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Abstract. The paper is devoted to the study of the asymptotic speed of spread and traveling wave solutions for a time-periodic
reaction–diffusion SI epidemic model which lacks the comparison principle. By using the basic reproduction number R0

of the corresponding periodic ordinary differential system and the minimal wave speed c∗, the spreading properties of the
corresponding solution of the model are established. More precisely, if R0 � 1, then the solution of the system converges to
the disease-free equilibrium as t → ∞ and if R0 > 1, the disease is persistent behind the front and extinct ahead the front.
On the basis of it, we then analyze the full information about the existence and nonexistence of traveling wave solutions of
the system involved with R0 and c∗.
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1. Introduction

Considering the influence of seasonal factor on the geographic spread of infectious diseases, in this paper
we focus on the following time-periodic reaction–diffusion SI epidemic model with periodic recruitment

⎧
⎪⎨

⎪⎩

∂tS(t, x) = dSΔS(t, x) + μ(t) − β(t) S(t,x)I(t,x)
S(t,x)+I(t,x) − μ(t)S(t, x), t > 0, x ∈ R

N ,

∂tI(t, x) = ΔI(t, x) + β(t) S(t,x)I(t,x)
S(t,x)+I(t,x) − r(t)I(t, x), t > 0, x ∈ R

N ,

S(0, x) = S0(x) � 0, I(0, x) = I0(x) � 0, x ∈ R
N ,

(1.1)

where S(t, x) and I(t, x) represent the densities of the susceptible individuals and the infective individuals
at time t and location x, respectively, dS represents the diffusion rates of the susceptible individuals and
β(t) denotes the transmission rate of the infectious disease. For convenience, the recruitment and mortality
rates are defined by μ(t), and r(t) is the removal rate. In addition, the following assumptions can be made:
(A) μ(t), β(t) and r(t) are Hölder continuous and positive nontrivial functions on R

+ and periodic
in time with the same period T > 0. Furthermore, S0(x) and I0(x) are bounded and uniformly
continuous functions on R

N .
In the paper, we study the asymptotic speed of spread and traveling wave solutions of model (1.1).
Firstly, we investigate the spatial spread of the infection in terms of the basic reproduction number R0

of the corresponding periodic kinetic system of system (1.1), denoted by R0 =
∫ T
0 β(t)dt
∫ T
0 r(t)dt

. Based on it, the

complete information about the existence and nonexistence of traveling wave solutions of system (1.1) is
shown.

It was reported that the transmission dynamics of infectious diseases can be significantly influenced
by the seasonal change, see [2,3,9,13,15,16,25]. Therefore, it is important to investigate the influence of
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the seasonal change on the geographic spread of infectious diseases. Here, we mention that the major
difficulty to study (1.1) is that system (1.1) is not monotone. Thus, the theory on the spreading speeds and
traveling wave solutions for monotone semiflows (see [10,19,20,33]) is not applicable to (1.1). Recently,
the asymptotic speed of spread and traveling waves solutions for autonomous epidemic models has been
studied by using various methods, see [5,7,12,17,22,24,26,28–31,34,38,40] and the references therein.
However, the study for the asymptotic speed of spread and traveling waves solutions of nonautonomous
epidemic models is few. Up to now, the main progress is due to [1,27,32,37]. In [32], Wang et al. firstly
investigated the following time-periodic reaction–diffusion SI model

{
∂tS(t, x) = d1ΔS(t, x) − β(t) S(t,x)I(t,x)

S(t,x)+I(t,x) , t > 0, x ∈ R,

∂tI(t, x) = d2ΔI(t, x) + β(t) S(t,x)I(t,x)
S(t,x)+I(t,x) − γ(t)I(t, x), t > 0, x ∈ R,

(1.2)

and established the existence and nonexistence of periodic traveling waves of system (1.2). In [37], they
further studied a time-periodic reaction–diffusion SI model with bilinear incidence by using the method
developed by [36].

Different from (1.2), the vital dynamics is incorporated in (1.1); namely, there are a periodic recruit-
ment term and the natural mortality terms in (1.1). For the autonomous SI disease model with vital
dynamics, the asymptotic speed of spread and traveling wave solutions has been investigated by Ducrot
and Magal [8], Ducrot [4], Ducrot et al. [6], Li and Zou [18], Zhao and Wang [39], Zhao et al [41] and the
references therein. More recently, Ambrosio et al. [1] considered generalized traveling waves for a nonau-
tonomous SI disease model with vital dynamics and bilinear incidence in a general time-heterogeneous
environment. Except for [1], there seem no results on the asymptotic speed of spread and traveling wave
solutions for nonautonomous SIR disease model with vital dynamics. Therefore, the purpose of this paper
is to investigate the asymptotic speed of spread and traveling wave solutions for system (1.1).

The rest of this paper is organized as follows. In the next section, we investigate spreading properties
of the corresponding solution for system (1.1). In Sect. 3, we are concerned with the existence and
nonexistence of traveling wave solutions of (1.1) for (t, x) ∈ R

2.

2. Spreading properties

In this section, we take into account the spreading properties of solutions of system (1.1). Before stating
the main results, we need some suitable estimates of solutions of system (1.1). Let X = BUC(RN , R2)
be the Banach space of bounded and uniformly continuous functions from R

N to R
2, which is endowed

with the usual supremum norm. Its positive cone X
+ consists of all functions in X with both nonnegative

components.

Lemma 2.1. Let (A) be satisfied. Then system (1.1) generates a strongly continuous and globally defined
semiflow on X

+ defined by {T (t)}t�0 or for each U0=(S0, I0)∈X
+ as {T (t)U0 = (S(t, ·;U0), I(t, ·;U0))}t�0.

