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a b s t r a c t

In this paper, we investigate a nonlinear free boundary problem incorporating
with nontrivial spatial and exponential temporal weighted source. To portray the
asymptotic behavior of the solution, we first derive some sufficient conditions for
finite time blowup. Furthermore, the global vanishing solution is also obtained
for a class of small initial data. Finally, a sharp threshold trichotomy result is
provided in terms of the size of the initial data to distinguish the blowup solution,
the global vanishing solution, and the global transition solution. In particular, our
results show that such a problem always possesses a Fujita type critical exponent
whenever the spatial source is just equivalent to a trivial constant, or is an extreme
one, such as “very negative" one in the sense of measure or integral.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

As is well-known, a number of diffusion and growth phenomena in natural world, which varies from
temperature change in chemical reaction to population invasion and expanding, can be modeled by the
following nonlinear reaction–diffusion equation:

ut(t, x) = d∆u+ f(t, x, u(t, x)), t > 0, x ∈ RN . (1.1)

Here, the diffusion term ∆u describes the spatial migration behavior of the temperature, population density,
and so on, while the reaction term f(t, x, u(t, x)) represents the resource supporting their growth. Then
Eq. (1.1) indicates that the two factors together lead to the change of state variable u (see [1]).

In various applied fields, if the interaction between the diffusivity and growth is complex enough or the
growth is extensively nonlinear, then many interesting phenomena arise. For example, the chemical reaction
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with a high initial temperature will generate lots of heat resulting in the higher temperature, while the
higher temperature will accelerate the chemical reaction again, which implies that the temperature will
become as high as it can be, and even converge to infinity in finite time. However, the reaction temperature
will grow slowly in a long period when the initial temperature is small enough. Similar phenomena are
also observed in population dynamics, in which the large initial population density will cause a potential
population explosion, while the species may experience a long term slow growth for a small initial population
density. Mathematically, the former case means the solution blows up, while the later one implies the global
existence arises.

Historically, Fujita [2] initiated the study on the key conception “critical exponent” to explore such
problems. More precisely, [2] and its aftermath [3,4] revealed that the Cauchy problem of the following
semilinear heat equation

ut = d∆u+ up, t > 0, x ∈ Rn (1.2)

admits no nontrivial and nonnegative global solution for any 1 < p ≤ Pc := 1 + 2/n; however, both local
and global solutions exist provided p > Pc, depending on the size of initial data. Thereafter, a large number
of similar results were established by many researchers to various kinds of evolution problems, and one can
refer to the surveys [5,6] and monograph [7] and the references cited therein.

Generally speaking, the critical exponent is just considered for unbounded domains since the global
solutions always exist in bounded domains. However, it was found by Meier [8] that for the following problem

ut = ∆u+ eβtup, t > 0, x ∈ Ω (1.3)

defined in a bounded domain Ω with temporal weighted source, the critical Fujita exponent still exists with
the form

Pc = 1 + β

λ1
, (1.4)

where β > 0 is an exponent and λ1 is the first Dirichlet eigenvalue of the Laplacian operator in Ω . Since
that, many papers are devoted to investigating such class of problems, and the similar Fujita type critical
exponents were derived, see e.g., [9–11] for some parabolic systems and [12] for nonlocal diffusion equations.

On the other hand, the free boundary problems have attracted much attention in recent years. In
particular, Fila and Souplet [13] and Ghidouche et al. [14] first studied the blowup and global existence of a
similar one-dimensional problem to (1.2) with one free boundary, and in their work, the global solutions were
distinguished to the fast solution and the slow one, respectively. After that, similar results were obtained by
Zhou et al. [15], Zhou and Lin [16] and Yang [17] for heat equations with local or nonlocal nonlinear reactions,
and [18] for a semilinear cooperative system. Very recently, Sun [19] obtained a complete description on
the long-time dynamical behavior of the solutions to one type of reaction–diffusion equations, in which
the additional spatial source a in the problem (1.5) is a constant and varies from positive, negative to
0. Meanwhile, [19] also presents a sharp threshold trichotomy result, by which the blowup solution, the
global vanishing solution, and the global transition solution are distinguished. Regarding the free boundary
problems, we refer the readers to Crank’s monograph [20] for further understanding.

