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ABSTRACT: The creation of porous photothermal materials with
high solar absorption and conversion efficiency is essential for the
fabrication of efficient solar-driven interfacial evaporation devices.
Herein, we demonstrate a strategy for scalable fabrication of solar
steam generators based on hyper-cross-linked polymers (HCPs) in
situ doped with carbon black (named C-[BzMim]Cl-co-PhH and C-
[BzPy]Br-co-PhH). The monolithic HCPs composites consist of a
hyper-cross-linked polymer skeleton and randomly distributed carbon
black particles, which take advantage of both highly abundant porosity
of HCPs and excellent light absorption of carbon black to create solar
steam generators in a facile one-step preparation. By combining with
their good thermal insulation (C-[BzMim]Cl-co-PhH 0.168 W m−1

K−1 and C-[BzPy]Br-co-PhH 0.123 W m−1 K−1) in wet conditions,
the HCPs composites show high photothermal conversion perform-
ance with efficiencies of 85.2% and 88.4% for C-[BzMim]Cl-co-PhH and C-[BzPy]Br-co-PhH under 1 sun illumination, respectively.
Moreover, the HCPs composites also exhibit excellent salt-resistance performance in solar steam generation (SSG), and the purified
water can be used as domestic water. On the basis of such a simple and scalable fabrication approach as well as desired SSG
performance, it is suggested that the HCPs composites may have great potentials as promising solar steam generators for real
applications.
KEYWORDS: solar steam generation, photothermal materials, hyper-cross-linked polymers composites, one-step preparation, salt resistance

1. INTRODUCTION

The severe energy crisis and clean water scarcity have been
growing challenges worldwide because of the development of
modern industry and a rapidly growing population.1−3 Various
desalination strategies have been applied to address these
issues, such as nanofiltration, ion exchange, and RO; however,
huge energy consumption usually accompanies these strat-
egies.4,5 SSG is emerging as one of the promising technologies
for desalination, as it harvests renewable solar energy and
localized the solar irradiation onto the upper surface of
photothermal materials to maximum convert it into steam
energy.6−8 Based on such a unique vaporization manner, SSG
devices always show high energy conversion efficiency. As a
result, extensive attention has been given to explore new
photothermal materials for construction of an efficient SSG
system for fresh water production.9−11

In general, ideal photothermal materials should have
characteristics of porous structure, excellent light absorption,
and good thermal insulation.12−16 Up to now, various kinds of
photothermal materials, including carbon materials,17−20

biomass materials,21−23 organic materials,24−27 polymers,28−30

and hydrogels,31−35 have been developed according to this

design principle. Among these mentioned investigations,
porous organic polymer (POP) based photothermal materials
have recently received considerable attention due to their
adjustable porosity, excellent physical−chemical stability, and
controllable preparation.36−38 Until now, POP based photo-
thermal materials such as conjugated microporous polymers
(CMPs) and phenolic aldehyde foams (PAFs) have been
created.39−41 Compared to those traditional porous photo-
thermal materials usually with unadjustable porosity, the POPs
have intrinsic porous features, and their porosity could be
tailored by rational selecting different building blocks with
various molecular sizes and thus have great advantages for
tailor-design of functional photothermal materials with the
desired porosity.
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In this work, quite different from the recently reported
strategies on creation of polymer-based solar generators, we
demonstrate the fabrication of photothermal materials based
on hyper-cross-linked polymer (HCP) composites which were
synthesized by using [BzMim]Cl, [BzPy]Br, and benzene as
building blocks by Friedel−Crafts alkylation reaction in the
presence of carbon black. The merits of our materials are as
follows: (1) As a kind of subclass of POPs, HCPs normally use
low-cost and bulk chemicals such as benzene or other common
aromatics as building blocks with inexpensive catalysts (i.e.,
FeCl3). Therefore, HCP based photothermal materials are
generally cheap and readily available. (2) Compared with those
double-layered POP based photothermal materials usually
need to coat light-absorbing materials to enhance their light
absorption; our HCP composites benefit from both the porous
feature of HCPs and the superior light-absorbing ability of in
situ doped carbon black and thus avoid construction of double-
layered structure. Therefore, such integrated HCP composites
have advantages of simple one-step fabrication. As a proof-of-
concept study, the resulting HCP composites exhibit high
evaporation efficiencies of 85.2% and 88.4% for C-[BzMim]Cl-
co-PhH and C-[BzPy]Br-co-PhH under 1 sun illumination. To
our knowledge, such photothermal materials based on HCPs
composites have never been reported so far. The one-step
fabrication strategy obtained from this study, however, may
offer new opportunities for the rational design and fabrication
of composite photothermal materials for solar-driven interfacial
evaporation.

