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Abstract
In agricultural ecosystems, soil organic matter (SOM) is a major determinant and indicator of soil fertility and quality. The
objectives of this study were to understand the spatial distribution of SOM and the accuracy of two interpolation methods
evaluated: Kriging and inverse distance weighting (IDW) in a gravel-sand mulch of northwest China. We are measuring SOM
in 256 soil samples collected from 0 to 10, 10–20, 20–30, and 30–50 cm layers at five sampling scales, 32 × 32, 28 × 28, 24 × 24,
20 × 20, and 16 × 16 m, and three sampling spacings, 4, 8, and 12 m. SOM content decreased with depth in each scale, varying
from 2.41 to 5.75 g/kg. The SOM was weakly to moderately variable and has a strong spatial autocorrelation. The standard
deviation was small for each soil layer, and the variability was low or weakly moderate, indicating that two interpolation methods
were applicable to the entire data set. Kriging interpolation was more accurate than IDW. The distribution of SOM differed in the
surface layers at the five sampling scales, which was more uniform as the sampling scale decreased. Eight meter is a reasonable
sampling spacing. Through the scales effect and spacing change on SOM for fixed-point monitoring, combing the estimate of
SOM to reduce the sampling workload will aid the supply of SOM in gravel-sand mulched fields in arid regions.

Keywords Gravel-sand mulch . Soil organic matter . Spatial variation . Kriging interpolation . Inverse distance weighting
interpolation

Introduction

Soil organic matter (SOM) is a key indicator for assessing soil
quality and is also important as sources and sinks in global
carbon (Marchetti et al. 2012; Thomazini et al. 2015; Klimek
et al. 2016). SOM contains more than three times as much
carbon as either the atmosphere or terrestrial vegetation glob-
ally (Schmidt et al. 2011). And the quantification of organic
matter cycling may provide an important guide to the agricul-
tural potential of soils. Assessing SOM variability has
become one of the most active areas of research in soil
and environmental sciences (Yemefack et al. 2005; Liu
et al. 2008; Meyer et al. 2017).

Using gravel-sand mulch, an indigenous farming technique
for crop production in the semiarid loessial region of north-
western China may date back to the Qing Dynasty, about
300 years ago (Li 2003). It can improve the soil environment,
store water, and maintain soil fertility (Zhao et al. 2017a,
2018). And Zhao et al. (2017b) study the spatial variability
of soil salinity in a gravel-sand mulched jujube orchard at
different scales and found that gravel-sand mulched could
reduce the accumulation of surface salinity. Jujube fruit comes
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from the small and deciduous jujube tree. The jujube tree is a
species of Ziziphus in the buckthorn family (Rhamnaceae). It
is an important economic tree that has the characteristics of
drought resistance and can be planted on a large scale. It is one
of the main economic sources of local farmers. However, in
recent years, the yield of jujube has a downward trend. The
main reason is that the soil organic matter shows a decreasing
trend with the increase of tillage years. Because the manage-
ment of the tillage is extensive, the gravel-sand mulched soil is
gradually degraded, and the farmers’ lack of understanding of
soil organic matter, which leads to the excellent features of
soil fertility gradually become decrease with the increase of
tillage years (Qiu et al. 2015; Wang et al. 2015). An accurate
and objective understanding of SOM content and its spatial
variability is therefore of great significance for the sustainable
development of gravel-sand mulch.