Inspired by the works mentioned above, the main purpose of the current paper is to study the spatial
dynamics of the following free boundary problem with nontrivial spatio-temporal source:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ut = duxx + a(x)u+ eβtup, t > 0, g(t) < x < h(t),
u(t, g(t)) = 0, g′(t) = −µux(t, g(t)), t > 0,
u(t, h(t)) = 0, h′(t) = −µux(t, h(t)), t > 0,
− g(0) = h0 = h(0), u(0, x) = u0(x),−h0 ≤ x ≤ h0,

(1.5)

where a ∈ (C1 ∩L∞)((−∞,∞)) is the spatial source, the exponent p > 1 represents the superlinearity, both
x = g(t) and x = h(t) are free boundaries (expanding fronts), µ > 0 denotes the expanding capability of
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free boundaries, h0 > 0 is the size of initial boundary and d > 0 is the diffusion coefficient. Throughout this
paper, we always assume that the initial function u0 belongs to X (h0) for fixed h0, where

X (h0) := {u0 ∈ C2([−h0, h0]) : u0(−h0) = u0(h0) = 0 and u0 > 0 in (−h0, h0)}. (1.6)

Based on many former studies where the spatial source a is assumed to be a positive or negative constant
[17,19], or 0 directly [18], in this paper we will show that a Fujita type critical exponent P 0

c still exists
whenever the trivial case that spatial source function a(x) is just equivalent to a constant a > 0 or the
extreme case that a(x) is, for example, “very negative” in the sense of measure or integral (see [21,22]). To
our best knowledge, the present paper seems to be the first attempt to investigate the critical exponent for
the nonlinear reaction–diffusion problems with free boundaries.

Finally, we introduce several concepts which will be used later. Define the maximal existence time as
follows:

Tmax = Tmax(u0) := sup{T > 0 : classical solution exists on [0, T ) for u0}.

When Tmax < ∞ and limt→Tmax ∥u(t, ·)∥L∞([g(t),h(t)]) = ∞, we say that the solution u blows up in finite
time and Tmax is thus known as the blowup time, otherwise the solution exists globally. Indeed, it follows
from Theorem 3.4 that the solution must blow up in finite time as long as Tmax < ∞. Moreover, both the
global vanishing solution and global transition solution of problem (1.5) exist in the sense that Tmax = ∞,
solution u(t, x) decays uniformly to zero, and the free boundaries ultimately constitute a finite interval with
the length either less than or equivalent exactly to a certain critical value.

The rest of this paper is arranged as follows. Section 2 will be contributed to state some preliminaries
regarding the existence, uniqueness, regularity and estimate of the solutions, and make proper assumptions
on the spatial source function a(x). In Section 3, we are concerned with the blowup property. By constructing
an auxiliary functional and applying the comparison principle, we establish some sufficient conditions to
finite time blowup (see Theorem 3.1). Then Section 4 is devoted to the global existence of solutions with
sufficiently small initial data (Theorem 4.1). The proof relies on the technical construction of a suitable
global upper solution, which is new in the literature. Thus, we identify the Fujita type critical exponent of
(1.5) determined by the spatio-temporal heterogeneity. In Section 5, by employing the indirect argument
and the comparison principle, we prove a sharp threshold trichotomy result in terms of the size of the initial
data, by which the blowup solution, the global vanishing solution, and, in particular, the global transition
solution are distinguished, see Theorem 5.1. Finally, some discussion about our future research will be given
in Section 6.

2. Preliminaries

2.1. Existence, uniqueness, regularity and estimate of the solution

In this subsection, for completeness, we give the well-posedness, boundness and monotonicity of the
solution to (1.5) as well as the comparison principle. Note that the proof methods of them are very standard
(such as the contraction mapping theorem, the Hopf lemma and the maximum principle) and we refer the
readers to a similar discussion in [16, Section 2] or [17,23–25] for more details.

Theorem 2.1. Assume p > 1 and a ∈ (C1 ∩ L∞)((−∞,∞)). For any given u0 ∈ X (h0) and α ∈ (0, 1),
there is a constant T > 0 such that the problem (1.5) admits a unique positive solution

(u, g, h) ∈ C
1+α

2 ,1+α(DT ) × C1+ α
2 ([0, T ]) × C1+ α

2 ([0, T ]);

moreover,
∥u∥

C
1+α

2 ,1+α(DT )
+ ∥g∥

C
1+ α

2 ([0,T ])
+ ∥h∥

C
1+ α

2 ([0,T ])
< C, (2.1)
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where
DT = {(t, x) ∈ R2 : t ∈ [0, T ], x ∈ [g(t), h(t)]},

and the constants T and C only depend on h0, α, and ∥u0∥C2([−h0,h0]).