2. EXPERIMENTAL SECTION
2.1. Materials. 1-Benzyl-3-methylimidazolium chloride

([BzMim]Cl) was obtained from Lanzhou Zhongke Kaiteke Industry
and Trade Co., Ltd. N-Benzylpyridinium bromide ([BzPy]Br) was
obtained from Shanghai Chengjie Chemical Co., Ltd. Benzene (PhH)
was provide by Yantai Shuangshuang Chemical Co., Ltd. Form-
aldehyde dimethyl acetal (FDA) was obtained from J &K Chemical
Ltd. 1,2-Dichloroethane (DCE) was obtained from Tianjin Damao
Chemical Reagent Factory. Anhydrous ferric chloride (FeCl3) and
carbon black were purchased from Shanghai Macklin Biochemical
Co., Ltd. Methanol was obtained from Sinopharm Chemical Reagent
Co., Ltd. All chemicals were used as received without additional
purification.
2.2. Preparation of the C-[BzMim]Cl-co-PhH and C-[BzPy]Br-

co-PhH. In a typical synthesis, 1-benzyl-3-methylimidazolium
chloride ([BzMim]Cl, 0.63 g), benzene (PhH, 0.47 g), and
formaldehyde dimethyl acetal (FDA, 0.69 g) were dissolved in 20.0
mL of 1,2-dichloroethane (DCE). After the ionic liquids completely
dissolved, anhydrous ferric chloride (FeCl3, 1.95 g) and carbon black
(0.5 g) were added under the protection of nitrogen. The above
mixed solution was stirred for 1 h at room temperature and then
treated at 75 °C for 24 h. The HCPs were obtained as black cylinders,
soaked in methanol to remove impurities, and then the solvent was
replaced with distilled water to obtain the C-[BzMim]Cl-co-PhH. The
C-[BzPy]Br-co-PhH was obtained the same as C-[BzMim]Cl-co-PhH,
except N-benzylpyridinium bromide ([BzPy]Br) was used as one of
the monomers.

3. RESULTS AND DISCUSSION

The HCPs were prepared via facile Friedel−Crafts alkylation,
and the synthesis process is shown in Figure 1a. The HCPs
were synthesized by using 1-benzyl-3-methylimidazolium
chloride ([BzMim]Cl), N-benzylpyridinium bromide ([BzPy]-
Br), and benzene as monomers, formaldehyde dimethyl acetal
(FDA) as cross-linker, 1,2-dichloroethane (DCE) as solvent, a
moderate amount of carbon black, and promoted by

anhydrous ferric chloride (FeCl3). The mixture was heated
at 75 °C for 24 h under the protection of nitrogen; the HCPs
were obtained as black cylinders and then soaked in methanol
and distilled water alternately to obtain the HCPs. The
monolithic HCPs prepared through the simple synthesis
strategy are shown in Figure 1b; the [BzPy]Br-co-PhH appears
dark brown and turns to black with the addition of carbon
black. As shown in Figure 1c, by use of such a strategy the
prepared C-[BzMim]Cl-co-PhH and C-[BzPy]Br-co-PhH can
harvest light and serve as efficient solar steam generators
directly.
The surface chemical compositions of the C-[BzMim]Cl-co-