The spatial variability and distribution of SOM have been
studied in China and abroad (Seibert et al. 2007; Wu et al.
2009; Zhang and Zhang 2014), some at large and intermediate
scales (Hu et al. 2007; Wang et al. 2010; Huang et al. 2017).
And some scholars have analyzed at small scales (Qiu et al.
2016; Cappai et al. 2017). SOM possesses different spatial
distribution as a result of differing parental material, climate,
topography, land use, and human activities. Estimation of
SOM at an acceptable level of accuracy is important; especial-
ly in the case when SOM exhibits strong spatial dependence
and its measurement is a time- and labor-consuming proce-
dure. Geostatistical analysis is used to define the spatial de-
pendence of soil properties (Western et al. 1998; Fang et al.
2016; Zhao et al. 2017c). Wang et al. (2017) study the spatial
variability of reconstructed soil properties using geostatistical
analysis. In the geostatistical techniques, Kriging and inverse
distance weighting (IDW) are common interpolation methods
used to study the spatial characteristics of soil properties
(Zimmerman et al. 1999). Mabit and Bernard (2010) found
that the patterns of SOM spatial distribution and the relative
magnitude of some classes of SOM content differed between
the Kriging and IDW methods. Western et al. (1998) noted
that the variability apparent in the data would differ from the
true natural variability and that this difference was associated
with the scale of the measurements. Hu et al. (2014) study the
spatial scaling effects on variability of soil organic matter and
total nitrogen and found the spatial variability are scale-depen-
dent. Plants can be affected by the distribution of SOM.
Hence, research on a single spatial scale cannot fully explore
and exploit the information on spatial variation. Field data are
often collected at a particular scale, and estimates of SOM are
often needed at smaller or larger scales. This study analyzed
the effect of scale on the measurements of SOM in a gravel-
sand mulched jujube orchard, which is helpful for the preci-
sion fertilization.

The objectives of this paper are to (1) characterize the spa-
tial variability of SOM using geostatistical techniques, (2)

through the scales effect and spacing change on SOM for
fixed-point monitoring, combing the estimate of SOM to re-
duce the sampling workload, and (3) to determine the better
interpolation method for simulating the spatial distribution
and provide a theoretical basis for the supply of SOM, which
are important for crop growth and planting management.

Materials and methods

Status of the study area

The study was conducted in a jujube orchard near the test site
of Lanzhou University of Technology in Jingtai County, the
province of Gansu, northwestern China (Fig. 1). The soil type
is mainly arctic ash and desert soil. Jingtai County is in the
transition zone between monsoon and non-monsoon regions.
Precipitation is rare but heavy and is unevenly distributed
throughout the year. Mean annual rainfall is 185 mm, 61.4%
of which falls from July to September. Mean annual evapora-
tion is 3038 mm, 16-fold more than the precipitation. Mean
annual temperature is 8.2 °C, with temperatures ranging from
− 27.3 to 36.6 °C. Solar-thermal resources are rich with the
annual sunshine time which is about 2725 h and a sunshine
percentage of 62%; the mean annual solar radiation is about
147.8 kcal/cm2; and the mean frost-free period is 141 days
(Zhao et al. 2017a, b, c).

Sample collection

The jujube trees were planted on a gravel-sandmulched jujube
orchard with a mulching thickness of 10 cm 5 years ago for
studying the spatial variability of SOM content. In the past
5 years, we do not fertilizer application. The study area was
1.5 hm2, the sampling area was 32 × 32 m, and jujube was
planted every 4 m along two perpendicular. The rectangular
sampling was performed for 1 × 1m quadrats 4 m apart, center
to center, for a total of 64 sampling locations, and soil samples
(60–70 g) were collected with a soil auger from the 0–10, 10–
20, 20–30, and 30–50 cm layers (Fig. 2). We tested five sam-
pling scales of 32 × 32 m, 28 × 28 m, 24 × 24 m, 20 × 20 m,
and 16 × 16 m from the northwestern to the southeastern cor-
ner of the study area. Sampling spacings: The sampling den-
sity was varied by extracting sampling points from 1 to 2
points in the east-west and north-south directions, respective-
ly, representing an increase in sampling spacing and the pitch
in each of all the original measurement data to get. The data in
a geostatistical analysis will not be reliable if the spac-
ing is too large, so we analyzed only three sampling
spacings (4, 8, and 12 m) for determining their effects
on the spatial variation. SOM was estimated by dichro-
mate oxidation (Walkley and Black 1934).
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Data processing

The data were analyzed using Microsoft Excel (version
2010, Microsoft Corporation, Redmond, USA) and
SPSS 20.0 software (SPSS Inc., Chicago, IL, USA);
Kriging and IDW interpolation were carried out using
GS+ (version 9.0, Gamma Design Software, Michigan,
USA). The three-dimensional spatial distribution of
SOM content was drawn using Surfer (Version 11.0,
Golden Software, USA).