Lemma 2.2. Assume p > 1 and a ∈ (C1 ∩L∞)((−∞,∞)). Let (u, g, h) be the solution of the problem (1.5)
defined for t ∈ [0, T0) for some T0 ∈, and there exists M1(T0) such that u(t, x) ≤ M1 for 0 ≤ t < T0 and
g(t) ≤ x ≤ h(t). Then there exists a constant C(T0) > 0 such that

0 < −g′(t), h′(t) ≤ C(T0) (2.2)

and
h0 < −g(t), h(t) ≤ h0 + C(T0)T0 (2.3)

for 0 ≤ t < T0.

Lemma 2.3. Assume p > 1 and a ∈ (C1 ∩ L∞)((−∞,∞)). Let T ∈ (0, Tmax), g, h ∈ C1([0, T ]),
u ∈ C(D∗

T ) ∩ C1,2(D∗
T ) with

D∗
T := {(t, x) ∈ R2 : t ∈ (0, T ], x ∈ (g(t), h(t))},

and ⎧⎪⎨⎪⎩
ut − duxx ≥ a(x)u+ eβtup, t > 0, g(t) < x < h(t),
u(t, g(t)) = 0, g′(t) ≤ −µux(t, g(t)), t > 0,
u(t, h(t)) = 0, h′(t) ≥ −µux(t, h(t)), t > 0.

If (u, g, h) is the solution of the problem (1.5), and satisfies

g(0) ≤ −h0, h(0) ≥ h0 and u(0, x) ≥ u0(x) in [−h0, h0],

it follows that
g(t) ≥ g(t), h(t) ≤ h(t) in (0, T ],

u(t, x) ≤ u(t, x) for (t, x) ∈ (0, T ] × (g(t), h(t)).

Remark 2.4. Henceforth, the triple (u, g, h) or the function u alone sometime, in Lemma 2.3, is often called
an upper solution of (1.5). A lower solution can be defined analogously by reversing all the inequalities above.

2.2. Assumptions on the spatial source

To further investigate the effect of the nontrivially spatial source function a(x) on the asymptotic behavior
of the solution, we first consider the following eigenvalue problem{

dψxx + a(x)ψ + λψ = 0, − L < x < L,

ψ = 0, x = ±L.
(2.4)

For any fixed d > 0 and a(x), denote the principal eigenvalue of (2.4) by λ1 = λ1(L; a). Now, if we suppose
that spatial source function a(x) has the property that

(H) limL→∞ λ1(L; a) ≤ 0,

then by [21, Proposition 3.1] and the remark following it, we have the following conclusion.
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Proposition 2.5. For any fixed d > 0 and a(x), the principal eigenvalue of (2.4), denoted by λ1 = λ1(L; a),
is continuous and strictly decreasing in L > 0, and limL→0+ λ1 = +∞. Moreover, if a(x) satisfies (H), then
for any c ∈ (0,∞), there exists a unique Lc > 0 such that λ1 = c if and only if L = Lc.

We should point out that the assumption (H) contains many common cases for a(x). For example, it is
clear that (H) holds provided that a(x) ≡ a > 0, since we have λ1(L; a) = dπ2

4L2 −a in such case. At the same
time, some more complex cases are still possible. For instance, assume that a(x) satisfies

(A) There exist η > 0, −2 < ρ ≤ 0, k > 1 and xn satisfying xn → ∞ as n → ∞, such that a(x) ≥ η|x|ρ in
[xn, kxn],

it then follows from [21, Proposition 3.2] or [26, Proposition 2.6] that assumption (H) holds. Differing
significantly from the former case, it seems that a(x) is “very negative” under the condition (A), since both
the case that |{a(x) > 0}| ≪ |{a(x) < 0}| and the case that

∫ ∞
0 a(x)dx = −∞ are possible. Henceforth,

we always assume that condition (H) holds to the spatial source function a(x), and denote the “0-critical
length” by L0, for which λ1(L0; a) = 0. Here, we naturally set L0 = ∞ provided that limL→∞ λ1(L; a) = 0.

3. Finite time blowup

In this section, we will derive some sufficient conditions for finite time blowup. Let L = h0 in the eigenvalue
problem (2.4) and denote by λ0

1 the corresponding principal eigenvalue with a positive eigenfunction ψ0
1 > 0

in (−h0, h0), which is suitably standardized by ∥ψ0
1∥L1([−h0,h0]) = 1. Moreover, we define

P 0
c := Pc(h0) = 1 + β

λ0
1

(3.1)

for λ0
1 > 0 and set P 0

c = +∞ for λ0
1 = 0, respectively. The following theorem shows that P 0

c is partly the
critical exponent we wanted.