For each initial data U0 = (S0, I0) ∈ X
+, the solution (S, I)(t, x;U0) = (S, I)(t, x) of system (1.1) satisfies

the following properties:

(i) (S, I) ∈ C1+ θ
2 ,2+θ((0,∞) × R)

⋂
C([0,∞); X+) for some θ ∈ (0, 1);

(ii) For each t � 0 and x ∈ R
N , it holds that:

S(t, x) � 1 + e− ∫ t
0 μ(s)ds (‖S0‖∞ − 1) , t � 0, x ∈ R

N ; (2.1)

(iii) There exists a positive constant Bv such that for any U0 = (S0, I0) ∈ X
+, one has

lim sup
t→∞

sup
x∈R

I(t, x) � Bv.
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Proof. It is easy to see that (i) and (ii) hold true. Thus, we prove only (iii). Due to (ii), there is a positive
integer l large enough such that 0 � S(t, x) � 3

2 for each t � lT and x ∈ R
N . Let η := supx∈RN I(lT, x) <

∞ by (A). Since I(t, x) satisfies

∂tI(t, x) � ΔI(t, x) +
( 3

2β(t)
3
2 + I(t, x)

− r(t)
)

I(t, x), ∀t > lT, x ∈ R
N ,

it follows from the comparison principle that one has

I(t, x) � V (t; η), ∀t > lT, x ∈ R
N , (2.2)

where the V (t; η) is the solution of the following ordinary differential equations
{

dV
dt =

( 3
2β(t)

3
2+V (t)

− r(t)
)

V (t), t > lT,

V (lT ) = η.
(2.3)

It is obvious that there exists a positive constant Bv independent upon η such that there is an integer lv > l
satisfying V (t; η) � Bv, ∀t � lvT , which means that conclusion (iii) holds. It completes the proof. �

Now we firstly analyze the dynamics of (1.1) when R0 � 1. The following theorem means that if
R0 � 1, then the solution of the system converges to the disease-free equilibrium as t → ∞, that is, the
disease uniformly dies out.

Theorem 2.2. Let (A) be satisfied. If R0 :=
∫ T
0 β(t)dt
∫ T
0 r(t)dt

� 1, then for each initial data (S0, I0) ∈ X
+, the

solution of system (1.1) satisfies

lim
t→∞(S, I)(t, x) = (1, 0) uniformly with respect to x ∈ R

N .

Proof. It is obvious that R0 � 1 implies that 1
T

∫ T

0

(
β(t) − r(t)

)
dt � 0. Let q(t, V ) =

3
2β(t)
3
2+V

− r(t), then

one has
∫ T

0
q(t, 0)dt =

∫ T

0

(
β(t) − r(t)

)
dt � 0. Thus, [42, Theorem 3.1.2] associated with (2.3) implies

that limt→∞ V (t; η) = 0. It follows from (2.2) that

lim
t→∞ sup

x∈R

I(t, x) = 0. (2.4)

For every ε > 0 with ε ∈
(
0,mint∈R

μ(t)
2β(t)

)
, it follows from (2.4) that there exists a positive integer

nε ∈ N sufficiently large such that I(t, x) < ε for t > nεT and x ∈ R
N . Consider the following equation

with parameter ε > 0:
{

∂tS
ε(t, x) = dSΔSε(t, x) + μ(t) − μ(t)Sε(t, x) − β(t)ε, ∀t > 0, x ∈ R

N ,

Sε(0, x) = S(nεT, x), x ∈ R
N .

It follows from [35, Lemma 2.1] that equation

duε(t)
dt

= μ(t) − μ(t)uε(t) − β(t)ε

admits a unique positive T -periodic solution uε(t) which is globally attractive in [0,∞). Then by the
comparison principle we have that

lim
t→∞ Sε(t, x) = uε(t) uniformly in x ∈ R

N .

Since S(t, x) satisfies

∂tS(t, x) � dSΔS(t, x) + μ(t) − μ(t)S(t, x) − β(t)ε, ∀t � nεT, x ∈ R
N ,

it follows from the comparison principle that

S(t, x) � Sε(t − nεT, x), t > nεT, x ∈ R
N .
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Therefore, one has

lim inf
t→∞ S(t, x) � lim inf

t→∞ uε(t) uniformly in x ∈ R
N .

A direct computation gives limε→0 inft∈R uε(t)=1. Then by the arbitrariness of ε, we have lim inft→∞ S(t, x)
� 1 uniformly in x ∈ R

N . Moreover, (2.1) implies that lim supt→∞ S(t , x) � 1 uniformly in x ∈ R
N . As

a consequence, one has limt→∞ S(t, x) = 1 uniformly in x ∈ R
N . This completes the proof. �

Next, we take into account the spread properties of solution of (1.1) when R0 > 1 and c ∈ (−c∗, c∗),

where c∗ = 2
√

1
T

∫ T

0

(
β(t) − r(t)

)
dt. To solve it, we firstly analyze a weak uniform persistence property

in Lemma 2.4 and then establish the uniform persistence property in Theorem 2.5. The following lemma
will be used in the proof of Lemma 2.4.

Lemma 2.3. Let a(t) be the Hölder continuous function and periodic in time t with a period T > 0. For
each L > 0, c ∈ R and e ∈ S

N−1, let λL[c, e] be the principle eigenvalue of parabolic eigenvalue problem
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂tu(t, x) − Δu(t, x) + ce · ∇u(t, x) + a(t)u(t, x) = λL[c, e]u(t, x), x ∈ B(0,L),
u(t, x) = 0, x ∈ ∂B(0,L),
u(t, x) > 0, x ∈ B(0,L),
u(t, x) = u(t + T, x), x ∈ B(0,L).

Then λL[c, e] does not depend upon e ∈ S
N−1, it is denoted by λL[c] and one has

lim
L→∞

λL[c] =
c2

4
+ ā

locally uniformly for c ∈ R, where ā = 1
T

∫ T

0
a(t)dt.