The coefficient of variation (CV) is calculated as (Lei
et al. 1988):

CV ¼ S

x
ð1Þ

where S is the standard deviation and x is the average.
Geostatistical methods were used to calculate the

semivariogram as follows: the formula for the semivariogram
is shown in (Pham 2016):

γ hð Þ ¼ 1

2N hð Þ ∑
N hð Þ
i¼1 Z xi þ hð Þ−Z xið Þ½ �2 ð2Þ

where h is the spatial sampling interval, γ(h) is the
semivariance for interval h, N(h) is the total number

of sample pairs for the separation interval h, and
Z(xi + h) and Z(xi) are measured samples at points xi +
h and xi, respectively.

IDW interpolation method as shown in (Chen and Liu
2012):

Z
0
soð Þ ¼ ∑n

i¼1λiZ sið Þ ð3Þ

λi ¼
1
�
di

∑n
i¼1

1

di

� � ð4Þ

where Z′(so) was the estimated value at point S0, n was the
number of known points around the point to be estimated, λi
the weight of each sample, and Z(si) was the sample value at
point Si.

Mean error (ME) and root mean square error (RMSE) were
used to evaluate the performance of the regression models as
shown in (Phogat et al. 2010):

ME ¼ 1

n
∑n

i¼1 Pi−Oið Þ ð5Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

i¼1 Pi−Oið Þ2
n

s
ð6Þ

(a) Mesh generation (b) Schematic diagram of soil profile

Fig. 2 Distribution map of
sampling points of (a) mesh gen-
eration, (b) schematic diagram of
soil profile (Note: a is mesh size
and n is total sampling points)
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Fig. 1 Study area and the soil sampling locations in the study area situated in Gansu, China
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where Oi and Pi are the measured and predicted values, re-
spectively, and n is the number of observations in the valida-
tion data set.

Moran’s I is similar to the correlation coefficient and
ranges from − 1 to 1. Moran’s I is calculated as (Monica
et al. 2010):

I ¼
N∑N

i¼1∑
N
j¼1ωij xi−x

� �
x j−x

� �

∑N
i¼1∑

N
j¼1ωij

� �
∑N

i¼1 xi−x
� � ð7Þ

where xi and xj are the observed values of spatial element x in
spatial units i and j, respectively; x is the average x; ωij is the
adjacent weight (binary weight is now commonly used; ωij is
defined as 1 if adjacent sampling sites i and j are correlated,
otherwise as 0); and N is the total number of spatial units.

Soil particle size of different depth

The soil particle sizes at the various depths are shown in
Table 1. The particle sizes were measured by a laser diffrac-
tion particle size analyzer (Malvern Instruments 2000,
Malvern, England). The range of sizes for this instrument is
0.02–2000 μm, which provides a continuous volume percent-
age of sizes with a repeated measurement error < 2%.

Results and discussion

Statistical eigenvalue analysis of SOM content

Statistical eigenvalue analysis of SOM content under different
sampling scales

The characteristics of SOMcontent to a depth of 50 cm for the five
sampling scales are shown in Table 2. SOM content are ranging
from 2.41 to 5.75 g/kg, which belongs to the lowest degree while
refers to the second national soil grading standard (National Soil
Survey Office Chinese Soils 1998), which indicates that the fertil-
ity level was classified as barren. In the same soil layer, the mean,
maximum, and minimum values of SOM at the five scales have

almost the same values. The SOM mean values at 32 × 32, 28 ×
28, 24 × 24, 20 × 20, and 16× 16 m scales of the 0–10 cm were
4.95, 4.88, 4.84, 4.84, and 4.92 g/kg. A large number of jujube
trees are planted in the study area, the surface layer of the soil
accepts the litter of surface vegetation, and there are a large
number of fine roots of plants. The source of SOM is rich, the
time of soil formation is short, and the amount of SOM
decomposition loss is lower than the amount of SOM added, so
the content of organic matter is higher.With the increase of depth,
the buried time of soil layer increases, and the source of SOM
decreases, while the time of soil formation increases. Therefore,
the content is differed significantly between layers and has a
decreasing trend with increasing depth in the same scale, which
was consistent with the results of Chen et al. (2005) on the evolu-
tion mechanism of soil organic matter depth distribution.