Theorem 3.1. Assume p > 1, β > 0, h0 ∈ (0, L0], ϕ ∈ X (h0) and (H) holds. Then the solution of the
problem (1.5) with u0(x) = δϕ(x) will blow up in finite time if one of the following conditions is valid:

(i) 1 < p ≤ P 0
c and δ > 0;

(ii) p > P 0
c and δ > δ∗ :=

[
λ0

1(p−1)−β
p−1

] 1
p−1

E−1
0 , where E0 :=

∫ h0
−h0

ϕψ0
1dx.

Further, Tmax ≤ C̃δ−(p−1), where the constant C̃ > 0 depends on a(x), p, β, h0 and ϕ.

Proof. We first introduce the following auxiliary problem:⎧⎪⎨⎪⎩
vt = dvxx + a(x)v + eβtvp, 0 < t < T̃max, − h0 < x < h0,

v(t,−h0) = v(t, h0) = 0, 0 < t < T̃max,

v(0, x) = δϕ(x), − h0 ≤ x ≤ h0,

(3.2)

where T̃max is the maximal time of v(t, x). Note that the comparison principle yields that Tmax ≤ T̃max and
u(t, x) ≥ v(t, x) on [0, Tmax) × [−h0, h0]. Thus, to show that u(t, x) blows up in finite time, it is enough
to prove that the subsolution v(t, x) blowups in finite time. Motivated from [27], we construct an auxiliary
functional as follows:

E(t) :=
∫ h0

−h0

v(t, x)ψ0
1(x)dx.
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Then, by virtue of the Green’s identity and Jensen’s integral inequality, we obtain that

dE
dt =

∫ h0

−h0

vtψ
0
1dx =

∫ h0

−h0

[
dvxx + a(x)v

]
ψ0

1dx+
∫ h0

−h0

eβtvpψ0
1dx ≥ −λ0

1E + eβtEp.

Using the comparison principle of the linear ODE, we have

E1−p ≤
{
δ1−pE1−p

0 − 1 − p

β − λ0
1(p− 1)

[
1 − e[β−λ0

1(p−1)]t
]}
eλ

0
1(p−1)t,

which implies that

Ep−1 ≥ 1{
δ1−pE1−p

0 − 1−p
β−λ0

1(p−1)

[
1 − e[β−λ0

1(p−1)]t]}eλ0
1(p−1)t

. (3.3)

Therefore, we are leading to the following two cases:
(i) If 1 < p < P 0

c , then we have β−λ0
1(p− 1) > 0 and 1−p

β−λ0
1(p−1) < 0. Note that δ1−pE1−p

0 > 0 for all δ > 0,
it then follows from (3.3) that v(t, x) blows up in finite time for any δ > 0. Similarly, in the case where
p = P 0

c < +∞, L’Hopital’s Rule together with the inequality (3.3) yields that

Ep−1 ≥ 1[
δ1−pE1−p

0 − (p− 1)t
]
eλ

0
1(p−1)t

, (3.4)

which implies that the blowup occurs again.
(ii) If p > P 0

c , it follows that
β − λ0

1(p− 1) < 0 and 1 − p

β − λ0
1(p− 1) > 0.

Therefore, when
δ1−pE1−p

0 − 1 − p

β − λ0
1(p− 1) < 0,

that is,

δ > δ∗ :=
[
λ0

1(p− 1) − β

p− 1

] 1
p−1

E−1
0 ,

using (3.3) again, we see that v(t, x) blows up in finite time.
Moreover, since whatever (3.3) and (3.4) can imply that T̃max ≤ C̃δ−(p−1) with constant C̃ > 0 dependent

on a(x), p, β, h0 and ϕ, the comparison principle implies that the same estimate holds for Tmax. The proof
is now completed. □

Remark 3.2. In view of Theorem 3.1, if we define

Λ := Λ(h0, ϕ) =
{

0, if 1 < p ≤ P 0
c ,

δ∗, if p > P 0
c .

(3.5)

then the solution of the problem (1.5) with initial data u0 = δϕ will blow up when δ > Λ.

By Proposition 2.5, since 1 < p ≤ P 0
c implies 0 ≤ λ0

1 ≤ β
p−1 , it is clear that the later is equivalent to

L∗
c ≤ h0 ≤ L0, where L∗

c is determined by Proposition 2.5 with c = c∗ := β
p−1 . Thus, we immediately obtain

the following result.