PhH and C-[BzPy]Br-co-PhH were characterized by XPS
analysis. As shown in Figure 2a, the full XPS spectra of C-
[BzMim]Cl-co-PhH including characteristic peaks of C 1s
(284.1 eV), N 1s (400.1 eV), O 1s (531.1 eV), and Cl 2p
(200.1 eV), indicating that the chemical components of the C-
[BzMim]Cl-co-PhH are carbon, nitrogen, oxygen, and
chlorine.42,43 The C 1s spectra of C-[BzMim]Cl-co-PhH can
be distinguished into three subpeaks (Figure 2b), including
C−C (284.6 eV), aromatic C−C (285.3 eV), and C−N/CN
(286.2 eV).44−46 Compared to C-[BzMim]Cl-co-PhH, the
characteristic peaks of Br 3d (67.1 eV) can be observed clearly
in the full XPS spectra of C-[BzPy]Br-co-PhH (Figure 2c). The
C 1s spectra of C-[BzPy]Br-co-PhH also can be distinguished
into three subpeaks (Figure 2d), including C−C (284.6 eV),
aromatic C−C (285.3 eV), and C−N/CN (286.2 eV).44−46

All of the above XPS analysis confirmed that the C-
[BzMim]Cl-co-PhH and C-[BzPy]Br-co-PhH were synthesized
successfully.
The morphologies of the C-[BzMim]Cl-co-PhH and C-

[BzPy]Br-co-PhH were characterized by scanning electron
microscopy (SEM). As shown in Figure 3a,b,g,h, the SEM
images show that plenty of irregular particles attached on the
hyper-cross-linked polymer skeletons to form the C-[BzMim]-
Cl-co-PhH and C-[BzPy]Br-co-PhH and then built a three-
dimensional porous structure. The porous C-[BzMim]Cl-co-
PhH and C-[BzPy]Br-co-PhH with carbon black particles
embedded in the process of hyper-cross-linking possess good
water transmission channels, while also exhibiting excellent
light absorption. Therefore, the C-[BzMim]Cl-co-PhH and C-

Figure 1. (a) Synthesis process of C-[BzMim]Cl-co-PhH and C-
[BzPy]Br-co-PhH. (b) Photos of [BzPy]Br-co-PhH and C-[BzPy]Br-
co-PhH. (c) Schematic of the C-[BzMim]Cl-co-PhH and C-[BzPy]Br-
co-PhH solar steam generations.
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[BzPy]Br-co-PhH can serve as promising solar steam
generations directly. The EDS mapping of C-[BzMim]Cl-co-
PhH and C-[BzPy]Br-co-PhH are depicted in Figure 3c−f,i−l,
the uniform distributed C, N, O, and Cl elements can be
clearly observed in C-[BzMim]Cl-co-PhH, while the uniform
distributed C, N, O, and Br elements can be clearly observed in
C-[BzPy]Br-co-PhH, and the EDS mapping analysis is
consistent with the full XPS spectra mentioned above.
Powder X-ray diffraction (XRD) patterns of the C-

[BzMim]Cl-co-PhH and C-[BzPy]Br-co-PhH show broad
peaks located at 21.6° (Figure 4a), indicating the amorphous
characters of C-[BzMim]Cl-co-PhH and C-[BzPy]Br-co-PhH
are similar to the previously reported polymers.47,40 The light
absorption capability of the C-[BzMim]Cl-co-PhH and C-
[BzPy]Br-co-PhH were investigated from the range 200−2500
nm by UV−vis−NIR spectrometry. As shown in Figure 4b,
because of the addition of carbon black particles in the
synthesis process, the resulting black C-[BzMim]Cl-co-PhH
and C-[BzPy]Br-co-PhH exhibit almost 94% light absorption.
Such excellent light absorption performance indicate that the
C-[BzMim]Cl-co-PhH and C-[BzPy]Br-co-PhH can serve as
desirable absorbers to harvest solar energy for solar-driven
interfacial evaporation. The porosity properties of C-[BzMim]-
Cl-co-PhH and C-[BzPy]Br-co-PhH were evaluated by nitro-
gen gas adsorption/desorption measurements. As depicted in
Figure 4c, both C-[BzMim]Cl-co-PhH and C-[BzPy]Br-co-
PhH are assigned to N2 adsorption/desorption isotherms of
type IV according to the IUPAC classification,48 which indicate