The CV is an important index for describing the degree of
spatial variation of regionalization. In Nielsen’s classification
(Nielsen and Bouma 1985), a CV < 10% indicates low vari-
ability, and 10% ≤CV< 100% indicates moderate variability.
The CV ranged between 4.41 and 11.89%, indicating weakly
to moderately variable. The CV for the same layer tended to
decrease as sampling scale decreased. The CV for SOM con-
tent was lowest in the 0–10 cm layer, perhaps because the soil
was shallow and vulnerable to human factors such as tillage
and fertilization and to biological factors such as animals,
plant debris, and microorganisms. The decomposition and
synthesis of organic compounds in the surface soil concen-
trates the distribution of organic matter. Many studies have
also confirmed that the surface soil organic matter content of
space continuity is strong (Wu et al. 2009; Yang et al. 2014).

For five kinds of sample scale of 0–50 cm soil layer, themean
CV and the sampling area were fitted. The relationship is shown
in Fig. 3, where y is the CV and x is the sampling area. The fitted
results indicated that the CV increased with sampling
area. This is mainly due to the introduction of new
variability factors along with the increase of the study
area; that is, some of the factors that affect the distri-
bution of SOM in larger scales may have relative con-
sistency within a relatively small scale. When the scale
is increased, its effect on the SOM distribution is
reflected so that its coefficient of variation increases.

Table 1 Soil particle size of different depth

Soil depth (cm) Clay Silt Sand

Extremely fine sand Fine sand Medium sand Coarse sand Extremely coarse sand
< 0.002 mm 0.002~0.05 mm 0.05~0.1 mm 0.1~0.25 mm 0.25~0.5 mm 0.5~1 mm 1~2 mm

0–10 2.95 52.86 28.5 13.83 1.85 0.03 0

10–20 3.66 60.86 28.05 7.43 0 0 0

20–30 3.16 57.53 27.52 9.91 1.81 0.07 0

30–50 3.1 57.24 30.26 8.29 0.99 0.10 0
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Statistical eigenvalue analysis of SOM content under different
sampling spacings

When the sampling spacing is changed from 4 to 12 m, the
statistical analysis of the SOM content is shown in Table 3.
The SOM content and coefficient of variation in all soil layers
do not change much, and they fluctuate around a fixed value.
The mean values of the coefficient of variation were 6.05%,
7.9%, 8.01%, and 11.88%, respectively. It can be seen that the
variation coefficient of SOM content in the study area is af-
fected by the depth of soil layer, while the sampling spacing
has almost no effect on it. Hence, within a certain study area,
the actual coefficient of variation of SOM can still be obtained
by appropriately increasing the sampling spacing.

Spatial variability analysis of SOM content

Spatial variability analysis of SOM content under different
sampling scales

Classical statistical analyses of SOM only identify changes in
magnitude and do not take spatial structure into account, thus
cannot reflect its spatial structure, randomness, and correla-
tion. Analyzing and discussing the spatial structures of the
SOM using geostatistical methods combined with the spatial
position of the sampling point are therefore necessary. The
GS+ program provided the best models of the SOM at each
scale and showed the parameters for each semivariogram. For
all data, the spherical, Gaussian, and exponential models
could describe the omnidirectional semivariogram well. The
results of the semivariance analysis of SOM content in the soil
samples are shown in Table 4.