Corollary 3.3. Assume p > 1, β > 0 and (H) holds. If Lc∗ ≤ h0 ≤ L0, then every solution of the problem
(1.5) blows up in finite time.
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By the identical argument to [16, Theorem 3.2], one can prove the following continuation theorem, which
implies that the solution of problem (1.5) blows up provided that the maximal existence time Tmax is finite.

Theorem 3.4. Let (u, g, h) be the solution of the problem (1.5) with the maximal existence time Tmax. If
Tmax < ∞, then

lim
t→Tmax

∥u(t, ·)∥L∞([g(t),h(t)]) = ∞. (3.6)

4. Global existence

In this section, we consider the existence of global solution of (1.5). Based on Lemma 2.2, we can define
g∞ := limt→∞ g(t) and h∞ := limt→∞ h(t). The following theorem shows that the global vanishing solution
of (1.5) exists for the sufficiently small initial value, for which Tmax = ∞, solution u(t, x) decays uniformly
to zero, and h∞ − g∞ < 2Lc∗ .

Theorem 4.1. Assume p > P 0
c , β > 0, h0 ∈ (0, L0) and (H) hold. If the initial value ∥u0∥L∞([−h0,h0])

is sufficiently small, then Tmax = ∞ and (g∞, h∞) is a finite interval with length less than 2Lc∗ . Moreover,
there exist some real numbers C and ν > 0 depending on u0 and h0 such that

∥u(t, ·)∥L∞([g(t),h(t)]) ≤ Ce−νt, ∀t > 0. (4.1)

Proof. Inspired by [14], the essential idea of the proof is to construct a suitable global upper solution. Let
the eigenfunction ψ0

1 associated with λ0
1 satisfy ψ0

1 > 0 in (−h0, h0) and ψ0
1(−h0) = ψ0

1(h0) = 0. We first
note that dψ0

1(h0)
dx < 0. Furthermore, the regularity of ψ0

1 implies that there exists a constant K > 0 such
that

x
dψ0

1(x)
dx ≤ Kψ0

1(x), ∀x ∈ [−h0, h0]. (4.2)

Define
s(t) := h0

(
1 + 2σ − σe−ηt) and v(t, x) := z(t)|||ψ0

1 |||−1
∞ e

(
− β

p−1 −η
)
t
ψ0

1

(
xh0

s(t)

)
,

where 0 < σ, η < 1 are constants which will be determined later, z(t) is the positive solution of the following
ODE ⎧⎨⎩

dz
dt = e− p−1

p ηtzp(t),

z(0) = z0,

in which 0 < z0 ≤
(
η
p

) 1
p−1 , and |||ψ0

1 |||∞ := ∥ψ0
1∥L∞([−h0,h0]) + 1. By a direct calculation, we obtain that

z(t) =
{
z1−p

0 − p

η

[
1 − e− p−1

p ηt
]} 1

1−p

.

Clearly, v(t,−s(t)) = v(t, s(t)) = 0. Since p > P 0
c , it follows that λ0

1 >
β
p−1 , which implies 0 < h0 < Lc∗ . We

thus first choose 0 < σ < 1
2
(Lc∗
h0

− 1
)

such that

h0(1 + σ) ≤ s(t) < h0(1 + 2σ) < Lc∗ , ∀t > 0.

Moreover, for any given 0 < ϵ ≪ 1, since λ0
1 >

β
p−1 , the continuous dependence of s(t) on σ and the uniform

boundedness of a(x) in [−3h0, 3h0] imply that there exists 0 < σ0(ϵ) ≪ 1 such that, for any 0 < σ ≤ σ0(ϵ)
and 0 < η < 1, there hold that⏐⏐⏐⏐[ h2

0
s2(t) − 1

]
a(x)

⏐⏐⏐⏐ ≤ ϵ

2 , ∀t > 0, x ∈ [−s(t), s(t)],
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and ⏐⏐⏐⏐λ0
1

1
(1 + 2σ)2 − β

p− 1

⏐⏐⏐⏐ ≤ ϵ

2 .