the C-[BzMim]Cl-co-PhH and C-[BzPy]Br-co-PhH mainly
contain mesopores. The BET surface areas were found to be
583 m2 g−1 for C-[BzMim]Cl-co-PhH and 489 m2 g−1 for C-
[BzPy]Br-co-PhH. The pore size distribution originated from
the C-[BzMim]Cl-co-PhH and C-[BzPy]Br-co-PhH adsorption
branches are calculated by the Barrett−Joyner−Hollander
(BJH) method. As shown in Figure 4d, the pore size
distribution mainly appears at 1.7−6.3 nm for C-[BzMim]Cl-
co-PhH and 1.7−4.8 nm for C-[BzPy]Br-co-PhH, indicating
the existence of micropores and mesopores in the C-
[BzMim]Cl-co-PhH and C-[BzPy]Br-co-PhH.
The heat-insulated performance of C-[BzMim]Cl-co-PhH

and C-[BzPy]Br-co-PhH were evaluated by using the flash
method at room temperature. The thermal conductivity were
measured to be 0.168 W m−1 K−1 for C-[BzMim]Cl-co-PhH
and 0.123 W m−1 K−1 for C-[BzPy]Br-co-PhH in wet
conditions; such low thermal conductivity can reduce the
heat transfer to bulk water. To intuitively observe the heat-
insulated performance of C-[BzMim]Cl-co-PhH and C-
[BzPy]Br-co-PhH, an infrared camera was used to record the
dynamic temperature changes of the bulk water under 1 sun
irradiation, and infrared images were taken every 15 min to
record the real-time temperature of middle of the water body.
As shown in Figure 5, the temperature of the water body rise
rapidly among the initial 30 min and slowly afterward.
According to the record real-time temperature, the water
body temperature of the C-[BzMim]Cl-co-PhH and C-
[BzPy]Br-co-PhH devices rises to 25.6 and 25.0 °C within

Figure 2. (a) Full XPS spectra of C-[BzMim]Cl-co-PhH. (b) C 1s XPS spectra of the C-[BzMim]Cl-co-PhH. (c) Full XPS spectra of C-[BzPy]Br-
co-PhH. (d) C 1s XPS spectra of the C-[BzPy]Br-co-PhH.
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the first 15 min and increases to 29.3 and 28.2 °C within 30
min under 1 sun illumination, respectively. Then the
temperature reaches 32.3 and 31.2 °C within 60 min under
1 sun illumination, indicating the excellent heat-insulated
performance of the C-[BzMim]Cl-co-PhH and C-[BzPy]Br-co-
PhH.
The photothermal properties of the C-[BzMim]Cl-co-PhH

and C-[BzPy]Br-co-PhH were investigated by using an infrared
camera. The real-time surface temperature of C-[BzMim]Cl-
co-PhH and C-[BzPy]Br-co-PhH under different illumination
intensities are show in Figure 6a,b. It can be found that the
surface temperatures of the C-[BzMim]Cl-co-PhH increase
rapidly from room temperature to 39.8, 47.2, and 55.2 °C
among the initial 30 min, and these values further reach up to
41.6, 47.7, and 56.2 °C under 1, 2, and 3 sun illumination
intensities within 60 min, respectively. For C-[BzPy]Br-co-PhH
the surface temperature rise to 40.5, 49.8, and 56.3 °C with the
initial 30 min, and reach up to 42.4, 50.2, and 56.5 °C under 1,
2, and 3 sun illumination intensities within 60 min,
respectively. Moreover, the detailed real-time surface temper-
atures are depicted in Figure 6c,d, the maximum surface
temperatures are detected to be 41.6, 48.6, and 56.9 °C for C-
[BzMim]Cl-co-PhH and 42.4, 50.2, and 57.5 °C for C-
[BzPy]Br-co-PhH under 1, 2, and 3 sun irradiation,
respectively. Duing to the addition of carbon black particles

in the process of synthesis and excellent heat-insulated
performance, the C-[BzMim]Cl-co-PhH and C-[BzPy]Br-co-
PhH can absorb most of the sunlight and converted it into
thermal energy.
To evaluate the solar energy conversion efficiency of C-