Spatial variability and correlation among variables within a
range in the semivariance function model are usually
expressed by nugget (C0), sill (C + C0), and the range (A).
The nugget variance (C0/(C0 + C)) represents the proportion
of spatial variability due to random factors. Based on the con-
cept proposed by Cambardella et al. (1994), when the C0/
(C0 + C) were low than 0.25 or between 0.25 and 0.75, this
indicates that the variables are strongly spatially correlated or
moderately autocorrelated. When it is > 0.75, the autocorrela-
tion of the variables is weak, and the mutation is mainly

Table 2 Statistics parameters of
horizontal soil organic matter in
0–50 cm layers for all scales

Item Depth
(cm)

Max
(g/kg)

Min
(g/kg)

Mean
(g/kg)

SD Kurtosis Skew CV(%)

32 × 32 0–10 5.75 4.25 4.95 0.27 0.8857 0.2229 6.04

10–20 4.73 3.52 4.12 0.32 − 0.7827 − 0.0071 7.81

20–30 3.73 2.61 3.26 0.25 − 0.3662 − 0.2798 7.60

30–50 3.61 2.41 2.86 0.34 − 0.4670 0.6940 11.89

28 × 28 0–10 5.25 4.25 4.88 0.22 1.230 − 0.7382 4.52

10–20 4.73 3.52 4.13 0.34 − 0.9482 − 0.0893 8.17

20–30 3.73 2.84 3.29 0.22 − 0.8570 − 0.1396 6.60

30–50 3.67 2.41 2.77 0.28 0.9480 1.0546 10.30

24 × 24 0–10 5.23 4.25 4.84 0.22 1.3174 − 0.9941 4.44

10–20 4.66 3.52 4.07 0.33 − 1.2049 − 0.0919 8.21

20–30 3.61 2.92 3.27 0.19 − 0.9252 0.0471 5.78

30–50 3.61 2.56 3.07 0.34 − 0.9503 0.1977 10.08

20 × 20 0–10 5.25 4.46 4.84 0.19 − 0.1783 − 0.1738 3.90

10–20 4.61 3.34 4.00 0.37 − 1.1361 0.1278 9.29

20–30 3.61 3.06 3.29 0.16 − 0.9643 0.3910 4.96

30–50 3.60 2.55 3.02 0.29 − 0.6759 − 0.0131 9.57

16 × 16 0–10 5.25 4.25 4.92 0.24 1.5207 − 0.5751 4.86

10–20 4.66 3.61 4.20 0.30 − 0.7554 − 0.3646 7.05

20–30 3.61 2.84 3.27 0.23 − 0.8198 − 0.0604 7.09

30–50 3.67 2.42 2.87 0.32 0.0861 0.5721 11.28

y = 3E-06x2 - 0.0024x + 7.8113
R² = 0.9635

7
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8
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Fig. 3 The effect of scale for SOM variation coefficient
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composed of randommutations. At this time, the spatial inter-
polation method is not suitable for prediction. C0 was stable,
and the degree of change was small between the sampling
scales (Table 4), indicating that the spatial variation was low
under the influence of random factors such as soil property,
sampling error, or measurement error. The range (A) varied
widely with sampling scale, with means of 53.67, 51.96,
88.31 51.86, and 25.12 m for 32 × 32, 28 × 28, 24 × 24,
20 × 20, and 16 × 16 m, respectively, indicating spatial depen-
dence, which showed that range in all data was closely related

to spatial variation and the spatial autocorrelation distance
differed between the scales. C0/(C0 + C) was < 0.25, indicat-
ing that the SOM content to a depth of 50 cm was strongly
spatially correlated. The overall variation of the random factor
was relatively small.

In this case, the correlation is determined using spatial in-
terpolation. Moran’s I describes the spatial dependence of the
variables. Moran’s I > 0 denotes positive spatial correlation,
and the larger the value, the stronger the spatial correlation.
Moran’s I < 0 denotes negative spatial correlation, and the

Table 4 Semivariance models
and fitted parameters of soil
organic matter for each layer at
different scales

Scale Soil depth(cm) Semivariogram model C0 C0 + C C0/
(C0 + C)

