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Abstract: Carbon emissions from the logistics industry have been rising year after year. Correct
handling of the relationship between economic development and environmental protection is of
great significance to the implementation of green logistics, which is an important component of
China’s strategy for strong transportation. This paper focuses on the evaluation of the carbon
emissions efficiency of logistics industry from a new strong transportation strategy perspective.
A super-efficiency slack-based measurement (Super-SBM) model and Malmquist index are combined
to evaluate the static and dynamic carbon emissions efficiency of the logistics industry. The results
indicate that compared with the SBM model, the Super-SBM model can more effectively measure
the carbon emissions efficiency of the logistics industry. Pilot regions for the strong transportation
strategy were divided into two categories, namely regions with slow carbon emission growth rates but
high efficiency, and regions with high carbon emission growth rates but low efficiency. Some policy
recommendations from the strong transportation strategy perspective were proposed to improve
the carbon emissions efficiency of the logistics industry, especially for the second category of pilot
regions. This study is expected to provide a basis for decision-making for efficient emissions reduction
measures and policies, and to encourage the pilot regions to take the lead in achieving the goal of
China’s strategy for transportation.

Keywords: logistics industry; carbon emissions; static efficiency; dynamic efficiency; super-slacks-based
measuring model; Malmquist index

1. Introduction

China’s rapid economic growth has led to the depletion of resources and environmental degradation.
Since 2005, China has accounted for approximately one-third of global carbon emissions and has become
the world’s largest emitter of carbon dioxide [1]. China dominates global carbon emission trends and is
under tremendous pressure to reduce emissions [2]. The logistics industry is a fundamental industry
of the national economy. China’s total logistics revenue increased from 18.9 trillion US dollars (1 US
dollar = 6.62 RMB) in 2010 to 41.1 trillion US dollars (1 US dollar = 6.89 RMB) in 2018. Meanwhile,
logistics carbon emissions have also been increasing over the years, and this industry has the largest
share of total energy consumption, the fastest growth, and the largest share of carbon emissions in
China [3]. The China Energy Statistical Yearbook shows that the energy consumption of the logistics
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industry increased from 1315 tons in 1995 to 34.61 million tons in 2017, accounting for approximately
10 percent of China’s total energy consumption. Additionally, in recent years, the logistics industry has
accounted for approximately 18 percent of the total carbon emissions for the entire country [4]. The main
sources of carbon dioxide (CO,) generated in the logistics process are transportation and warehousing [5].
Statistics from Eurostat in 2005 show that the logistics industry accounts for approximately 5.5% of the
global greenhouse gas emissions, of which 93% of the logistics CO, emissions come from transport and
7% from storage [5]. The logistics performance is significantly related to environmental degradation [6].
According to an assessment report from the Intergovernmental Panel on Climate Change (IPCC),
if current energy consumption patterns are maintained, the logistics industry will consume 80% more
energy by 2030 than it does today [7]. China’s logistics industry is under tremendous pressure to save
energy and reduce emissions [8]. Therefore, it is important to do research on the carbon emissions
of China’s logistics industry in order to participate in global environmental governance and to fulfill
carbon reduction commitments.

The Chinese government has performed a large amount of work towards achieving low-carbon
targets for the logistics industry. The strategy of low-carbon logistics was incorporated into “China’s
Thirteenth Five-Year Plan” [9]. This plan stated that low-carbon logistics technology and management
methods should be promoted. In September 2019, the State Council issued a strategy for strong
transportation, which is a new national development strategy for China [10]. China aims to increase its
global competitiveness in the transport sector by constructing a strong transportation network [10].
The implementation of the strategy for a strong transportation network will inevitably bring changes
and impacts to the logistics industry. An efficient and green logistics system is an important component
in the construction of a strong transportation network. Correct handling of the relationship between
economic development and environmental protection is very important in the implementation of
green logistics [11]. By scientifically evaluating the static and dynamic carbon emissions efficiency
of the logistics industry, a foundation could be laid for formulating policies for emissions reduction.
Thirteen regions have been identified as the first batch of pilot regions for the strong transportation
strategy. For this, regions in eastern, central, western, and southern China were selected. These pilot
regions are representative and will play a leading role in the strong transportation strategy. Through
cultivation and construction, the goal of building a strong transport system will be achieved in the pilot
regions first, so that this process can be better promoted nationwide. In providing targeted policies
and suggestions for each region, it is very important to encourage environmental protection and the
long-term sustainable development of the logistics industry. Therefore, how to better assess the carbon
emissions efficiency of the logistics industry and how to propose efficiency improvement measures
from the perspective of a strategy for strong transportation are issues that need to be studied.

There have been many achievements in studies on the carbon emissions efficiency of the logistics
industry [12]. Carbon emissions efficiency is an indicator that explains carbon emissions in a productivity
framework. It is a measurement of the efficiency of CO, emissions using the production frontier, i.e.,
the ratio between the actual output per unit of CO, emissions and the optimal output of CO, emissions.
The combination of data envelopment analysis (DEA) and the Malmquist index is the most common
method used to evaluate carbon emissions efficiency [13]. Conventional data envelopment analysis
models, such as the Charnes—Cooper-Rhodes model (CCR) and the Banker—-Charnes—Cooper model
(BCC), have a wide range of applications in the area of static carbon emissions efficiency [4,11,14-17].
Several researches have conducted studies on the static and dynamic efficiency of logistics carbon
emissions using DEA with the Malmquist index [4,17,18]. For example, Tian applied a CCR model to
evaluate the emissions reduction efficiency of China’s provinces [14]. Yang applied the BCC model
and Malmquist index to evaluate the logistics carbon emissions performance at the city level [4].
Lu evaluated the performance of green logistics in 112 countries using the environmental range adjusted
measure (RAM)-DEA model [15]. Yang measured the logistics efficiency of regions along the Belt and
Road area based on a three-stage DEA model [16]. Zhang applied the CCR model and Malmquist index
to analyze the dynamic changes in logistics CO, emissions performance [17]. Hui combined the BCC
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model and Malmquist index to measure the logistics CO, emissions efficiency of provinces along the
Silk Road economic belt [18].

However, the CCR and BCC models cannot deal with undesirable outputs [19]. Carbon emissions,
as undesirable outputs, cannot be ignored in the logistics industry. The slack-based measurement
(SBM) models proposed by Tone introduce slack variables into the objective function [20]. SBM models
are gaining increasing attention from scholars for studying efficiency problems, including undesired
outputs [13,21,22], and are also applied to achieve carbon emissions efficiency in logistics [23]. For example,
Tang measured the transportation efficiency of the freight sector using the SBM model [22]. Mariano
applied the SBM model to construct a logistics performance index ranking for a group of 104 countries [23].
Moreover, the efficiency values calculated by the SBM model range between 0 and 1. The super-efficiency
slack-based measurement model (Super-SBM) proposed by Tone, is an improvement on the SBM model,
allowing efficiency values greater than 1 to be used to further rank the SBM-efficient decision-making
units (DMUs) [24]. The Super-SBM model has been applied in different areas, i.e., in industrial sectors [25],
for low-carbon economy efficiency [26], in commercial banks [27], and for transportation carbon emissions
efficiency [28,29], however little research has taken place in the context of logistics [30,31]. Wang computed
the efficiency of port logistics companies base on the Super-SBM model [30], while Long combined
Super-SBM model and the Malmquist-Luenberger index to evaluate the ecological logistics efficiency of
regions along the Yangtze River economic belt [31].

From a research perspective, most of the existing studies have been conducted within countries [15],
nationwide [6,15,23], in one province [14], in one city [4], in particular areas along the Silk Road
economic belt [16], in the Belt and Road area [31], and in the Yangtze River economic belt [18]. However,
there have not been any studies from the perspective of China’s strategy for strong transportation.
The implementation of strong transportation strategies will inevitably bring changes and impacts to
the logistics industry.