Considering the facts above together with (4.2), it follows that

vt − dvxx − a(x)v − eβtvp

≥
{

− β

p− 1 − η − dψ0
1

dx

(
xh0

s(t)

) [
ψ0

1

(
xh0

s(t)

)]−1
xh0ση

s2(t) e
−ηt +

[
h2

0
s2(t) − 1

]
a(x) + λ0

1
h2

0
s2(t)

}
v

+
{
zp(t)e− p−1

p ηte

(
− β

p−1 −η
)
t|||ψ0

1 |||−1
∞ ψ0

1

(
xh0

s(t)

)
− zp(t)eβte

(
− β

p−1 −η
)
pt

[
|||ψ0

1 |||−1
∞ ψ0

1

(
xh0

s(t)

)]p}
≥ [−ϵ− (K + 1)η] v

+ zp(t)e
(

− β
p−1 −η

)
t

{
e− p−1

p ηt|||ψ0
1 |||−1

∞ ψ0
1

(
xh0

s(t)

)
− e−η(p−1)t

[
|||ψ0

1 |||−1
∞ ψ0

1

(
xh0

s(t)

)]p}
≥ 0, ∀t > 0, x ∈ [−s(t), s(t)]

provided that the small parameters ϵ and η are chosen properly. On the other hand, by the strict inequality
dψ0

1(h0)
dx < 0, for fixed η > 0 and σ > 0, we can further choose a smaller z0 > 0 such that

−µvx(t, s(t)) = −µh0

s(t)z(t)e
(− β

p−1 −η)t|||ψ0
1 |||−1

∞
dψ0

1(h0)
dx

≤ −µ
(
z1−p

0 − p

η

) 1
1−p |||ψ0

1 |||−1
∞

dψ0
1(h0)
dx e−ηt

≤ σηh0e
−ηt

= s′(t).

Similarly, we also have −µvx(t,−s(t)) ≥ −s′(t). Therefore, if u0(x) ≤ v(0, x) in [−h0, h0], then the
comparison principle (Lemma 2.3) implies that (v(t, x),−s(t), s(t)) is an upper solution of (1.5). In fact,
if we choose

δ∗ := z0|||ψ0
1 |||−1

∞ min
− h0

1+σ ≤x≤ h0
1+σ

ψ0
1 (x) ,

then when ∥u0∥L∞([−h0,h0]] ≤ δ∗, we have u0(x) ≤ δ∗ ≤ v(0, x) in [−h0, h0]. Again, Lemma 2.3 yields that

−h0(1 + 2σ) < −s(t) ≤ g(t) and h(t) ≤ s(t) < h0(1 + 2σ), ∀t > 0

and
u(t, x) ≤ v(t, x) ≤ Ce−νt, ∀t ≥ 0, x ∈ [−s(t), s(t)],

where real numbers C and ν > 0 depend on u0 and h0. Thus, Theorem 3.4 implies that Tmax = ∞. The
proof is then finished. □

Remark 4.2. In view of Theorems 3.1 and 4.1, we see that the problem (1.5) possesses the Fujita critical
exponent P 0

c := 1 + β

λ0
1
.

The following lemma provides a comprehensive description on the global solutions of (1.5), which reveals
that all of the global solutions are bounded and decay uniformly to zero for the case that the spatial source
a(x) is trivial nonnegative constant, i.e., a(x) ≡ a ∈ [0,∞).
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Lemma 4.3. Assume p > P 0
c , β > 0, h0 ∈ (0, L0) and a(x) ≡ a ∈ [0,∞). Let (u, g, h) be the solution of

the problem (1.5) with the maximal existence time Tmax. If Tmax = ∞, then (g∞, h∞) is a finite interval with
length no more than 2Lc∗ and u is bounded. Furthermore, there holds that

lim
t→∞

max
g(t)<x<h(t)

u(t, x) = 0.

Proof. Since Tmax = ∞, one can obtain directly from Corollary 3.3 that (g∞, h∞) is a finite interval with
length no more than 2Lc∗ .

By setting α = β
p−1 and taking U(t, x) := eαtu(t, x), we transform (1.5) into the following problem⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Ut = dUxx + [a+ α]U + Up, t > 0, g(t) < x < h(t),
U(t, g(t)) = 0, g′(t) = −µ[e−αtUx(t, g(t))], t > 0,
U(t, h(t)) = 0, h′(t) = −µ[e−αtUx(t, h(t))], t > 0,
− g(0) = h0 = h(0), U(0, x) = u0(x), − h0 ≤ x ≤ h0.