A(m) R2

32 × 32 0–10 Exponential 0.007 0.048 0.139 75.33 0.873

10–20 Exponential 0.012 0.109 0.109 10.11 0.816

20–30 Gaussian 0.049 0.183 0.262 96.00 0.849

30–50 Gaussian 0.044 0.190 0.231 33.22 0.991

28 × 28 0–10 Spherical 0.032 0.086 0.367 61.00 0.808

10–20 Spherical 0.037 0.116 0.320 14.19 0.744

20–30 Gaussian 0.065 0.526 0.124 76.31 0.948

30–50 Gaussian 0.041 0.243 0.171 56.34 0.981

24 × 24 0–10 Exponential 0.028 0.120 0.236 153.00 0.704

10–20 Gaussian 0.011 0.117 0.094 5.83 0.732

20–30 Exponential 0.026 0.078 0.327 153.00 0.716

30–50 Gaussian 0.035 0.282 0.124 41.40 0.998

20 × 20 0–10 Exponential 0.022 0.074 0.302 92.46 0.886

10–20 Exponential 0.084 0.265 0.317 84.72 0.760

20–30 Gaussian 0.016 0.034 0.459 16.65 0.990

30–50 Gaussian 0.020 0.116 0.182 13.63 0.996

16 × 16 0–10 Exponential 0.032 0.090 0.353 37.11 0.978

10–20 Gaussian 0.023 0.362 0.163 31.80 0.991

20–30 Spherical 0.004 0.059 0.164 8.10 0.934

30–50 Gaussian 0.058 0.222 0.261 23.48 0.996

Table 3 Statistics parameters of
horizontal soil organic matter
content in 0~50 cm layers of
sampling spacing

Depth
(cm)

Sampling
spacing (m)

Max
(g/kg)

Min
(g/kg)

Mean
(g/kg)

SD Kurtosis Skew CV(%)

0–10 cm 4 5.75 4.25 4.95 0.27 0.8857 0.2229 6.04

8 5.50 4.25 4.91 0.29 0.0218 0.1043 5.98

12 5.50 4.25 4.99 0.31 − 0.3152 − 0.0811 6.13

10–20 cm 4 4.73 3.52 4.12 0.32 − 0.7827 − 0.0071 7.81

8 4.73 3.56 4.13 0.29 0.2771 − 0.0860 6.92

12 4.66 3.24 4.04 0.60 − 0.4815 − 0.4081 8.97

20–30 cm 4 3.73 2.61 3.26 0.25 − 0.3662 − 0.2798 7.60

8 3.73 2.70 3.28 0.27 − 0.3107 − 0.8524 8.02

12 3.73 2.70 3.28 0.28 − 0.2101 − 0.7144 8.42

30–50 cm 4 3.61 2.41 2.86 0.34 − 0.4670 0.6940 11.89

8 3.61 2.41 2.87 0.34 0.7369 − 0.2559 11.75

12 3.60 2.42 2.85 0.34 0.9056 − 0.0381 12.00
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smaller the value, the larger the spatial difference.Moran’s I =
0 indicates random spatial correlation. A function diagram of
Moran’s I and its model fitting is shown in Fig. 4 (using 32 ×
32 m as an example). The trend of Moran’s I for SOM content
was decrease at 0–21.33 m, and the whole variation range is
small, which is between 0.548 and 0.548, indicating that SOM
content was strongly spatially correlated.

Spatial variability analysis of SOM content under different
sampling spacings

The spatial variability of soil organic matter content under
different sampling spacing is shown in Table 5. At different
sampling spacings, the semivariance models for 0~10 cm
soil layers and10~20 cm are exponential and Gaussian for
20~30 cm soil layers and 30~50 cm soil layers are Gaussian.
From Table 5, it can be further known that the C0 tends to
increase when the sampling spacing increases from 4 to
12 m, which may be due to the fact that the structural fea-
tures of the organic matter variation process within a short
distance are overshadowed by larger distances. There is no
significant change in the C0 + C. In the three sampling spac-
ing, the range is greater than the corresponding sampling
spacing, indicating that the sampling spacing is reasonable
and fewer samples can still obtain reasonable results. Most
of the C0/(C0 + C) are less than 0.25, and the rest are be-
tween 0.25 and 0.50, indicating that when the sampling

spacings are different, the SOM content showed a strong
spatial autocorrelation overall in the 0–50 cm soil layer.