[BzMim]Cl-co-PhH and C-[BzPy]Br-co-PhH, an electronic
analytical balance was used to record the time-dependent mass
changes of water resulting from water evaporation under
different light power densities. As shown in Figure 7a,b, the
amount of evaporated water increase as the intensity of the
solar illuminations increase, and the evaporation rates are
obtained from the slope of the time-dependent mass change
curves. As depicted in Figure 7c,d, under 1, 2, and 3 sun
illumination intensities, the evaporation rates of C-[BzMim]-
Cl-co-PhH were calculated to be 1.36, 2.27, and 3.18 kg m−2

h−1, and for C-[BzPy]Br-co-PhH these values are 1.43, 2.40,
and 3.31 kg m−2 h−1, respectively. As a control, the evaporation
rate of pure water under 1 sun irradiation was measured and
calculated to be 0.42 kg m−2 h−1, which is much lower than
that of C-[BzMim]Cl-co-PhH and C-[BzPy]Br-co-PhH at the
same illumination intensity, indicating the C-[BzMim]Cl-co-
PhH and C-[BzPy]Br-co-PhH possess good solar energy
conversion performance. The energy conversion efficiency
was calculated with reference to the reported literature,49,50

and the detailed calculation procedures are presented in the

Figure 3. (a, b) SEM images of the C-[BzMim]Cl-co-PhH. (c−f) EDS mapping images of the C-[BzMim]Cl-co-PhH. (g, h) SEM images of the C-
[BzPy]Br-co-PhH. (i−l) EDS mapping images of the C-[BzPy]Br-co-PhH.
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Supporting Information. The corresponding evaporation
efficiencies of C-[BzMim]Cl-co-PhH are calculated to be
85.2%, 74.6%, and 71.3%, and for C-[BzPy]Br-co-PhH these
values are 88.4%, 78.1%, and 73.6% under 1, 2, and 3 sun
illumination intensities, respectively. Moreover, the evapora-
tion efficiency of pure water is 22.6% under 1 sun illumination,
which is much lower than that of C-[BzMim]Cl-co-PhH and
C-[BzPy]Br-co-PhH at the same illumination intensity,
indicating the C-[BzMim]Cl-co-PhH and C-[BzPy]Br-co-PhH
have great potential to be efficient solar steam generations.
To confirm the stability of C-[BzMim]Cl-co-PhH and C-

[BzPy]Br-co-PhH as solar steam generations, the cycle
experiments were conducted 10 times under 1 sun
illumination, and the resulting evaporation efficiencies are
depicted in Figure 8a. The energy conversion efficiencies

relatively remain unchanged within 10 cycles under 1 sun
illumination, and the HCP samples keep their original
appearance unchanged, indicating the C-[BzMim]Cl-co-PhH
and C-[BzPy]Br-co-PhH possess excellent stability as solar
steam devices. The artificial seawater with a salinity of 3.5%
was prepared to evaluate the solar desalination performance of
the C-[BzMim]Cl-co-PhH and C-[BzPy]Br-co-PhH under 1
sun illumination. The evaporation rates of C-[BzMim]Cl-co-
PhH and C-[BzPy]Br-co-PhH for artificial seawater were
calculated to be 1.27 and 1.38 kg m−2 h−1 under 1 sun
illumination, respectively. In addition, a concentrated brine
solution (with a salinity of 5, 10, and 15 wt %) was used to
confirm the salt-resistance performance of the C-[BzMim]Cl-
co-PhH and C-[BzPy]Br-co-PhH under 1 sun illumination. As
shown in Figure S2c, with a salinity of 5, 10, and 15 wt %
under 1 sun illumination, the evaporation rates of C-
[BzMim]Cl-co-PhH were calculated to be 1.25, 1.21, and
1.19 kg m−2 h−1, and for C-[BzPy]Br-co-PhH these values are
1.35, 1.32, and 1.29 kg m−2 h−1, respectively. The evaporation
rates slightly decrease with the increase of salinity, indicating
the HCPs composites possess excellent salt resistance in solar
steam generation. These results could be owed to porous
structure and interconnected water channels, thus leading the
pumped water replenish the surface vaporized water and avoid
salt accumulation. The purified water was collected by water
vapor condensation, and the concentrations of the metal ions
(Na+, Mg2+, K+, and Ca2+) were measured by an atomic
absorption spectrometer. As shown in Figure 8b, the
concentration of Na+, Mg2+, K+, and Ca2+ decreased
significantly after desalination. The ion rejection rate is more