Proof. Let ψ(t, x) = u(t, x)e−αe·x with α ∈ R. By a straightforward computation, one has ∇u(t, x) =
(∇ψ + αeψ)eαe·x and Δu(t, x) = (Δψ(t, x) + 2αe · ∇ψ + α2ψ)eαe·x. Then ψ(t, x) satisfies

∂tψ(t, x) + ce · ∇ψ(t, x) + αcψ(t, x) − Δψ(t, x)

−2αe · ∇ψ(t, x) − α2ψ(t, x) + a(t)ψ(t, x) = λL[c, e]ψ(t, x).

Choose now c = 2α. Then one has
⎧
⎪⎨

⎪⎩

∂tψ(t, x) − Δψ(t, x) + ( c2

4 + a(t))ψ(t, x) = λL[c, e]ψ(t, x),
ψ(t, x) = 0, ∀x ∈ ∂B(0,L),
ψ(t, x) > 0,∀x ∈ B(0,L).

According to [14], one gets λL[c, e] = γL+ c2

4 + ā, where ā = 1
T

∫ T

0
a(t)dt and γL is the principle eigenvalue

of the following elliptic problem
{

−Δψ(x) = γψ(x), ∀x ∈ B(0,L),
ψ(x) = 0, ∀x ∈ ∂B(0,L),

with the corresponding principle eigenfunction ψ(x). In particular, one has

γL = inf
ϕ∈H1

0 (B(0,L))

‖∇ϕ‖2
2

‖ϕ‖2
2

=
1
L2

γ1.

Therefore, λL[c, e] = 1
L2 γ1 + c2

4 + ā. This completes the proof. �
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Lemma 2.4. Assume that R0 :=
∫ T
0 β(t)dt
∫ T
0 r(t)dt

> 1. Let z > 0 and c0 ∈ [0, c∗) be given. Then there exists

ε = ε(z, c0) > 0 such that for each x ∈ R
N , c ∈ [−c0, c0] and U0 ∈ Mz × (Mz\{0}), there holds that

lim sup
t→∞

I(t, x + cte, U0) � ε,

where Mz = {φ ∈ BUC(RN , R) : 0 � φ � z}.
Proof. We prove the lemma by a contradiction. On the contrary, we suppose that for each n ∈ N, there
exist Un

0 = (Sn
0 , In

0 ) ∈ Mz × (Mz \ {0}), xn ∈ R
N , cn ∈ [−c0, c0] and en ∈ S

N−1 such that the solution
of system (1.1) with initial value Un

0 , denoted by (Sn, In), satisfies

lim sup
t→∞

In(t, xn + cnten) � 1
n + 1

.

As a consequence, for any n ∈ N, there exists a positive integer Nn sufficiently large such that

In(t + NnT, xn + cn(t + NnT )en) � 2
n + 1

, ∀t � 0.

Consider the sequence of functions un and vn defined by

un(t, x) =Sn(t + NnT, xn + x + cn(t + NnT )en),

vn(t, x) =In(t + NnT, xn + x + cn(t + NnT )en), ∀n ∈ N, t � 0, x ∈ R
N .

(2.5)

It is obvious that

vn(t, 0) � 2
n + 1

, ∀t � 0, n ∈ N. (2.6)

Here, we make the following claim: One has

lim
n→∞(un, vn)(t, x) = (1, 0) (2.7)

uniformly on t � 0 and x in bounded sets.
Before proving the claim, we firstly complete the proof of the theorem. Due to 0 � c0 < c∗, we take

η > 0 small enough such that

(c0)2

4
+

η

T

∫ T

0

β(t)dt <
(c∗)2

4
. (2.8)

Due to Lemma 2.3 and (2.8), we can obtain that there exists L = Lη > 0 such that the principle eigenvalue
λL[cn] of the following problem

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂tu − Δu + cnen · ∇u(t, x) + aη(t)u(t, x) = λL[cn]u(t, x), ∀t ∈ R, x ∈ B(0, L),
u(t, x) = 0, ∀t ∈ R, x ∈ ∂B(0, L),
u(t, x) > 0, ∀t ∈ R, x ∈ B(0, L),
u(t, x) = u(t + T, x), ∀t ∈ R, x ∈ B(0, L),

(2.9)

satisfies λL[cn] < 0, ∀n � 1, where aη(t) := −[β(t)(1 − η) − r(t)] and

λL[cn] =
γ1

L2
+

c2
n

4
+ āη.

Following the claim, we conclude that

lim
n→∞ un(t, x) = 1 and lim

n→∞ vn(t, x) = 0

uniformly on t > 0 and x ∈ B(0, L). Therefore, there exists nη > 0 such that

1 − η � un(t, x) � 1 + η, 0 < vn(t, x) � η, ∀t � 0, x ∈ B(0, L), n � nη.
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It follows from (2.5) that

(∂t + cnen · ∇ − Δ) vn(t, x) �
(
β(t)(1 − η) − r(t)

)
vn(t, x)

for all n � nη, t � 0 and x ∈ B(0, L). That is,

(∂t + cnen · ∇ − Δ) vn(t, x) + aηvn(t, x) � 0, ∀n � nη, t � 0, x ∈ B(0, L).

Let n � nη be fixed. Let Θ be the principle eigenfunction of (2.9). Consider also δ > 0 small enough such
that vn(0, x) � δΘ(0, x), ∀x ∈ B(0, L).

Define an operator Q := ∂t + cnen · ∇ − Δ + aη(t). Then we have got

Q[vn](t, x) � 0, ∀(t, x) ∈ [0,∞) × B(0, L).