(4.3)

Since α > 0, the function e−αt is thus uniformly bounded for all t > 0. Furthermore, in view of −g∞,
h∞ < ∞, by introducing the energy functional

E[U ](t) =
∫ h(t)

g(t)

[
U2
x

2 − (a+ α)
2 U2 − 1

p+ 1U
p+1

]
dx,

together with rescaling techniques, the almost identical method employed by the proof of [14, Theorem 3.1],
[28, Proposition 1 and 2] and [29, Proposition 4.3 and 4.4] yields that U is bounded and there holds that

lim
t→∞

max
g(t)<x<h(t)

U(t, x) = 0,

which implies that the same result holds for u(t, x). The proof is thus completed. □

Remark 4.4. It is still open whether all of the global solutions of (4.3), furthermore, all of the global
solutions of (1.5), are bounded and decay uniformly to zero for the general case that the spatial source a(x)
is spatially nontrivial. It seems that one needs more information about the spatial source a(x), in particular,
the more concrete spatial dependency pattern of a(x). We leave this issue as an important open problem for
the future research.

5. Sharp threshold trichotomy

In what follows, we prove a sharp threshold trichotomy theorem, which, in particular, claims that both the
global vanishing solution and global transition solution of the problem (1.5) exist with Tmax = ∞, depending
on whether (g∞, h∞) is a finite interval with the length either less than or equivalent exactly to 2Lc∗ .

Theorem 5.1. Suppose p > 1, β > 0, h0 ∈ (0, L0], δ > 0, ϕ ∈ X (h0) and a(x) ≡ a ∈ [0,∞). Let (u, g, h)
be the solution of the problem (1.5) with u0(x) = δϕ(x) and Tmax be the maximal existence time. Then there
exists δ∗ = δ∗(p, ϕ) ∈ [0,∞) such that:

(i) (u, g, h) blows up in finite time if δ > δ∗ in the sense that Tmax < ∞ and

lim
t→Tmax

∥u(t, ·)∥L∞([g(t),h(t)]) = ∞; (5.1)
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(ii) (u, g, h) is the global vanishing solution if δ < δ∗ in the sense that Tmax = ∞, (g∞, h∞) is a finite
interval with length less than 2Lc∗ and

lim
t→∞

max
g(t)<x<h(t)

u(t, x) = 0; (5.2)

(iii) (u, g, h) is the global transition solution if δ = δ∗ in the sense that Tmax = ∞, (g∞, h∞) is a finite
interval with exact length 2Lc∗ and (5.2) holds.

Proof. In view of Corollary 3.3, any solution blows up if Lc∗ ≤ h0 ≤ L0, and hence in such case, it is
enough to set δ∗ = 0 for any ϕ ∈ X (h0). In the following proof, we just investigate the remaining case
where 0 < h0 < Lc∗ . Further, to emphasize the dependence of solution on the initial data when necessary,
we denote the solution by (uδ, gδ, hδ). So do gδ∞, hδ∞ and T δmax.

To begin with, let

Σ =
{
δ > 0 : T δmax = ∞ and (gδ∞, hδ∞) is a finite interval

with length no more than 2Lc∗

}
.

In view of Theorem 3.1 and Remark 3.2, it follows that Σ is not empty and Σ ⊂ [0,Λ], where Λ is defined by
(3.5). Set δ∗ = δ∗(a, p, ϕ) = supΣ . Firstly, we claim that T δ∗

max = ∞. In fact, by the continuous dependence,
for any fixed 0 ≤ t < T δ

∗
max, uδ approaches to uδ∗ in L∞((−∞,∞)) as δ ↑ δ∗, where we have extended u to

0 on (−∞, g(t)) ∪ (h(t),∞). Since T δmax = ∞ for all 0 < δ < δ∗, and by Lemma 4.3, any global solution is
bounded, it follows that uδ is bounded for all 0 < δ < δ∗, which implies that there exists a constant K such
that ∥uδ∗(t, ·)∥L∞(R) ≤ K for all 0 ≤ t < T δ

∗
max. Hence, Theorem 3.4 yields that T δ∗

max = ∞.
Furthermore, we prove (gδ∗

∞ , hδ
∗

∞) is a finite interval and hδ
∗

∞ − gδ
∗

∞ = 2Lc∗ . In fact, the finiteness of the
interval is a direct consequence of the fact that T δ∗

max = ∞. On the other hand, by utilizing the indirect
argument, if we assume that hδ∗

∞ − gδ
∗

∞ < 2Lc∗ , then the continuous dependence implies that there exists
a sufficiently large T > 0 such that if ϵ is small enough, the solution (uδ∗+ϵ, gδ

∗+ϵ, hδ
∗+ϵ) of (1.5) with

u0 = (δ∗ + ϵ)ϕ satisfies
hδ

∗+ϵ(T ) − gδ
∗+ϵ(T ) < 2Lc∗ .