Figure 4. (a) XRD patterns of the C-[BzMim]Cl-co-PhH and C-[BzPy]Br-co-PhH. (b) Optical properties of the C-[BzMim]Cl-co-PhH and C-
[BzPy]Br-co-PhH from 200 to 2500 nm. (c) N2 adsorption/desorption isotherms of the C-[BzMim]Cl-co-PhH and C-[BzPy]Br-co-PhH. (d) Pore
size distributions of the C-[BzMim]Cl-co-PhH and C-[BzPy]Br-co-PhH.

Figure 5. Infrared images of C-[BzMim]Cl-co-PhH and C-[BzPy]Br-
co-PhH over irradiation time.
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than 99%; the concentration is much lower than the WHO’s
required standard for ion concentration of drinking water

(Chinese National Standard GB5749-2006, World Health
Organization and the US Environmental Protection Agency

Figure 6. (a, b) Infrared images of the C-[BzMim]Cl-co-PhH and C-[BzPy]Br-co-PhH under different illuminations at different times. (c, d)
Surface temperature changes of the C-[BzMim]Cl-co-PhH and C-[BzPy]Br-co-PhH under different illuminations.

Figure 7. (a) Time-dependent mass changes of pure water and C-[BzMim]Cl-co-PhH under different illuminations. (b) Time-dependent mass
changes of pure water and C-[BzPy]Br-co-PhH under different illuminations. (c) Evaporation rate and evaporation efficiency of pure water and C-
[BzMim]Cl-co-PhH under different illuminations. (d) Evaporation rate and evaporation efficiency of pure water and C-[BzPy]Br-co-PhH under
different illuminations.
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standards),51 and the purified water can be used as domestic
water directly, suggesting the potential applications of C-
[BzMim]Cl-co-PhH and C-[BzPy]Br-co-PhH in solar desali-
nation.

4. CONCLUSION

In summary, we have demonstrated a strategy for scalable
fabrication of solar steam generation system based on hyper-
cross-linked polymers (HCPs) by adding carbon black
simultaneously. The prepared C-[BzMim]Cl-co-PhH and C-
[BzPy]Br-co-PhH can serve as high-performance evaporators
for solar water purification directly without any postprocessing.
Based on the excellent properties including porous structure,
excellent light absorption, and good thermal insulation, the C-
[BzMim]Cl-co-PhH and C-[BzPy]Br-co-PhH show high
photothermal conversion efficiencies of 85.2% and 88.4%
under 1 sun illumination, respectively. Moreover, the C-
[BzMim]Cl-co-PhH and C-[BzPy]Br-co-PhH as photothermal
materials also exhibit good performance in solar desalination.
The one-step synthesis strategy introduced in this work may
offer a new avenue for the rational design and facile fabrication
of the HCP based solar evaporators for efficient practical
desalination.
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Figure 8. (a) Evaporation efficiency of the C-[BzMim]Cl-co-PhH and C-[BzPy]Br-co-PhH cycle for 10 times under 1 sun illumination. (b)
Concentrations of four primary ions in artificial seawater before and after purification by using C-[BzMim]Cl-co-PhH and C-[BzPy]Br-co-PhH.
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