Since the function v(t, x) = δe−λL[cn]tΘ(t, x) satisfies

Q[v(t, x)] = 0, ∀(t, x) ∈ [0,∞) × B(0, L),

v(0, x) = δΘ(0, x) � vn(0, x), ∀x ∈ B(0, L),

v(t, x) = 0 � vn(t, x), ∀t � 0, ∀x ∈ ∂B(0, L),

the parabolic comparison principle implies v(t, x) � vn(t, x) for t � 0, x ∈ B(0, L). Due to λL[cn] < 0,
we obtain vn(t, 0) → ∞ as t → ∞, which leads to a contradiction with (2.6).

Now, we are in the position to prove the claim, namely, we show that (2.7) holds. Due to Lemma 2.1 and
parabolic estimates, one may assume that (un, vn) → (u∞, v∞) locally uniformly for (t, x) ∈ R×R

N (up to
subsequence). Since S

N−1 is compact, we assume that en → e ∈ S
N−1. According to {cn}n�0 ⊂ [−c0, c0],

one may also assume that cn → c ∈ [−c0, c0] as n → ∞. Due to the periodicity of β(t), μ(t) and r(t) and
Lemma 2.1, (u∞, v∞) satisfies

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 � u∞(t, x) � 1, 0 � v∞(t, x) � Bv,

(∂t + ce · ∇ − dSΔ) u∞(t, x) = μ(t) − β(t) u∞(t,x)v∞(t,x)
u∞(t,x)+v∞(t,x) − μ(t)u∞(t, x),

(∂t + ce · ∇ − Δ) v∞(t, x) = β(t) u∞(t,x)v∞(t,x)
u∞(t,x)+v∞(t,x) − r(t)v∞(t, x),

u∞(t, x) = u∞(t + T, x), v∞(t, x) = v∞(t + T, x)

for any (t, x) ∈ R
N+1. Furthermore, (2.6) leads to v∞(t, 0) = 0 for any t � 0, which combining the

parabolic maximum principle yields

v∞(t, x) ≡ 0 and u∞(t, x) ≡ 1.

Give L > 0. Assume by contradiction that vn → 0 as n → ∞ but not uniformly on [0,∞)×B(0, L), which
means that there exist a sequence (tn, xn) ∈ [0,∞)×B(0, L) and ε > 0 such that vn(tn, xn) � ε. Without
loss of generality, let xn → x∞ ∈ B(0, L) as n → ∞. Let t′n = tn−[tn/T ]T ∈ [0, T ). For a convenience, one
also assume t′n → t0 ∈ [0, T ] as n → ∞. Consider the sequence of functions wn(t, x) = vn(t + [tn/T ]T, x).
By Lemma 2.1 and the parabolic estimates, one assumes that it converges locally uniformly to some
function w∞(t, x) as n → ∞. In particular, w∞(t0, x∞) � ε.

Using (2.5), (2.6) and the periodicity of β(t), μ(t) and r(t), one obtains that w∞ satisfies
{

w∞(t0, 0) = 0,

(∂t − Δ + ce · ∇) w∞(t, x) = a(t, x)w∞(t, x),

where a ≡ a(t, x) is some given bounded function. It follows from the strong maximum principle that
w∞(t, x∞) ≡ 0, which contradicts w∞(t0, x∞) � ε. Following the above arguments, we have

lim
n→∞ sup

t�0,x∈B(0,L)

vn(t, x) = 0, ∀L > 0.
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Next, we show that un → 1 uniformly for t � 0 and locally uniformly in x ∈ R
N by the contradiction

way. Set L > 0 be given and assume that there exist ε > 0 and a sequence (tn, xn) ∈ [0,∞) × B(0, L)
such that

|1 − un(tn, xn)| � ε.

Let t′n = tn − [tn/T ]T ∈ [0, T ). Without loss of generality, we assume xn → x∞ ∈ B(0, L) and t′n →
t0 ∈ [0, T ]. Let w∗

n(t, x) = un(t + [tn/T ]T, x). Then one has that w∗
n converges to some function w∗

∞ as
n → ∞. It is clear that

|1 − w∗
∞(t0, x∞)| � ε. (2.10)

In particular, w∗
∞ is a bounded entire solution of

{
w∗

∞(t + T, x) = w∗
∞(t, x),

(∂t + ce · ∇ − dSΔ) w∗
∞ = μ(t) − μ(t)w∗

∞.
(2.11)

It follows from Lemma 2.1 that 0 � w∗
∞(t, x) � 1 on R × R

N . Then (2.10) implies that

0 � inf
(t,x)∈R×RN

w∗
∞(t, x) � 1 − ε.

Since w∗
∞(t, x) is T -periodic in t ∈ R, there exists a sequence {(t̂n, x̂n)}n∈N ⊂ [0, T ) × R

N such that

lim
n→∞ w∗

∞(t̂n, x̂n) = inf
(t,x)∈R×RN

w∗
∞(t, x).

Possibly up to a subsequence, we assume that t̂n → t̂∞ ∈ [0, T ] as n → +∞. For each n ∈ N, define
a function w∗

∞,n(t, x) := w∗
∞(t, x + x̂n) for (t, x) ∈ R × R

N . Then due to the parabolic estimate, there
exists some function w̃∗

∞(t, x) such that w∗
∞,n converges (up to a subsequence) to w̃∗

∞ locally uniformly
in (t, x) ∈ R × R

N as n → ∞ and w̃∗
∞ satisfies

⎧
⎨

⎩

(∂t + ce · ∇ − dSΔ) w̃∗
∞ = μ(t) − μ(t)w̃∗

∞,

w̃∗
∞(t̂∞, 0) = min

(t,x)∈R×RN
w̃∗

∞(t, x) � 1 − ε. (2.12)

Plugging (t̂∞, 0) into the first equation of (2.12) yields (∂t+ce·∇−dSΔ)w̃∗
∞(t̂∞, 0) � 0 and μ(t̂∞) (1 − w̃∗

∞
(t̂∞, 0)

)
> 0. There is a contradiction. Therefore, one has un → 1 uniformly for t � 0 and locally uniformly

in x ∈ R
N . This completes the proof of the claim. �

Now we are in the position to establish the uniform persistence of the solution of (1.1) when R0 > 1
and c ∈ (−c∗, c∗).