Estimation using Kriging and IDW interpolation

Sampling introduces errors, so we studied the spatial variabil-
ity of SOM content at various scales in order to reduce the
error. The Kriging is usually sufficiently effective for estimat-
ing values at unsampled locations. IDW is simple and quick.
So, comparing the interpolation accuracy of the two methods
makes sense. We used the 32 × 32 m scale as an example for
comparing estimated and measured values using Kriging and
IDW interpolation. RMSE and average ME of the estimated
values were calculated using cross-validation as the evaluation
index. The smaller the RMSE is, the smaller the average pre-
diction error (ME) and the higher the accuracy of the interpo-
lation model (Zhang et al. 2012). The estimated data were
compared with the measured data (Table 6).

The conditions of climate, hydrology, water resources,
and soil parental material that determine the SOM content
at different depths in this area are not completely indepen-
dent but are spatially correlated to some extent. The
Kriging and IDW interpolation produced the same values
as the mean of the estimated values (Table 6). The maxi-
mum estimated value was lower than the maximum mea-
sured value. The minimum estimated value was larger than
the minimum measured value, and the range of variation
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Fig. 4 Soil organic matter
Moran’s I figure of each soil layer
at 32 × 32 m scale of (a) 0-10cm,
(b) 10-20cm, (c) 20-30cm, (d) 30-
50cm
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was smaller for the predicted than the measured content.
The range of variation of SOM content was similar for
Kriging and IDW interpolation, likely because the
Kriging interpolation method in order to achieve the
smoothness of the estimate values line increases the small-
er numerical, reducing the gap between the maximum and
minimum, resulting in the standard deviation and coeffi-
cient of estimated values less than the measured value. The
accuracy of IDW interpolation was higher at the smaller
scales. The standard deviation was small for each soil lay-
er, and the variability was low or weakly moderate, so two
interpolation methods were applicable to the entire data
set. The Kriging interpolation was more accurate than
IDW: RMSE was lowest for Kriging, and average ME
was close to 0. This result was consistent with related stud-
ies (Yasrebi et al. 2009; Mabit and Bernard 2010).

Spatial distribution of SOM content

We have found that Kriging interpolation was the more accu-
rate method. So we choose the Kriging interpolation, and first,
the data for SOM were transformed to a normal distribution.
After the interpolation, the SOM was transferred to obtain
more data. The horizontal and vertical spatial distributions of
SOM content in the 0–10 cm layer at the five scales and three
spacings are shown in Fig. 5.

Each layer had peaks and valleys. The magnitude of the
peaks and the SOM content decreased gradually with depth,
and magnitude of the valleys remained about the same. The
distribution of SOM was more uniform in the surface soil,
perhaps because shallow soil is more susceptible to rain, evap-
oration, artificial tillage, and other external factors. The peaks
and valleys became more uniform as the scale decreased,

Table 5 Effects of sampling
spacing on semivariogram
parameter of SOM in 0~50 cm
layers

Soil depth
(cm)

Sampling
spacing
(m)

Semivariogram
model

C0 C0 + C C0/(C0 + C) A(m) R2

0~10 cm 4 Exponential 0.007 0.048 0.139 75.33 0.873

8 Exponential 0.015 0.099 0.148 20.39 0.776

12 Gaussian 0.065 0.456 0.143 115.72 0.696

10~20 cm 4 Exponential 0.012 0.109 0.109 10.11 0.816

8 Exponential 0.008 0.087 0.197 10.86 0.604

12 Gaussian 0.109 0.604 0.180 122.10 0.814

20~30 cm 4 Gaussian 0.049 0.183 0.262 96.00 0.849

8 Gaussian 0.042 0.085 0.499 31.10 0.744

12 Gaussian 0.060 0.257 0.235 99.65 0.736

30~50 cm 4 Gaussian 0.044 0.190 0.231 33.22 0.991

8 Gaussian 0.061 0.164 0.369 30.95 0.973

12 Gaussian 0.018 0.144 0.122 22.50 0.967

Table 6 Comparison ofmeasured
and estimated values by two
interpolation methods of soil
organic matter