Taking the above issues into consideration, we aimed to propose a methodology to evaluate the
staticand dynamic carbon emissions efficiency of the logistics industry from a new perspective of China’s
strategy for strong transportation. As carbon emissions is an undesirable output, the combination
of Super-SBM and the Malmquist index is a suitable methodology. Fewer existing studies have
adopted this methodology—only Long evaluated the logistics ecological efficiency based on the
Super-SBM model and the Malmquist-Luenberger index [31]. However, he only studied regions along
the Yangtze River economic belt, and did not analyze the reality from the perspective of China’s strong
transportation network strategy. It is necessary to test the feasibility and superiority of this methodology.
Therefore, the Super-SBM model was applied to measure the static carbon emissions efficiency of the
logistics industry in the pilot regions from 2013 to 2017. To track changes in carbon emissions efficiency
over time, we used the Malmquist index to calculate the dynamic carbon emission efficiency for two
consecutive years of the research period. Based on the results, relevant improvement measures and
policy implications were proposed to encourage the construction of a strong transportation network.

Relative to the existing research studies, we evaluated the carbon emissions efficiency of the
logistics industry from the new perspective of a strategy for strong transportation. This is expected to
provide a decision-making basis for formulating efficient emissions reduction measures in this context
and to encourage the pilot regions to take the lead in achieving the goal of a strong transportation
network. In addition, the applied methodology combining the Super-SBM model and the Malmquist
index could give more precise efficiency values when evaluating the static and dynamic carbon
emissions efficiency of the logistics industry. The Super-SBM model was applied to avoid two problems.
One aim was to avoid the influence of slack variables on the carbon emissions efficiency measure.
The other aim was to avoid situations in which the efficiency values measured by the conventional
DEA model equal 1, which cannot be compared further.

Following this introduction, Section 2 outlines the research methodology. Section 3 describes the
results and discussion. Section 4 presents the conclusions.
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2. Methodology

The method combining the Super-SBM model and the Malmquist index was applied to evaluate
the static and dynamic carbon emissions efficiency of the logistics industry. The first batch of pilot
regions for China’s strong transportation strategy was selected for this study. In order to conduct the
evaluation, it was necessary to first estimate the carbon emissions of the logistics industry. The carbon
emissions data for the logistics industry in China were not directly available. The IPCC method was
applied here to estimate the carbon emissions of the logistics industry in the pilot regions from 2013
to 2017. The calculation method is described in Section 2.1. Then, the SBM model and Super-SBM
model are introduced in Section 2.2 to evaluate the static carbon emissions of the logistics industry.
By comparing the calculation results of SBM model and Super-SBM model, the superiority of the
Super-SBM model is demonstrated. Furthermore, the Malmquist index described in Section 2.3 was
applied to measure the dynamic carbon emissions of logistics industry. We chose employment (EM),
capital stock (CS), energy consumption (EC), and infrastructure (IN) as the inputs, the production
value (PV) as the desired output, and the carbon dioxide emissions (CE) as the undesired output.
These variables and data sources are described in Section 2.4. Finally, based on the results, relevant
policy recommendations were proposed. Figure 1 shows the research framework.

Estimate carbon emission of logistics industry
IPCC method

SBM model

Super-SBM model

Desired Undesired |
output output

S | AP Ragh RR  ifhyul WSui Sr

|
|
|
|
|
|
|
|
: | Malmquist index
|
|
|
|
|
|
|

Policy implication and sugestions

Figure 1. The research framework. IPCC: Intergovernmental Panel on Climate Change; SBM:
slack-based measurement.

2.1. Carbon Emissions Estimation

The carbon emissions estimation for the logistics industry uses the carbon emissions factor method
proposed by IPCC [32], which has been widely used [4,12,14-16,23,31,33,34]. The emissions value is
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derived from the total consumption of logistics fuels multiplied by CO, emission factors. The specific
calculation is shown in Equation (1):

5

44

C = Z{ ExNCV; x CEF; x COF; x 7 1)
1=

where C is the estimated value of the CO, emissions, E; represents the consumption of each type of
energy, NCV; signifies the average low calorific value, CEF; denotes the carbon emissions coefficient,
COF; is the carbon oxidation factor, and 12 and 44 represent the molecular weights of carbon and carbon
dioxide, respectively. According to the statistical data from the China Energy Statistical Yearbook
and the general rule of comprehensive energy consumption [35], the seven types of energy that are
commonly used in the logistics industry were defined, which are listed in Table 1.

Table 1. Results for the main fuel coal folding coefficient, calorific value, carbon content, and CO,
emissions coefficient.

Energy Type  NCV (kj/kg)  CEF (kg/G])  COF (kg/T)) CO2 Emissions Factor

(kgCO,/kg)
Raw coal 20,908 26.37 0.94 1.9003
Petrol 43,070 18.9 0.98 2.9251
Kerosene 43,070 19.5 0.98 3.0179
Diesel 42,652 20.2 0.98 3.0959
Fuel oil 41,816 21.1 0.98 3.1705
Coke 28,435 29.5 0.93 2.8604
Liquefied petrol 50,179 17.2 0.98 3.1013

NCV: average low calorific value; CEF: carbon emissions coefficient; COF: carbon oxidation factor.

2.2. Data Envelopment Analysis Method

2.2.1. Slack-Based Measurement Model

The DEA is a non-parametric method used to evaluate the relative efficiencies of a set of comparable
decision-making units (DMUs) with several inputs and outputs. The CCR and BCC model the DMUs
indiscriminately on the same frontier and do not account for the impact of the relaxation variables on
the efficiency measurements [19]. When the CCR and BCC models are applied to solve the undesired
output, they must be converted into input indicators or processed using a distance function or curve
measurement assessment. However, this conversion undermines the realism of the data itself and
leads to a reduction in the realism of the efficiency measurements [36]. The non-linear conversion
method in the data conversion function does not satisfy the convexity requirements of the conversion
process. In 2001, Tone introduced relaxation variables into the objective function by developing a
non-angular and non-radial slack-based measurement (SBM) model [20]. The SBM model addresses
the problem of input relaxation and is a good solution to the problem of energy efficiency evaluation
where undesired outputs are included.

Under the framework of total factor productivity, the static carbon emissions efficiency index of
the logistics industry (SLCEI) was measured on the basis of the carbon emissions and the influence of
the undesired output on the carbon emissions efficiency. A slack-based measurement model (SBM)
with undesired outputs was applied to evaluate the carbon emissions efficiency of the logistics industry
and to avoid two problems. One aim was to avoid the influence of slack variables on the carbon
emissions efficiency measure. The other was to avoid the situations in which the efficiency values
measured by the conventional DEA equal 1, which cannot be compared [13].