Theorem 2.5. Let R0 :=
∫ T
0 β(t)dt
∫ T
0 r(t)dt

> 1, c ∈ [0, c∗) and z > 0 be given. Then there exists ε̂ = ε̂(c, z) > 0

such that for each U0 ∈ Mz × (Mz \ {0}), x ∈ R
N and e ∈ S

N−1, we have

lim inf
t→∞ I(t, x + cte) � ε̂.

Proof. Let us argue by a contradiction. Assume that there exists a sequence of initial data {Um
0 =

(Sm
0 , Im

0 )}m�0 ⊂ Mz × (Mz \ {0}), {xm}m�0 ⊂ R
N and {em}m�0 ⊂ S

N−1 such that the sequence of
solutions of (1.1) denoted by (Sm, Im) satisfies

lim inf
t→∞ Im(t, xm + ctem;Um

0 ) � 1
m + 1

, ∀m � 0.

Let ε = ε(c, z) > 0 be the constant provided by Lemma 2.4. It is clear that

lim sup
t→∞

I(t, x + cet;U0) � ε

for each U0 ∈ Mz × (Mz \ {0}), x ∈ R
N and e ∈ S

N−1.
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Next we define Wm(t, x) = Sm(t, xm +x+ cemt;Um
0 ) and V m(t, x) = Im(t, xm +x+ cemt;Um

0 ). Then
there exists a sequence {tm}m∈N satisfying tm → ∞ as m → ∞ and a sequence {am}m�0 ∈ (0,∞) such
that

V m(tm, 0) =
ε

2
, V m(t, 0) � ε

2
, ∀t ∈ [tm, tm + am],

V m(tm + am, 0) � 1
m + 1

.

Let t′m = tm − [tm/T ]T ∈ [0, T ) and Nm = [tm/T ]. For convenience, we also assume that t′m → t′0 ∈ [0, T ]
as m → ∞. Up to a subsequence, one may assume that V m(t + NmT, x) → V ∞(t, x) and Wm(t +
NmT, x) → W∞(t, x) locally uniformly for (t, x) ∈ R × R

N as m → ∞. Furthermore, the function V ∞

satisfies

V ∞(t′0, 0) =
ε

2
, V ∞(t, 0) � ε

2
, ∀t ∈ [t′0, t

′
0 + L̃),

where L̃ = lim infm→∞ am. On the other hand, one may assume that em → e ∈ S
N−1 as m → ∞ so that

functions W∞ and V ∞ satisfy
{

(∂t + ce · ∇ − dSΔ) W∞ = μ(t) − β(t) W ∞V ∞
W ∞+V ∞ − μ(t)W∞, (t, x) ∈ R

1+N ,

(∂t + ce · ∇ − Δ) V ∞ = β(t) W ∞V ∞
W ∞+V ∞ − r(t)V ∞, (t, x) ∈ R

1+N .

If L̃ < ∞, then one obtains V ∞(t′0 + L̃, 0) = 0. Consequently, the strong comparison principle implies
that V ∞(t, x) ≡ 0 for (t, x) ∈ R × R

N , which contradicts the fact V ∞(t′0, 0) = ε
2 .

If L̃ = ∞, which means that am → ∞ as m → ∞, one has

V ∞(t, 0) � ε

2
, ∀t ∈ [t′0,∞). (2.13)

Now recall that functions (S∞, I∞) defined by

S∞(t, x) = W∞(t, x − cet), I∞(t, x) = V ∞(t, x − cet)

satisfy the system
{

(∂t − dSΔ) S∞ = μ(t) − β(t) S∞I∞
S∞+I∞ − μ(t)S∞,

(∂t − Δ) I∞ = β(t) S∞I∞
S∞+I∞ − r(t)I∞.

Since (S∞, I∞) ∈ Mz × (Mz \ {0}), it follows that lim sup
t→∞

I∞(t, cet) � ε. Recalling to I∞(t, cet) ≡
V ∞(t, 0), one has

lim sup
n→∞

V ∞(t, 0) � ε,

which contradicts (2.13). It completes the proof. �

Following the above theorem, we have the following corollary which is a convergence result.

Corollary 2.6. Let R0 =
∫ T
0 β(t)dt
∫ T
0 r(t)dt

> 1, z > 0, c ∈ (−c∗, c∗), e ∈ S
N−1 and U0 = (S0, I0) ∈ (Mz × Mz \ {0})

be given. Let {tn}n∈N satisfy tn → ∞ as n → ∞. Then there exists a subsequence, still denoted by {tn}n∈N,
such that

lim
n→∞(S, I)(t + [tn/T ]T, x + c(t + [tn/T ]T )e;U0) = (S∞, I∞)(t, x − cet)

locally uniformly for (t, x) ∈ R × R
N and where (S∞, I∞) is a bounded entire solution of (1.1) such that

inf(t,x)∈R×RN I∞(t, x) > 0.
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Proof. Define Wn(t, x) = S(t + [tn/T ]T, x + c(t + [tn/T ]T )e) and Vn(t, x) = I(t + [tn/T ]T, x + c(t +
[tn/T ]T )e). Using Lemma 2.1 and the standard parabolic estimates, up to a subsequence, we assume that
{(Wn, Vn)} converges to some (W,V ) locally uniformly in (t, x) ∈ R × R

N , which satisfies the following
system

{
(∂t + ce · ∇ − dSΔ) W = μ(t) − β(t) WV

W+V − μ(t)W, (t, x) ∈ R × R
N ,

(∂t + ce · ∇ − Δ) V = β(t) WV
W+V − r(t)V, (t, x) ∈ R × R

N .