Thus, it follows that hδ∗+ϵ
∞ − gδ

∗+ϵ
∞ ≤ 2Lc∗ , which contradicts the definition of δ∗.

Thirdly, we show that there only exists a unique δ∗ such that T δ∗
max = ∞ and (gδ∗

∞ , hδ
∗

∞) is a finite interval
with exact length 2Lc. Otherwise, without loss of generality, we assume that there are two δ∗

1 > δ∗
2 such that

the solution (uδ∗
i , gδ

∗
i , hδ

∗
i ) of (1.5) with u0 = δ∗

i ϕ satisfying T δ
∗
imax = ∞ and (gδ

∗
i∞ , h

δ∗
i∞) is a finite interval with

exact length 2Lc for i = 1, 2, respectively. The comparison principle implies that for any fixed T0 > 0,

[gδ
∗
2 (T0), hδ

∗
2 (T0)] ⊂ (gδ

∗
1 (T0), hδ

∗
1 (T0)),

and for all gδ∗
2 (T0) ≤ x ≤ hδ

∗
2 (T0), there holds that

uδ
∗
2 (T0, x) < uδ

∗
1 (T0, x).

Set

Γ =
{
ϵ > 0 : uδ

∗
1 (T0, x) > uδ

∗
2 (T0, x− ϵ),∀x ∈ [gδ

∗
2 (T0 + ϵ), hδ

∗
2 (T0 + ϵ)] ⊂ (gδ

∗
1 (T0), hδ

∗
1 (T0))

}
.

Clearly, Γ is bounded. Set ϵ0 := supΓ , and define

g̃(t) = gδ
∗
2 (t+ T0) + ϵ0, h̃(t) = hδ

∗
2 (t+ T0) + ϵ0

and
ũ(t, x) = uδ

∗
2 (t+ T0, x− ϵ0).
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It follows that (ũ, g̃, h̃) is the unique solution of (1.5) with

ũ0 = uδ
∗
2 (T0, x− ϵ0), g̃(0) = gδ

∗
2 (T0) + ϵ0 and h̃(0) = hδ

∗
2 (T0) + ϵ0.

In view of the definition of ϵ0 and the comparison principle, we obtain

h
δ∗

1∞ − g
δ∗

1∞ ≥ h̃(∞) − g
δ∗

2∞ > 2Lc∗ ,

which contradicts the definition of δ∗
1 . This contradiction derives the desired conclusion.

Finally, combining the proof above together with Corollary 3.3 and Lemma 4.3, we can easily obtain all
the rest of conclusions in (i)–(iii). The proof is finished. □

6. Discussion

In this paper, we investigate a nonlinear free boundary problem incorporating with nontrivial spatial
and exponential temporal weighted source. To investigate the asymptotic behavior of the solution, we first
establish some sufficient conditions to finite time blowup solution. Furthermore, the existence of global
vanishing solutions with sufficiently small initial data is also obtained, which, together with the blowup
result, reveals that there exists a Fujita type critical exponent for (1.5) whenever the spatial source is just
equivalent to a trivial constant, or is an extreme one, such as “very negative” one in the sense of measure
or integral. Finally, we prove a sharp threshold trichotomy result in terms of the size of the initial data, by
which the blowup solution, the global vanishing solution, and, in particular, the global transition solution
are distinguished.

Moreover, we must note that the conclusions of Lemma 4.3 only hold for the case that the spatial source
a(x) is spatially trivial. Thus, the sharp threshold trichotomy theorem, i.e., Theorem 5.1 only hold for the
same case. As we have pointed in Remark 4.4, it is still open whether all of the global solutions of (1.5) are
bounded and decay uniformly to zero for the general case that the spatial source a(x) is spatially nontrivial.
Some hints reveal that more information about the spatial source a(x), in particular, the more concrete
spatial dependency pattern of a(x), will be conducive, and we leave this issue as an important open problem
for the future research.

On the other hand, it is well known that the Laplace operator is just a symmetric and local operator,
however, more and more researches have revealed that by introducing the nonsymmetric operators or
nonlocal operators, such as the Laplace operator with the advection term in [30–32] or the nonlocal operator
in [33], into the traditional reaction–diffusion, more rich, complicate and interesting dynamics will emerge.
Thus, we will also consider such nonsymmetric and nonlocal versions of the problem (1.5) in our future
research.
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