We assume that there are n DMUs, i.e., the twelve pilot regions. Each DMU has m inputs, s; desired
outputs, and s; undesired outputs, which are represented by the vectors x € R, y € R°1, b € R%,
respectively. We chose employment (EM), capital stock (CS), energy consumption (EC), and infrastructure
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input (IN) as inputs, the production value (PV) as the desired output, and the carbon dioxide emissions
(CE) as the undesired output. Here, we define the matrix as X = [xgm, Xcs, Xec, xin] € R¥¥12,
Y = [ypv] € R™12, Assuming X > 0, Y > 0, B > 0, the set of production possibilities, P, is defined as in
Equation (2):

n
P(x,y,b) = {(X, Y,B)r> XA,y <YAb2BA,Y A = 1,42 0} @)
i=1
where A is the weight of the efficiency measure. If the sum of the weights is 1, this represents a variable
scale reward. If the sum of the weights is not 1, it is a constant scale reward. According to the research
by Tone [20], the SLCEI under the SBM model is defined as in Equation (3):

e s~ e 51y
EM , “CS | 'EC | ’IN
YEM +XCS * YEC +XIN)

1—%(
SLCEISBM = min

1(spv |, Sce
132 4
Z(ypv bCE)
12
XEM = ): AXEMj + SEy
=1
12
Xcs = L Ajxcsj+scg
=1
12
XEC = Z )\jXEC]‘-f—SEC
j=1
12 (3)

XIN = Y AN+ Sy
s.t. =1

12
Yov = ]§1 AiYpyi=Spy
12
beg = E‘l/\J’bCE]’JFSCE
= = o= ot o 2. C_
SlEZJVI’sCS’SEC’SIN’sPV’SCE’ Aiz20,j=1,2,...,12
A =1
=1 J

]

where Serm? Scs SECr SINY s;,rv, and Scp denote slack in the inputs, desired outputs, and undesired output,
respectively; Sem Scs’ SEc and SIN indicate that the actual input resource is greater than the frontier
investment; sIJ,rV indicates that the desired output produced in the realistic operation is less than the
frontier desirable output; s, means that the actual undesirable output level is greater than the leading
edge of the undesirable output level. The range of values for the SLCEI is [0,1]. When SLCEI =1,
the production unit is fully efficient, there are no excesses of inputs and undesired outputs, and there
is no shortage of desired outputs. When SLCEI < 1, there is an efficiency loss in the production unit,

and the efficiency value can be improved by optimizing the quantities of inputs and outputs.

2.2.2. Super-Efficiency Slack-Based Measurement Model

The efficiency values calculated by the SBM model range between 0 and 1. In most cases, there may
be multiple SBM-efficient DMU, i.e., their efficiency values are equal to 1 [13]. In this case, the model
cannot further rank the SBM-efficient DMUs. In 2002, Tone developed the super-efficiency slack-based
measurement model (Super-SBM), which is an improvement on the SBM model, allowing efficiency
values greater than 1 to be used to further rank the SBM-efficient DMUs [24]. It is assumed that the
production possibilities set P’ is defined by excluding (xo, yo, bo) from (X, Y, B), as in Equation (4).
The subset P of P’ can be defined as Equation (5):

\%

P’ (x0,y0,bo) = {(%,9,b)[x 2 XA,y < YA,b = BA, 7 2 01 > 0} (4)
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P(xo,y0,b0) = P’ (x0, Yo, bo) N {X 2 x0,7 < yo, b = by )

The subset is not empty when the input-output is larger than 0. In accordance with the Super-SBM
model developed by Tone [24], the SLCEI under the Super-SBM model is defined as Equation (6):

1( z +L+L+i)
. 4\l x X, X X
SLCElg.ggy = min EMl ;5 gC IN
(ybv+bc5)

12
x> l/\ JXEMj T+ Z AXC5]+ Z /\XEC]+ Z AXIN]
]:
Y
Y= L AiYpy;
]:
— 12 (6)
>
s.t b _]El A]bCE]
) x> xpm, X > xcs, X > XEC, X > XN
Y<Vpy
b>be,,
Aj = 0,j=12,...,12
12
A =1
=

This SLCEI was decomposed into the pure technical efficiency (PTE) and scale efficiency (SE).
Mathematically, SLCEI = PTE x SE. The PTE represents the ratio of the distance between the actual
level of output and the level of returns to scale, which reflects the use of technology. SE represents the
change in the payoff to scale of the DMU.

2.3. Malmgquist Index

The Malmquist index is widely used to study the dynamics of production efficiency. It was
first introduced by Sten Malmquist in 1953 to study the evolution of consumption over time [13].
Fare extended the Malmquist index by decomposing productivity growth into technology changes
and efficiency changes using non-parametric programming methods [37]. We proposed a dynamic
carbon emissions efficiency index for the logistics industry (DLCEI) to evaluate the changes in carbon
emissions from 2013 to 2017. According to the research on the Malmquist index proposed by Fare [37],
the DLCEI is defined as shown in Equation (7):

t+1

1
t+1 t+1 t+1 bt+1 2
cs '’

X Ec *iv 7 Ypv - ¢

EM”*cs **ec » XN 7 Ypy v XEM? x

t t t t41
D( YEmr Xcs EC’ IN’ ypv'b E) D (

](xt—‘rl xt+1 xt+1 t+1 1 bH—l) thrl( t+1

DLCEIY ! = )
]

t
Xeppe Xesr X Xine Yoys Ve )

where DLCEI is defined as the Malmquist index, which measures the dynamic Change of the jth
DMU in the Malmqu1st index between period t and period t + 1; Dt( EM, CS' EC’ IN’ Yoy b E) and

Dt+1( Xerrs CS, EC, IN' yPV, bt ) are the distance function of ( Xerrs CS, EC, IN' yPV, bt E) in period t
and period t + 1, respectively. If DLCEI > 1, the Malmquist index is trending upward and increasing in
efficiency from period t to period t + 1. If DLCEI < 1, the Malmquist index is trending downward,
and the efficiency decreases. If DLCEI = 1, the Malmquist index remains unchanged from period f to
period t + 1, and the efficiency remains unchanged.

This Malmquist index can be decomposed into two components, namely changes in technology (TCH)
and changes in efficiency (ECH), as in Equations (8) and (9) [37]. Mathematically, DLCEI = TCH x ECH.

T R RN RN S R s R t t 2
TCR+1 D( Xen-Xcs +Xgc XN - Ypy o be ) D( Xepp Xesr g Xne Yoy Ve ) ®)
) B t+1( 1 1 1 1 1 t+1) t+1( t t t )
D X Xcs Xgc X - Ypy - g D (xap Xes X Xine Yoy Ve
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t( t+1 1 41 41 41 t+1)
x X x b
1 j\"EM’"CS "7EC’"IN / JPV ’ “CE
ECH"! = 9
] Dt(xt ot 4t bt ) ©)
j\"EM’"CS’ "EC’ "IN’ yPV’ CE

The TCH reflects the extent to which the efficiency frontier has been moved and is used to measure
the application of new technologies and products by the DMU. ECH is the degree of change in the
technical efficiency of the DMU from period t to period t + 1. When ECH > 1, the technical efficiency
has improved, i.e., the relevant management approach is correct. When ECH < 1, a decrease in the
technical efficiency is indicated, i.e., the relevant management approach is inappropriate.

2.4. Variables and Data Description

The first batch of pilot regions were taken as an example. The Hebei Xiongan New Area in this
group of pilot regions is still under construction, and no relevant data are available. In Shenzhen, where
the data are difficult to obtain, Guangzhou province is used as a substitute. Therefore, twelve provinces
and cities were selected as research objects, namely Liaoning Province, Jiangsu Province, Zhejiang
Province, Shandong Province, Henan Province, Hubei Province, Hunan Province, Guangxi Zhuang
Autonomous Region, Chongqging Municipality, Guizhou Province, Xinjiang Uygur Autonomous
Region, and Guangdong Province.

Because the logistics industry is a new industry, in China’s “National Economy Industry
Classification” of 20 categories, the logistics industry was not listed separately. There is a lack
of statistical data on the logistics industry in China. The vast majority of existing studies are based
on data from transportation, warehousing, and postal services as a substitute for logistics [4,14,16,31].
These three industries account for approximately 80% of the overall logistics industry [31]. We adopted
this alternative approach.