In view of Theorem 2.5, we have that there exists ε > 0 such that inf(t,x)∈R×RN V (t, x) � ε. Note that
(S∞, I∞)(t, x) ≡ (U, V )(t, x + cet) is an entire solution of (1.1). This completes the proof. �

In the following, we consider the case that R0 > 1 and ‖x‖ � ct with c � c∗.

Theorem 2.7. Assume that R0 =
∫ T
0 β(t)dt
∫ T
0 r(t)dt

> 1 and z > 0 be given. Let U0 = (S0, I0) ∈ Mz × (Mz \ {0})

be given such that I0 is compactly supported. Then for each αc∗
2 < N

2 with α > 0, there is

lim sup
t→∞,|x|�c∗t−α ln t

[I(t, x) + |S(t, x) − 1|] = 0.

Proof. It is easy to see that Î(t, x) = e
∫ t
0 (β(s)−r(s))ds(TΔ(t)I0)(x) satisfies the following linear system

{
(∂t − Δ) Î(t, x) = (β(t) − r(t)) Î(t, x), ∀t � 0, x ∈ R

N ,

Î(0, x) = Î0(x), x ∈ R
N .

Due to (1.1) and (A), one has

(∂t − Δ) I(t, x) � (β(t) − r(t)) I(t, x), x ∈ R
N .

It follows from the strong maximal principle that I(t, x) � Î(t, x) for all t � 0 and x ∈ R
N . On the other

hand, we have
∫

RN

e− ‖x+cet−y‖2

4t I0(y)dy � e− c2t
4 e− c(e,x)

2 J(c),

where J(c) =
∫

RN e
c
2 |y|I0(y)dy. Since I0 is compactly supported, J(c) < ∞ is well defined. Using similar

arguments to those in [4, Lemma 5.6], we obtain that if αc∗
2 < N

2 , then for each x ∈ R
N and each t > 0

such that ‖x‖ � c∗t − α ln t, we have

I(t, x) � (4πt)− N
2 t

αc∗
2 J(c∗),

which implies that

lim sup
t→∞,|x|�c∗t−α ln t

I(t, x) = 0. (2.14)

Next we show that

lim sup
t→∞,|x|�c∗t−α ln t

|S(t, x) − 1| = 0

by a contradiction. Assume on the contrary that there exist ε > 0 and a sequence {(tn, xn)}n∈N, where
tn → ∞(n → ∞) and {xn}n∈N ∈ R

N , satisfying
{

‖xn‖ � c∗tn − α ln tn, ∀n ∈ N,

|S(tn, xn) − 1| � ε, ∀n ∈ N.
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Let t′n = tn − [tn/T ]T → t′0 ∈ [0, T ] as n → ∞ and Nn = [tn/T ]. Let Sn(t, x) = S(t + NnT, x + xn) and
In(t, x) = I(t+NnT, x+xn). According to the parabolic estimates, one can assume, up to a subsequence,
that they converge to some entire solution (S∞, I∞) of (1.1) which satisfies

|S∞(t′0, 0) − 1| � ε. (2.15)

Using (2.14), we get I∞(t′0, 0) = 0, which combining the strong maximal principle further implies that
I∞(t, x) ≡ 0 on R×R

N . As a consequence, the function S∞ is an entire solution of the following equation

(∂t − dSΔ)S∞(t, x) = μ(t) (1 − S∞(t, x)) , ∀(t, x) ∈ R × R
N .

We have S∞(t, x) ≡ 1 on (t, x) ∈ R × R
N by using the strong maximal principle, which contradicts the

fact (2.15). This completes the proof. �

Remark 2.8. Theorems 2.5 and 2.7 mean that the disease is persistent when R0 > 1 and ‖x‖ = ct with
c ∈ [0, c∗), and the disease is extinct when R0 > 1 and ‖x‖ = ct with c � c∗. In summary, in this section
we showed that if R0 � 1, then the disease uniformly dies out (Theorem 2.2), and if R0 > 1, the disease
is persistent behind the front and extinct ahead the front (Theorems 2.5 and 2.7 ).

3. Periodic traveling waves

In this section, we focus on the time-periodic traveling waves of (1.1) in R × R (namely, N = 1). When

R0 :=
∫ T
0 β(t)dt
∫ T
0 r(t)dt

> 1, we first establish the existence of nontrivial periodic traveling waves of (1.1) with

speed c > c∗ > 0 by using the method developed by [32,36,37] recently and then show the asymptotical
behaviors of traveling wave solutions at infinity by using the spreading properties established in Sect. 3.
Furthermore, we show the existence of a minimal periodic traveling wave solution with speed c∗ by a
limiting argument. Finally, we also show the nonexistence of traveling wave solutions when R0 ≤ 1 or
R0 > 1 and c < c∗. Here, we recall that

c∗ = 2

√
√
√
√
√

1
T

T∫

0

(β(t) − r(t))dt.

A time T -periodic traveling wave solution of (1.1) is defined to be a solution of the form

S(t, x) = u(t, x + ct) := u(t, z), I(t, x) = v(t, x + ct) := v(t, z), ∀(t, z) ∈ R × R

and u(t, z) = u(t + T, z), v(t, z) = v(t + T, z), ∀(t, z) ∈ R × R.
(3.1)

By substituting (3.1) into (1.1), we can get the following wave form equations
{

ut(t, z) = dSuzz(t, z) − cuz(t, z) + μ(t) − β(t) u(t,z)v(t,z)
u(t,z)+v(t,z) − μ(t)u(t, z),

vt(t, z) = vzz(t, z) − cvz(t, z) + β(t) u(t,z)v(t,z)
u(t,z)+v(t,z) − r(t)v(t, z).

