRPF
algorithm and resampling optimized block-parallel CRPF
algorithm are compared and analyzed by simulation ex-
periments, and the effectiveness of the proposed algorithm
is verified.
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