Soil depth Estimated
method

Point of
estimated

Max Min Mean CV SD RMSE ME

0–10 cm Measured 5.75 4.25 4.95 6.04 0.30

Kriging 94 5.18 4.77 4.94 1.95 0.09 0.2857 − 0.0097
IDW 94 5.17 4.78 4.56 2.19 0.11 0.2899 − 0.1094

10–20 cm Measured 4.73 3.52 4.12 7.81 0.32

Kriging 94 4.32 3.87 4.12 2.80 0.12 0.3154 0.0136

IDW 94 4.37 3.78 4.14 3.04 0.13 0.3234 0.0159

20–30 cm Measured 3.73 2.61 3.26 7.60 0.25

Kriging 94 3.43 2.85 3.26 3.68 0.12 0.2319 − 0.0020
IDW 94 3.41 3.07 3.27 2.69 0.09 0.2361 0.0126

30–50 cm Measured 3.61 2.41 2.86 11.89 0.34

Kriging 94 3.57 2.47 2.86 10.15 0.29 0.2228 − 0.0003
IDW 94 3.25 2.57 2.85 7.84 0.22 0.2384 − 0.0250
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32 × 32:0- 32 × 32:10-20cm

32 × 32:20-30cm                           32 × 32:30-50cm

28 × 28:0-10cm                           24 × 24: 0-10cm

20 × 20:0- 16 × 16:0-10cm

8m:0- 12m:0-10cm

(a) (b)

(c) (d)

(e) (f)

(f) (h)

(i) (j)

Fig. 5 Spatial distribution of soil
organic matter at each scale of (a)
32 × 32:0-10cm, (b) 32 × 32:10-
20cm, (c) 32 × 32:20-30cm, (d)
32 × 32:30-50cm, (e)28 × 28:0-
10cm, (f)24 × 24: 0-10cm, (g) 20
× 20:0-10cm, (h) 16 × 16:0-10cm,
(i) 8m:0-10cm, (j) 12m:0-10cm
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which may have been due to the terrain. From the a, i, and j
plots in Fig. 5, the spatial distribution of SOM content in 0–
10 cm soils at different sampling spacing is approximately the
same, but the distribution pattern tends to be uniform as the
sampling distance increases. When the sampling spacing is
8 m, although the pattern tends to be uniformed, the spatial
distribution map with a sampling spacing of 4 m has little
difference, which can better characterize the spatial distribu-
tion characteristics of SOM, and when it is 12 m, compared
with 4 and 8 sampling spacing, the distribution characteristics
are too uniform which can no longer characterize the actual
spatial variability. Therefore, the sampling spacing of 8 m in
this study is reasonable, which can greatly reduce the work-
load of sampling on the basis of reliable experimental results.

Conclusions

(1). The variability of SOM content decreased with scale for
the same layer. The CVwas lowest in the 0–10 cm layer.
C0/(C0 + C) was < 0.25, indicating that the SOM content
to a depth of 50 cm was strongly spat ia l ly
autocorrelated. SOM content was strongly spatially cor-
related, with Moran’s I ranging between − 0.548 and
0.548. Under the condition of different sampling spac-
ing, the CV did not change much. This indicates that
when the sampling scale is fixed, the change of sam-
pling spacing cannot change the factors affect the vari-
ation of SOM content. With the increase of sampling
spacing, the C0 basically shows an increasing trend,
and the SOM content shows a strong spatial autocorre-
lation as a whole.

(2). The standard deviation was small for each soil layer, and
the variability was low or weakly moderate, so two in-
terpolation methods were applicable to the entire data
set. The Kriging interpolation was more accurate and
practical than IDW. The spatial distribution of SOM
content under the different sampling spacing has the
same overall trend, but with the increase of sampling
spacing, the distribution pattern tends to be uniform.
The sampling spacing of 8 m can better characterize
the spatial distribution characteristics of SOM.

(3). The spatial variability of SOM is scale-dependent. So
comparing the results by sampling at different spatial
scales and spacing, it is important to master how SOM
changes at each scale. Field scales are foundation for
reasonable layout of crops, to improve the field manage-
ment and increase efficiency of soil.
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