(3.2)

We are looking for time-periodic traveling wave solutions for system (1.1), which are positive solutions
of system (3.2) and supplemented with the following boundary conditions

u(t,−∞) = 1, v(t,−∞) = 0; lim inf
z→∞ u(t, z) > 0, lim inf

z→∞ v(t, z) > 0 (3.3)

uniformly for t ∈ R.
Linearizing the second equation in system (3.2) at the disease-free equilibrium (1, 0) yields

vt(t, z) = vzz(t, z) − cvz(t, z) + β(t)v(t, z) − r(t)v(t, z). (3.4)

Letting v(t, z) := Q(t)eλz and plugging it into (3.4), we get the characteristic equation as follows:

dQ(t)
dt

=
(
λ2 − cλ + β(t) − r(t)

)Q(t).
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From a straightforward computation, it further follows that

Q(t) = exp

⎛

⎝

t∫

0

[λ2 − cλ + β(s) − r(s)]ds

⎞

⎠.

Due to the T -periodicity of β(t) and r(t), we have that the T -periodicity of the function Q(t) is equivalent
to

λ2 − cλ + κ = 0, (3.5)

where κ := 1
T

∫ T

0
(β(t) − r(t))dt. Thus, the two roots of (3.5) are given by λc := c−√

c2−4κ
2 and λ2 =

c+
√

c2−4κ
2 if c > 2

√
κ and R0 > 1. Here, we emphasize that c∗ = 2

√
κ.

In the following, we assume that R0 > 1, c > c∗ := 2
√

κ and

V(t) = exp

⎛

⎝

t∫

0

[λ2
c − cλc + β(s) − r(s)]ds

⎞

⎠.

Based on the above arguments, we can obtain the following lemmas.

Lemma 3.1. The function v+(t, z) := V(t)eλcz satisfies the following equation

v+
t = v+

zz − cv+
z + (β(t) − r(t)) v+.

Lemma 3.2. Assume that ε1 is sufficiently small with 0 < ε1 < λc and M is large enough. Then the
function u−(t, z) := max{1 − Meε1z, 0} satisfies

u−
t − dSu−

zz + cu−
z − μ(t) + μ(t)u− � −β(t)v+u−

v+ + u− , ∀z �= z1 := −ε−1
1 ln M. (3.6)

Proof. If z > −ε−1
1 ln M, then u−(t, z) = 0, and hence, (3.6) is valid.

If z < −ε−1
1 ln M, then u−(t, z) = 1 − Meε1z. Thus, we need only to prove that

Mε1e
ε1z(c − dSε1) + μ(t)Meε1z � β(t)V(t)eλcz(1 − Meε1z)

V(t)eλcz + (1 − Meε1z)
, z < −ε−1

1 ln M.

It is sufficient to verify

Mε1(c − dSε1) � β(t)V(t)e−ε−1
1 (λc−ε1) ln M = β(t)V(t)M−ε−1

1 (λc−ε1).

The above inequality holds provided M = 1
ε1

with ε1 small enough. �

Lemma 3.3. Suppose that θ with 0 < θ < min{ε1, λ2 − λc} is sufficiently small and J > 0 with
−θ−1 ln J < −ε−1

1 ln M is large enough. Then the function v−(t, z) := max{V(t)eλcz(1 − J eθz), 0} satis-
fies

v−
t − v−

zz + cv−
z � −r(t)v− + Q[u−, v−]

for any z �= z2 := −θ−1 ln J , where Q[u−, v−] is defined by

Q[u, v] =

{
0, if u(t, z)v(t, z) = 0, ∀(t, z) ∈ R × R,

β(t)u(t,z)v(t,z)
u(t,z)+v(t,z) , if u(t, z)v(t, z) �= 0, ∀(t, z) ∈ R × R.

Proof. By similar arguments to the proof of [32, Lemma 2.3], we can prove the lemma. Thus, we omit
it. �
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Let N > −z2 and CN := C(R × [−N,N ], R2). Define a convex cone DN as

DN =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(ū, v̄) ∈ CN

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

ū(t, z) = ū(t + T, z), ∀(t, z) ∈ R × [−N,N ],

v̄(t, z) = v̄(t + T, z), ∀(t, z) ∈ R × [−N,N ],

u−(t, z) � ū(t, z) � 1, ∀(t, z) ∈ R × [−N,N ],

v−(t, z) � v̄(t, z) � min{v+(t, z),Λ}, ∀(t, z) ∈ R × [−N,N ],

ū(t,±N) = u−(t,±N), ∀t ∈ R,

v̄(t,±N) = v−(t,±N), ∀t ∈ R

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

where Λ := maxt∈R

β(t)
r(t) . For any given (ū, v̄) ∈ DN , consider the initial value problem as follows:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ut − A1u = f1[ū, v̄], t > 0, z ∈ [−N,N ],
vt − A2v = f2[ū, v̄], t > 0, z ∈ [−N,N ],
u(0, z) = u0(z), v(0, z) = v0(z), z ∈ [−N,N ], u0, v0 ∈ C([−N,N ]),
u(t,±N) = Ḡu(t,±N), v(t,±N) = Ḡv(t,±N), ∀t > 0,

(3.7)

where

A1u = dS∂zzu − c∂zu − α1u, A2v = ∂zzv − c∂zv − α2v,

f1[ū, v̄] := α1ū + μ(t) − Q[ū, v̄](t, z) − μ(t)ū, f2[ū, v̄] := α2v̄ + Q[ū, v̄](t, z) − r(t)v̄,

α1 > max
t∈[0,T ]