We chose employment, capital stock, energy consumption, and infrastructure as the inputs,
the production value as the desired output, and the carbon emissions as the undesired output [14,16,38].
The data for these indicators were obtained from the China Energy Statistical Yearbook (2013-2017)
and the China City Statistical Yearbook (2013-2017). The China Energy Statistics Yearbook contains
energy statistics data collected and organized by the Energy Department of the National Bureau of
Statistics. It is an authoritative source that comprehensively reflects China’s energy construction,
production, consumption, and supply and demand balance. The China City Statistical Yearbook is an
annual publication that comprehensively reflects the economic and social development of Chinese
cities, and is sponsored by the Department of Urban Socioeconomic Survey of the National Bureau of
Statistics of China. Table 2 gives a description of the data sources for each indicator.

Table 2. A description of the data sources for each indicator.

Indicator Description Data Source Units
Employment  theond of sach yea n ranepertation,  China CiySatistical 3000 o1
. . ! Yearbook (2013-2017) !
warehousing, and postal services
Capital stock The fixed capital stock for transportation, China City Statistical 1 billion yuan

warehousing, and postal services

Yearbook (2013-2017)

Energy consumption

The energy consumption for transportation,
warehousing, and postal services

China Energy Statistical

Yearbook (2013-2017)

10,000 tons of
standard coal

Sum of railway mileage, road mileage, and China City Statistical
Infrastructure inland waterway mileage Yearbook (2013-2017) 10,000 km
Production value of transportation, China City Statistical

Production value

warehousing, and postal services

Yearbook (2013-2017)

1 billion yuan

CO;, emissions

Estimated by IPCC, which was introduced
in Section 2.1.

China Energy Statistical

Yearbook (2013-2017)

10,000 tons
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In the China Energy Statistical Yearbook (2013-2017), the energy consumption data for the logistics
industry in Zhejiang province is missing due to the absence of regional data and for other reasons.
Therefore, we can only calculate the energy consumption for Zhejiang province based on the energy
conversion ratio.

3. Results and Discussions

3.1. Carbon Emissions of the Logistics Industry

The carbon emissions of the logistics industry in the twelve pilot regions were estimated using
Equation (1). The results in Figure 2 show that the carbon emissions increased in the majority of the
pilot regions throughout the research period. Figure 2 represents the total carbon emissions for each
pilot region in 2017. Guangdong, Shandong, and Jiangsu are the top three largest carbon emitters,
while Guizhou, Xinjiang, and Chongging have the lowest carbon emissions. The line in Figure 2
represents the average annual growth rate for the carbon emissions (AGRCE). We found that the
growth rate was usually faster in low-emission regions, namely Xinjiang, Chongqing, Guangxi, Hunan,
and Hubei. However, Guizhou has very low carbon emissions and a slow growth rate. By plotting the
average annual carbon emissions of each pilot region on a map (Figure 3), the location of each pilot
region and the differences in carbon emissions can be clearly seen; from the west to the east, carbon
emissions are increasing.

8 8000 6586 10% o
8()0 <

- 6000 =

~ O

g c 3982 4265 o £

S S a0 0B 3025 3423 5919 6% ¢

RZlse] 1998 18 1969 4% 2

8 £ . . g

= o 32 o & & S o 52 52

S s qug & Qboo ‘2@& «2\60 Q&& & %Q 3 S . ng&‘ -

\}Ib ’\\ (f}\ (%Q'b C?\' C}\O’Q 2 '"P \}@5\
2013 2014 2015 2016 mmmm?2(017 e=m=Annual growth rate

Figure 2. Carbon emissions (10 tons) for the logistics industry in the pilot regions from 2013 to 2017.

Xinjiang
S Chongging ~ 4
i ¥\ Hunan )
= ] Guizhou
e ’ _Guangxi ong /
Logistics carbon emissions (10000 tons) i 7/
[ — |
/i

1,385.22 5,985.14

Figure 3. Average annual carbon emissions (10* tons) for the logistics industry in the pilot regions.



Int. |. Environ. Res. Public Health 2020, 17, 8459 10 of 19

3.2. Carbon Emissions Efficiency of the Logistics Industry

3.2.1. Static Carbon Emissions Efficiency of the Logistics Industry

Using the panel data for the pilot regions from 2013 to 2017, the values for the static carbon
emissions efficiency index for the logistics industry (SLCEI) under the SBM and Super-SBM models
were calculated using Equations (3) and (6), respectively. The results are shown in Table 3.

Table 3. Values for the static carbon emissions efficiency index of the logistics industry (SLCEI) for the
pilot regions under SBM and Super-SBM models.

2013 2014 2015 2016 2017 Mean Rank

Province
SBM Super

Super Super Super Super Super Super
SBM SEM SBM SBM SBM SBM SBM SBM SBM SBM SBM

Liaoning 0.553 0.553 0.555 0.555 0.759 0.759 0.825 0.825 1.000 1.049 0.748
Jiangsu 1.000 1.048 0.925 0.925 0.913 0913 0.947 0.947 1.000 1.050 0.977
Zhejiang 0.666 0.666 0.676 0.676 0.666 0.666 0.727 0.727 0.774 0.774 0.702
Shandong 1.000 1.023 0.729 0.729 0.727 0.727 0.776 0.776 1.000 1.002 0.851
Henan 0.550 0.550 0.723 0.723 0.674 0.674 0.796 0.796 0.857 1.049 0.758
Hubei 0.354 0.354 0.371 0.371 0.371 0.371 0.337 0.337 0.364 0.364 0.359

Hunan 0.587 0.587 0.624 0.624 0.575 0.575 0.590 0.590 1.000 1.006 0.676
Guangxi 0.469 0.469 0.426 0.426 0.444 0.444 0.450 0.450 0.474 0.474 0.453
Chongqing  0.321 0.321 0.354 0.354 0.320 0.320 0.335 0.335 0.365 0.365 0.339
Guizhou 0.662 0.662 0.705 0.705 0.771 0.771 0.782 0.782 1.000 1.086 0.801
Xinjiang 0.282 0.282 0.303 0.303 0.297 0.297 0.338 0.338 0.312 0.312 0.306
Guangdong  0.564 0.564 0.603 0.603 0.614 0.614 0.646 0.646 0.701 0.701 0.626

PR WD OoONgS RN~ G

SBM: slack-based measurement.

By comparing the results for the SBM model and Super-SBM model, it can be seen that the values
are basically consistent. There are seven SBM-efficient DMUs (i.e., DMUs for which the efficiency
values are equal to 1 simultaneously), which are marked in bold in Table 3. By applying the Super-SBM
model, the efficiency values for these seven SBM-efficient DMUs were further calculated and compared.
This proved that Super-SBM could provide more accurate relative efficiency values when comparing
all DMUs. The following analysis focuses on the SLCEI results obtained from the Super-SBM model.

The average SLCEI values for the 12 pilot regions varied considerably, from a minimum of
0.306 to a maximum of 0.977. The 12 pilot regions were ranked based on the average annual SLCEI
values. Jiangsu had the highest SLCEI value, which was basically 1 per year. Jiangsu is located
in the Yangtze River Delta region, the fastest growing region in terms of China’s logistics industry.
This SLCEI indicated that Jiangsu had basically formed a more mature logistics system and was able to
control the CO, emissions more reasonably [31]. Shandong had the second highest average SLCEI of
0.85. The excellent coastline and port conditions in Shandong have provided a good base to develop
international trade and shipping logistics [23].

Guizhou, Henan, Liaoning, Zhejiang, Hunan, and Guangdong were in the second tier of the SLCEI,
with average values of between 0.6 and 0.8. Guizhou had very low carbon emissions and its average
SLCEIwas 0.8 because of the smaller proportion of industry [14]. Henan and Hunan belong to the central
part of China, having a well-connected transport network. Liaoning is an important transportation hub
for the three eastern provinces, with relatively perfect transportation infrastructure [14]. Liaoning’s
SLCEI has been increasing in recent years, indicating that the development of green and low-carbon
logistics has been going well. Zhejiang is located in the Yangtze River Delta region, with an average
SLCEI of 0.7. Guangdong was the largest carbon emitter because of its dense population and its higher
proportion of industry, and its average SLCEI was 0.62. The SLCEI values of these pilot regions were
less than 1, however it is still necessary to continue to develop low-carbon logistics networks and to
undertake a series of measures to improve the carbon emissions efficiency.

The lowest SLCEI scores were in Xinjiang, Chongqing, Hubei, and Guangxi provinces, with average
values below 0.4. Notably, Xinjiang province had the lowest SLCEI, with an average value of 0.306.
Guangxi, Chongqing, and Xinjiang provinces belong to the economically underdeveloped western
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region. Due to the “Western Development” strategy, the transportation network and the logistics
industry of Xinjiang are developing rapidly. However, the large-scale financial investment in the
logistics industry has not been immediately translated into increased production capacity [18]. Thus,
the carbon emissions efficiency of the logistics industry in this area has fluctuated across a lower range.

Furthermore, the SLCEI can be decomposed into the pure technical efficiency (PTE) and scale
efficiency (SE), and the results for each pilot region are shown in Figure 4. The increases in the pure
technical efficiency were basically greater than the increases in the scale efficiency. The differences
among the twelve pilot regions in SLCEI were mainly due to the differences in the scale efficiency.
Only Hubei and Shandong were different, whereby their PE values were smaller than the SE values.
These two regions need to further improve their pure technical efficiency in order to achieve greater
carbon emissions efficiency. The lower regions in the SLCEI rankings had very low PTE and SE values,
such as Xinjiang, with an SE value of only 0.282 in 2013. Between 2013 and 2017, the PTE value
decreased from 1 to 0.572 and the SE value increased from 0.282 to 0.545. The average annual SLCEI for
Chonggqing was 0.339. The PTE value was approximately 0.6 and the SE value was approximately 0.3.
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Figure 4. Static carbon emissions efficiency index for the logistics industry (SLCEI) along with the pure
technical efficiency (PTE) and scale efficiency (SE) values in the pilot regions.

3.2.2. Dynamic Carbon Emissions Efficiency of the Logistics Industry

Equation (7) was applied to calculate the Malmquist index and obtain the dynamic carbon
emissions efficiency index for the logistics industry (DLCEI) values for each pilot region from 2013 to
2017. The DLCEI results are shown in Table 4.

Table 4. Results for the dynamic carbon emissions efficiency index of the logistics industry (DLCEI) for
the pilot regions.

2013-2014  2014-2015  2015-2016  2016-2017 Mean Rank

Liaoning 0.986 1.311 0.943 1.071 1.078 1
Jiangsu 0.965 0.992 1.021 1.023 1.000 10
Zhejiang 1.015 1.011 1.079 1.054 1.040 4
Shandong 0.875 1.009 1.041 1.088 1.003 9
Henan 1.236 0.942 1.08 1.018 1.069 2
Hubei 1.032 1.027 0.858 1.077 0.999 12
Hunan 1.138 0.925 1.029 1.079 1.043 3
Guangxi 0.854 1.046 1.024 1.074 1.000 11
Chonggqing 1.14 0.903 1.038 1.051 1.033 6
Guizhou 0.984 1.042 1.000 1.073 1.025 8
Xinjiang 1.043 1.017 1.184 0.907 1.038 5
Guangdong 1.008 0.989 1.089 1.026 1.028 7

From Table 4, it can be seen that the differences in the DLCEI values among the twelve pilot
regions were very small; almost all of them were greater than or equal to 1, with only Hubei being less
than 1. This finding indicates steady increases in the overall carbon emissions efficiency for all elements
of the logistics industry. The DLCEI values for Liaoning, Jiangsu, Zhejiang, Shandong, Henan, Hunan,
and Guizhou provinces were all greater than 1, indicating that the carbon emissions efficiency of the
logistics industry in the above pilot regions is increasing. Additionally, the above regions have better
technical support in terms of carbon emissions pollution control. The logistics industry moved toward
the use of contemporary technology from 2013 to 2017, as reflected by the increased efficiency in terms
of carbon emissions performance.

The DLCEI values for Chongqing and Xinjiang were 1.033 and 1.038, respectively. Combined with
the SLCEI results calculated in the previous section, it can be seen that although the logistics industry
in these two regions was less efficient during 2013-2017, the growth rate has been faster in recent years.
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In recent years, the migration of Chinese industries from the east to the central and western regions
has offered a rare opportunity for green logistics development in the central and western regions.

Hubei province has the third lowest SLCEI value and the lowest DLCEI value, with an annual
average value of 0.998. These findings indicate that the carbon emissions efficiency of the logistics
industry in Hubei province is at a relatively low level and has not improved in recent years.

Furthermore, the DLCEI was decomposed into TCH and ECH values for each pilot region during
2013 and 2017, which were calculated using Equations (8) and (9) and are shown in Figure 5. Jiangsu’s
TCH and ECH values were both 1, indicating that Jiangsu is advancing in terms of technology changes
and efficiency improvement in parallel. Seven regions had ECH values that were lower than their TCH
values, namely Liaoning, Guizhou, Guangxi, Hunan, Hubei, Shandong, and Zhejiang. This means that
these seven regions’ changes in efficiency were lower than the changes in technology. Four regions had
ECH values larger than TCH values, namely Shandong, Xinjiang, Chongqing, and Henan. This means
that these four regions’ changes in efficiency were larger than the changes in technology.
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Figure 5. Annual average dynamic carbon emissions efficiency of the logistics industry (DLCEI) and
decomposition of each pilot region into TCH and ECH values.

3.3. Discussions

We first discussed logistics carbon emissions, the static carbon emissions efficiency index (SLCEI),
and the dynamic carbon emissions efficiency index (DLCEI) separately, then plotted all three on a
single graph for discussion. Finally, some suggestions and recommendations for pilot regions were
proposed. Based on the above results for logistics carbon emissions, SLCEI, and DLCEI, we found the
following insights.

The logistics carbon emissions for the majority of pilot regions increased throughout the research
period. The average annual growth rates for carbon emissions were generally faster in low-emission
regions, namely Xinjiang, Chongqing, Guangxi, Hunan, and Hubei.

There were seven SBM-efficient DMU, i.e., with efficiency values equal to 1. By applying the
Super-SBM model, the efficiency values for these seven SBM-efficient DMUs were further calculated
and compared. This proved that Super-SBM could provide more accurate relative efficiency values
when comparing all DMUs.

The average SLCEI values for the twelve pilot regions varied considerably, from a minimum of
0.306 to a maximum of 0.977, showing a general trend of growth over this research period. The pure
technical efficiency (PTE) was larger than the scale efficiency (SE) in the majority of pilot regions.
This indicated that the scale efficiency must first be improved. The lowest carbon emissions efficiency
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values were in Xinjiang, Chongqing, and Hubei provinces, with average values below 0.4. These regions
need to improve both their pure technical efficiency and scale efficiency.

The differences in the DLCEI values among the 12 pilot regions were very small. Basically, almost
all of them were greater than or equal to 1, and only Hubei was less than 1. Seven regions’ changes
in efficiency (ECH) were lower than their changes in technology (TCH), namely Liaoning, Guizhou,
Guangxi, Hunan, Hubei, Shandong, and Zhejiang. The other five regions” ECH values were larger
than their TCH values. The comparison of the ECH and TCH values suggests that these regions need
to focus on either technology changes or efficiency improvements to improve their carbon efficiency.

By plotting the average annual growth rate of the carbon emissions (AGRCE), SLCEI values,
and DLCEI values for the twelve pilot regions in a single graph (Figure 6), some insights could be
observed. Based on the fluctuations in the AGRCE and SLCEI curves, the 12 regions could be divided
into two categories. The first category was the regions with slow growth rates for carbon emissions
but high SLCEI values, which were Liaoning, Jiangsu, Zhejiang, Shandong, Henan, and Guizhou.
The second category was the regions with high growth rates for carbon emissions but low SLCEI values,
namely Guangxi, Xinjiang, Hunan, Hubei, Chongqing, and Guangdong. In particular, Hubei’s DLCEI
was 0.9. More attention must be paid to carbon emission management for regions in this second category.
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Figure 6. AGRCE, SLCEI, and DLCEI values for the pilot regions. AGRCE: average annual growth
rate of the carbon emissions; SLCEL: static carbon emissions efficiency index; DLCEI: dynamic carbon
emissions efficiency index.

The rankings for SLCEI and DLCEI were basically reversed. For example, Jiangsu Province’s
SLCEI value was ranked first, but the DLCEI value was ranked lower. The static carbon emissions
efficiency of Jiangsu Province reached a relatively high level, while the room for annual improvement
was relatively low. Some regions with lower SLCEI values, such as Henan, Chongging, and Xinjiang,
have a large amount of room for improvement, and thus the DLCEI values were relatively high.

The existence of large regional differences fully demonstrates that the carbon emissions efficiency
of China’s logistics industry still has a large amount of room for improvement. The development of
low-carbon green logistics is a complex and systematic process. It not only involves various aspects of
the logistics system but also is closely related to the external environment. It is very hard to balance
economic, environmental, and social issues. The existing research found that the capital stocks and
energy consumption in the logistics industry are the main sources of carbon emissions, which increase
the CO, emissions [4,39—46]. The factors that reduce the CO, emissions are adjustments to the energy
structure and reductions of the carbon emissions intensity [39-46]. Additionally, the logistics industry
is characterized by regional synergy and differentiation, therefore it is necessary to utilize local area
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advantages and optimize the layout of the logistics industry. The following are policy suggestions for
each pilot region to give fully capitalize on regional advantages.

The central regions such as Henan, Hubei, and Hunan are key transport hubs in China, with a
well-connected transport network. It is recommended that local areas should integrate various modes
of transport based on their own advantages to form a coordinated system that integrates land, sea,
and air transport. Hubei province has very low static and dynamic efficiency, and should actively
promote the construction of transport corridors along the Yangtze River. In addition, with the gradual
transfer of industries from the eastern to central regions of China, cities such as Zhengzhou in Henan
Province and Wuhan in Hubei Province are bound to become logistics centers in the central region of
China in the future. The construction of comprehensive and efficient logistics systems can effectively
improve the logistics efficiency.

The pilot regions of Guangxi, Chongqing, Guizhou, and Xinjiang belong to the western region.
It is recommended to make full use of the advantages of this area, being suitable for agricultural
product cultivation and export, and to develop a logistics system that integrates production logistics,
urban logistics, and international logistics. Chongqing is located at the intersection of the “Belt and
Road” area and the Yangtze River economic belt [16]. It is recommended that a multimodal logistics
system should be developed based on the new areas of the two rivers. Guizhou province has proposed
to increase its investment in the economic center of Guizhou to further consolidate the position of
Guiyang City as the freight hub of the provincial logistics center. Xinjiang, in the context of the
“One Belt, One Road” development strategy, is recommended to continue to expand the scale of trade
with the five Central Asian countries, optimize its transport routes, and improve its logistics technology.

Liaoning Province is an important transportation hub for the three eastern provinces, which is the
old industrial base of northeast China. By accelerating the joint development of the manufacturing and
logistics industries in the three eastern provinces, the development and carbon emissions efficiency of
the logistics industry can be effectively improved.

Shandong and Guangdong have obvious geographical advantages, and both have excellent
coastline and port conditions. It is recommended that Shandong Province use Jinan and Qingdao as
centers to focus on developing international trade and shipping logistics and to build a demonstration
zone for marine economic development. Guangdong Province can rely on increasing development of
cross-strait trade relations, the development of port construction, and becoming a cross-strait logistics
relations hub.

3.4. Policy Implication

Based on the results and discussion, some policy recommendations from the perspective of
China’s strategy for strong transportation are proposed as the following aspects to improve the carbon
emissions efficiency of the logistics industry.

First, we must firmly establish the green low-carbon concept, and optimize the logistics industry
energy structure and infrastructure construction. It is recommended to adjust the energy structure by
using clean energy, such as tidal energy resources, hydroelectric power generation, and wind power
generation. It is necessary to promote the application of new energy logistics vehicles and to promote
energy conservation and emissions reduction in freight transport.

Second, it is suggested to promote the joint development of the economy and the logistics industry.
The logistics industry needs to be promoted through increased economic development. It is also
necessary to promote the development of the logistics industry and the economy by improving the
carbon emissions efficiency of the logistics industry. In the early stage of economic development,
the large-scale input of production factors can promote the construction of logistics infrastructure.
When economies of scale are limited, structural and technological effects need to be brought into play
to promote the development of the logistics industry. Specifically, it is necessary to strengthen the
division of labor among regions and promote regional market integration. The development of the
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logistics industry will be promoted fundamentally by increasing the endogenous growth capacity of
the economy.

Third, it is very important to promote the development of smart logistics technology, and improve
the efficiency of the logistics industry operations. Regions such as Jiangsu and Zhejiang are approaching
the potential best production technologies for carbon emissions efficiency in logistics, and the scope
for efficiency improvements in these regions is shrinking. Efforts to further improve the logistics
carbon emissions efficiency rely heavily on technological progress. To promote outward migration of
logistics productivity under carbon emission constraints, it is necessary to invest heavily in research
and innovative energy-saving and emission-reducing technologies.

Fourth, it is necessary to accelerate the training of professional logistics personnel and improve
the logistics industry’s related data statistics. The shortage of professional logistics practitioners
has become a bottleneck in the development of the logistics industry. Excellent logistics education
should pay attention to the dovetailing of theory and practice inside and outside the education context,
and should actively build a training model that combines education and enterprise. In addition,
the policies and measures for energy saving and emission reductions in the logistics industry cannot
be proposed without reliable data. It is recommended that the government departments improve the
collection mechanisms used for logistics-related data at the provincial, municipal, and enterprise levels.

4. Conclusions

The static and dynamic carbon emissions efficiency of the logistics industry was evaluated from
the perspective of China’s strategy for strong transportation. The analysis of the pilot regions revealed
the following conclusions. Compared with the SBM model, the Super-SBM model can further rank the
effective DMUs. It was proven to be a more accurate measurement of the carbon emissions efficiency
of the logistics industry. Based on the results for the static and dynamic carbon emissions efficiency of
the logistics industry, which were obtained by applying the Super-SBM model and the Malmquist
index, the pilot regions could be divided into two categories, namely regions with slow growth rates
for carbon emissions but high efficiency, and regions with high growth rates for carbon emissions but
low efficiency. More attention must be paid to carbon emission management in the second category.
Some policy recommendations from the perspective of China’s strategy for strong transportation
were proposed to improve the carbon emissions efficiency of the logistics industry. From the new
perspective of the strategy for strong transportation, we provided a basis for making decisions for
high-efficiency emissions reduction measures, which could encourage the pilot regions to take the lead
in achieving the goal of construction a strong transportation network.

This paper also has several limitations. Because data from the logistics industry are not always
available, the data from transportation, warehousing, and postal services were used as a substitute,
which may have led to inaccurate data. Data on CO, emissions from the logistics industry cannot be
obtained directly from the relevant authorities, so we used the consumption of various fossil fuels
to estimate the CO, emissions from the logistics industry. Therefore, the data may have caused
biased estimations of the results, which is a common weakness of empirical studies. In future studies,
the changes of the carbon emissions efficiency of the logistics industry in the pilot regions will be
continuously tracked, and the effects of the implementation of China’s strategy for strong transportation
will be evaluated through data comparisons over five years or even longer.

Author Contributions: Conceptualization, X.J., H.Z., and Z.H.; methodology, X.J.; software, H.Z.; validation,
X.J.; formal analysis, X.J. and H.Z.; investigation, H.Z. and Z.H.; resources, H.Z.; data curation, X.J. and H.Z,;
writing-original draft, X.J. and H.Z.; writing—review and editing, X.J. and H.Z.; visualization, X.J., H.Z., and Z.H.;
project administration, ].M.; funding acquisition, X.G. All authors have read and agreed to the published version
of the manuscript.

Funding: This research received no external funding.

Acknowledgments: We gratefully thank Zhenjun Zhu and Wei Yu (Nanjing Forestry University) for their valuable
comments and suggestions.



Int. |. Environ. Res. Public Health 2020, 17, 8459 17 of 19

Conflicts of Interest: The authors declare no conflict of interest.

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

CAIT Historical GHG Emissions. Available online: http://cait.wri.org (accessed on 20 March 2020).

Mi, Z.; Meng, J.; Guan, D.; Shan, Y.; Song, M.; Wei, YM,; Liu, Z.; Hubacek, K. Chinese CO, emission flows
have reversed since the global financial crisis. Nat. Commun. 2017, 8, 1712. [CrossRef] [PubMed]

IEA Oil Products Final Consumption by Sector. Available online: https://iea.blob.core.windows.net/assets/
fffalb7d-b0c5-4e64-86aa-5c9421832d73/WORLDBAL_Documentation.pdf (accessed on 2 April 2020).
Yang, J.; Tang, L.; Mi, Z.; Liu, S.; Li, L.; Zheng, ]. Carbon emissions performance in logistics at the city level.
J. Clean Prod. 2019, 231, 1258-1266. [CrossRef]

Geroliminis, N.; Carlos, F. A Review of Green Logistics Schemes Used in Cities around the World. Available
online: http://escholarship.org/uc/item/4x89p485 (accessed on 20 March 2020).

Liu, J.; Yuan, C.; Hafeez, M.; Yuan, Q. The relationship between environment and logistics performance:
Evidence from Asian countries. J. Clean Prod. 2018, 204, 282-291. [CrossRef]

IPCC. 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas. Inventories; IPCC: Geneva,
Switzerland, 2019.

Bi, J.; Zhang, R.; Wang, H.; Liu, M.; Wu, Y. The benchmarks of carbon emissions and policy implications for
China’s cities: Case of Nanjing. Energy Policy 2011, 39, 4785-4794. [CrossRef]

SCOPRC. The outline of the 13th Five-Year Plan (2016-2020) for national economic and social Development
of the People’s Republic of China. Available online: http://www.12371.cn/special/sswgh/ (accessed on
20 March 2020).

CCCPC; SCOPRC. The CPC Central Committee and the State Council issued the Outline for Building a
Strong Transport Country. Available online: http://www.gov.cn/zhengce/2019-09/19/content_5431432. htm
(accessed on 20 December 2019).

Wang, Z.; He, W. CO, emissions efficiency and marginal abatement costs of the regional transportation
sectors in China. Transp. Res. Part D Transport. Environ. 2017, 50, 83-97. [CrossRef]

Karaman, A.S.; Kilic, M.; Uyar, A. Green logistics performance and sustainability reporting practices of the
logistics sector: The moderating effect of corporate governance. J. Clean Prod. 2020, 258, 120718. [CrossRef]
Ren, R.; Hu, W,; Dong, J.; Sun, B.; Chen, Y.; Chen, Z. A Systematic Literature Review of Green and Sustainable
Logistics: Bibliometric Analysis, Research Trend and Knowledge Taxonomy. Int. J. Environ. Res. Public Health
2020, 17, 261. [CrossRef]

Gang, T,; Li-cheng, S.; Fa-xin, C.; Ben-hai, G. Efficiency of energy-saving & emission-reducing and the affect
factors on logistics industry. Ind. Eng. Manag. 2015, 20, 14-20.

Lu, M;; Xie, R.; Chen, P; Zou, Y.; Tang, J. Green Transportation and Logistics Performance: An Improved
Composite Index. Sustainability 2019, 11, 2976. [CrossRef]

Yang, X.; Ma, S.; Lu, Y. Evaluation of Logistics Efficiency under Carbon Emission Constraints: Taking the Ten
Provinces and Cities as an Example with the Background of the “The Belt and Road”. Ecol. Econ. 2019, 35,
66-71.

Zhang, L.; Li, D.; Gong, A. Dynamic changes in total factor energy efficiency and regional disparity in the
logistics sector in China. Resour. Sci. 2015, 37, 754-763.

Hui, L.; Wei, L. Carbon emission efficiency evaluation and dynamic evolution analysis of logistics industry:
Taking the provinces along the Silk Road Economic Belt as an example. Environ. Sci. Technol. 2019, 42,
165-171.

Cook, W.D,; Seiford, L.M. Data envelopment analysis (DEA)—Thirty years on. Eur. ]. Oper. Res. 2009, 192,
1-17. [CrossRef]

Tone, K. A slacks-based measure of efficiency in data envelopment analysis. Eur. J. Oper. Res. 2001, 130,
498-509. [CrossRef]

Chang, Y.; Zhang, N.; Danao, D.; Zhang, N. Environmental efficiency analysis of transportation system in
China: A non-radial DEA approach. Energy Policy 2013, 58, 277-283. [CrossRef]

Tang, T.; You, J.; Sun, H.; Zhang, H. Transportation Efficiency Evaluation Considering the Environmental
Impact for China’s Freight Sector: A Parallel Data Envelopment Analysis. Sustainability 2019, 11, 5108.
[CrossRef]


http://cait.wri.org
http://dx.doi.org/10.1038/s41467-017-01820-w
http://www.ncbi.nlm.nih.gov/pubmed/29167467
https://iea.blob.core.windows.net/assets/fffa1b7d-b0c5-4e64-86aa-5c9421832d73/WORLDBAL_Documentation.pdf
https://iea.blob.core.windows.net/assets/fffa1b7d-b0c5-4e64-86aa-5c9421832d73/WORLDBAL_Documentation.pdf
http://dx.doi.org/10.1016/j.jclepro.2019.05.330
http://escholarship.org/uc/item/4x89p485
http://dx.doi.org/10.1016/j.jclepro.2018.08.310
http://dx.doi.org/10.1016/j.enpol.2011.06.045
http://www.12371.cn/special/sswgh/
http://www.gov.cn/zhengce/2019-09/19/content_5431432.htm
http://dx.doi.org/10.1016/j.trd.2016.10.004
http://dx.doi.org/10.1016/j.jclepro.2020.120718
http://dx.doi.org/10.3390/ijerph17010261
http://dx.doi.org/10.3390/su11102976
http://dx.doi.org/10.1016/j.ejor.2008.01.032
http://dx.doi.org/10.1016/S0377-2217(99)00407-5
http://dx.doi.org/10.1016/j.enpol.2013.03.011
http://dx.doi.org/10.3390/su11185108

Int. |. Environ. Res. Public Health 2020, 17, 8459 18 of 19

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

Mariano, E.B.; Gobbo, J.A.; de Castro Camioto, F. CO, emissions and logistics performance: A composite
index proposal. J. Clean Prod. 2017, 163, 166-178. [CrossRef]

Tone, K. A slacks-based measure of super-efficiency in data envelopment analysis. Eur. |. Oper. Res. 2002,
143, 32—41. [CrossRef]

Li, H.; Shi, ]. Energy efficiency analysis on Chinese industrial sectors: An improved Super-SBM model with
undesirable outputs. J. Clean Prod. 2014, 65, 97-107. [CrossRef]

Zhang, J.; Zeng, W.; Wang, J.; Yang, E; Jiang, H. Regional low-carbon economy efficiency in China: Analysis
based on the Super-SBM model with CO2 emissions. ]. Clean Prod. 2015, 163, 202-211. [CrossRef]

Zhou, L.; Zhu, S. Research on the Efficiency of Chinese Commercial Banks Based on Undesirable Output and
Super-SBM DEA Model. J. Math. Financ. 2017, 7, 102-120. [CrossRef]

Baixue, W.; Kun, G. The efficient of carbon emissions efficiency of Beijing public transportation system:
Based on Super-efficicency SBM model using Malmquist-Luenberger Index. J. Syst. Sci. Math. Sci. 2018, 38,
456-467.

Guoli, O.; Chang'Ran, X. Analysis of freight transport carbon emission efficiency in Beijing-Tianjin-Hebei:
A study based on Super-efficiency SBM model and ML Index. |. Beijing Jiaotong Univ. (Soc. Sci. Ed.) 2020, 19,
48-57.

Wang, C.; Day, J.; Lien, N.T.K,; Chien, L.Q. Integrating the Additive Seasonal Model and Super-SBM Model
to Compute the Efficiency of Port Logistics Companies in Vietnam. Sustainability 2018, 10, 2782. [CrossRef]
Long, R.; Ouyang, H.; Guo, H. Super-slack-based measuring data envelopment analysis on the spatial-temporal
patterns of logistics ecological efficiency using global Malmquist Index model. Environ. Technol. Innov. 2020,
18, 100770. [CrossRef]

IPCC. Guidelines for National Greenhouse Gas Inventories. Intergovernmental Panel on Climate Change.
Available online: https://www.ipcc-nggip.iges.or.jp/public/2006gl/index.html (accessed on 6 March 2020).
Li, W,; Bao, L.; Wang, L.; Li, Y.; Mai, X. Comparative evaluation of global low-carbon urban transport.
Technol. Forecast. Soc. 2019, 143, 14-26. [CrossRef]

Yu, W.; Wang, T.; Xiao, Y.; Chen, J.; Yan, X. A Carbon Emission Measurement Method for Individual Travel
Based on Transportation Big Data: The Case of Nanjing Metro. Int J. Environ. Res. Public Health 2020, 17,
5957. [CrossRef] [PubMed]

China, Q.A.S. China Quality and Standards Guidance GB/T 2589 “General Principles of Comprehensive
Energy Consumption Calculation” revised national standard passed the review. China Qual. Stand. Herald
2019, 7,9.

Deng, Y.; Yan, Y. Evaluating Route and Frequency Design of Bus Lines Based on Data Envelopment Analysis
with Network Epsilon-Based Measures. . Adv. Transport. 2019, 2019, 5024253. [CrossRef]

Fare, R.; Grosskopf, S.; Norris, M.; Zhang, Z.Z. Productivity Growth, Technical Progress, and Efficiency
Change in Industrialized Countries. Am. Econ. Rev. 1994, 84, 66-83.

Martins, VW.B.; Anholon, R.; Quelhas, O.L.G.; Leal Filho, W. Sustainable Practices in Logistics Systems:
An Overview of Companies in Brazil. Sustainability 2019, 11, 4140. [CrossRef]

Guo, M.; Meng, J. Exploring the driving factors of carbon dioxide emission from transport sector in
Beijing-Tianjin-Hebei region. J. Clean Prod. 2019, 226, 692-705. [CrossRef]

Bai, C.; Chen, Y.; Yi, X,; Feng, C. Decoupling and decomposition analysis of transportation carbon emissions
at the provincial level in China: Perspective from the 11th and 12th Five-Year Plan periods. Environ. Sci.
Pollut. R 2019, 26, 15039-15056. [CrossRef] [PubMed]

Wang, Y.; Zhou, Y.; Zhu, L.; Zhang, F.; Zhang, Y. Influencing Factors and Decoupling Elasticity of China’s
Transportation Carbon Emissions. Energies 2018, 11, 1157. [CrossRef]

Xie, R.; Fang, J.; Liu, C. The effects of transportation infrastructure on urban carbon emissions. Appl. Energy
2017, 196, 199-207. [CrossRef]

Li, W.; Li, H.,; Zhang, H.; Sun, S. The Analysis of CO, Emissions and Reduction Potential in China’s Transport
Sector. Math. Probl. Eng. 2016, 2016, 1043717.

Quan, C,; Cheng, X.; Yu, S.; Ye, X. Analysis on the influencing factors of carbon emission in China’s logistics
industry based on LMDI method. Sci. Total Environ. 2020, 734, 138473. [CrossRef]

Tong, X,; Li, X; Tong, L.; Jiang, X. Spatial Spillover and the Influencing Factors Relating to Provincial Carbon
Emissions in China Based on the Spatial Panel Data Model. Sustainability 2018, 10, 4739. [CrossRef]


http://dx.doi.org/10.1016/j.jclepro.2016.05.084
http://dx.doi.org/10.1016/S0377-2217(01)00324-1
http://dx.doi.org/10.1016/j.jclepro.2013.09.035
http://dx.doi.org/10.1016/j.jclepro.2015.06.111
http://dx.doi.org/10.4236/jmf.2017.71006
http://dx.doi.org/10.3390/su10082782
http://dx.doi.org/10.1016/j.eti.2020.100770
https://www.ipcc-nggip.iges.or.jp/public/2006gl/index.html
http://dx.doi.org/10.1016/j.techfore.2019.02.008
http://dx.doi.org/10.3390/ijerph17165957
http://www.ncbi.nlm.nih.gov/pubmed/32824530
http://dx.doi.org/10.1155/2019/5024253
http://dx.doi.org/10.3390/su11154140
http://dx.doi.org/10.1016/j.jclepro.2019.04.095
http://dx.doi.org/10.1007/s11356-019-04774-2
http://www.ncbi.nlm.nih.gov/pubmed/30919183
http://dx.doi.org/10.3390/en11051157
http://dx.doi.org/10.1016/j.apenergy.2017.01.020
http://dx.doi.org/10.1016/j.scitotenv.2020.138473
http://dx.doi.org/10.3390/su10124739

Int. |. Environ. Res. Public Health 2020, 17, 8459 19 of 19

46. Chen, W,; Yang, R. Evolving Temporal-Spatial Trends, Spatial Association, and Influencing Factors of
Carbon Emissions in Mainland China: Empirical Analysis Based on Provincial Panel Data from 2006 to 2015.
Sustainability 2018, 10, 2809. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

® © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http://creativecommons.org/licenses/by/4.0/).



http://dx.doi.org/10.3390/su10082809
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Methodology 
	Carbon Emissions Estimation 
	Data Envelopment Analysis Method 
	Slack-Based Measurement Model 
	Super-Efficiency Slack-Based Measurement Model 

	Malmquist Index 
	Variables and Data Description 

	Results and Discussions 
	Carbon Emissions of the Logistics Industry 
	Carbon Emissions Efficiency of the Logistics Industry 
	Static Carbon Emissions Efficiency of the Logistics Industry 
	Dynamic Carbon Emissions Efficiency of the Logistics Industry 

	Discussions 
	Policy Implication 

	Conclusions 
	References