{β(t) + μ(t)}, α2 > max
t∈[0,T ]

r(t)

and

Ḡu(t, z) :=
1
2
u−(t,−N) − z

2N
u−(t,−N), Ḡv(t, z) :=

1
2
v−(t,−N) − z

2N
v−(t,−N)

for any t ∈ [0, T ] and z ∈ [−N,N ]. It is easy to see that Ḡu(t,±N) = u−(t,±N) and Ḡv(t,±N) =
v−(t,±N) for t ∈ R and the functions Ḡu and Ḡv are T -periodic and belong to C1,2(R × [−N,N ]).
Set ũ(t, z) = u(t, z) − Ḡu(t, z), ṽ(t, z) = v(t, z) − Ḡv(t, z), F̃u = A1Ḡu(t, z) − ∂tḠu(t, z) and F̃v =
A2Ḡv(t, z) − ∂tḠv(t, z). Then problem (3.7) reduces to

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂tũ(t, z) − A1ũ(t, z) = f1[ū, v̄] + F̃u, t > 0, z ∈ [−N,N ],
∂tṽ(t, z) − A2ṽ(t, z) = f2[ū, v̄] + F̃v, t > 0, z ∈ [−N,N ],
ũ(0, z) = u0(z) − Ḡu(0, z), ṽ(0, z) = v0(z) − Ḡu(0, z), z ∈ [−N,N ],
ũ(t,±N) = 0, ṽ(t,±N) = 0, t > 0.

(3.8)

The realization of Ai in C([−N,N ]) with the homogenous Dirichlet boundary condition can be defined
by

D(A0
i ) =

{
w ∈ ⋂p�1 W 2,p

loc ((−N,N)) : w,Aiw ∈ C([−N,N ]), w|±N = 0
}

,

A0
i w = Aiw, i = 1, 2.

In fact, D(Ai) =
{
u ∈ C2([−N,N ]), u|±N = 0

}
(see, e.g., [21, Section 5.1.2]). Assume that {Ti(t)}t�0

are the strongly continuous analytic semigroup generated by A0
i : D(A0

i ) ⊂ C([−N,N ]) → C([−N,N ])
(see [21]). Note that

Ti(t)w(x) = e−αit

N∫

−N

Γi(t, x, y)w(y)dy, i = 1, 2, w(x) ∈ C([−N,N ])
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for t > 0 and x ∈ [−N,N ], where Γ1 and Γ2 are the Green function associated with dS∂xx − c∂x and
∂xx−c∂x and Dirichlet boundary condition, respectively. Then system (3.8) can be treated as the following
integral system

⎧
⎪⎪⎨

⎪⎪⎩

ũ(t, z) = T1(t)ũ(0)(z) +
t∫

0

T1(t − s)
(
f1[ū, v̄](s) + F̃u(s)

)
(z)ds,

ṽ(t, z) = T2(t)ṽ(0)(z) +
t∫

0

T2(t − s)
(
f2[ū, v̄](s) + F̃v(s)

)
(z)ds,

where t � 0 and z ∈ [−N,N ]. Then (u(t, z), v(t, z)) satisfies
⎧
⎪⎪⎨

⎪⎪⎩

u(t, z) = T1(t)ũ(0)(z) +
t∫

0

T1(t − s)
(
f1[ū, v̄](s) + F̃u(s)

)
(z)ds + Ḡu(t, z),

v(t, z) = T2(t)ṽ(0)(z) +
t∫

0

T2(t − s)
(
f2[ū, v̄](s) + F̃v(s)

)
(z)ds + Ḡv(t, z),

(3.9)

where t � 0 and z ∈ [−N,N ]. A solution of (3.9) can be called as a mild solution of (3.8). Note that
fi[ū, v̄] ∈ C(R × [−N,N ]) and fi[ū, v̄](t, ·) ∈ C([−N,N ]); then it follows from [21, Theorem 5.1.17] that
the functions u and v defined by (3.9) belong to C([0, 2T ]× [−N,N ])

⋂
Cθ,2θ([ε, 2T ]× [−N,N ]) for every

ε ∈ (0, 2T ) and θ ∈ (0, 1). Define a set

D0
N =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(u0, v0) ∈ C([−N,N ], R2)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

u−(0, z) � u0(z) � u+(0, z), ∀z ∈ [−N,N ],

v−(0, z) � v0(z) � min{v+(0, z),Λ}, ∀z ∈ [−N,N ],

u0(±N) = u−(0,±N),

v0(±N) = v−(0,±N),

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

.

It is easy to see that D0
N is a closed and convex set.

Lemma 3.4. For any (u0, v0) ∈ D0
N , let (uN (t, z;u0, v0), vN (t, z;u0, v0)) be the solutions of system (3.9)

with the initial value (u0, v0). Then

u−(t, x) � uN (t, z;u0, v0) � 1, v−(t, x) � vN (t, z;u0, v0) � max{v+(t, x),Λ}
for any (t, x) ∈ [0,∞) × [−N,N ].

Proof. The argumentations are essentially same as those in [36, Lemma 3.3] and [37, Lemma 2.4], so we
omit them. �

For a given (ū, v̄) ∈ DN , define a map F(ū,v̄) : D0
N → C([−N,N ], R2) by

F(ū,v̄)[u0, v0](·) = (uN (T, ·;u0, v0), vN (T, ·;u0, v0)),

where (uN (T, ·;u0, v0), vN (T, ·;u0, v0)) is the solution of system (3.7). In view of Lemma 3.4 and the
periodicity of u−, u+, v− and v+, we have F(ū,v̄)[D0

N ] ∈ D0
N . Obviously, D0

N is a complete metric space
with a distance induced by the supremum norm. For any (u1

0, v
1
0) and (u2

0, v
2
0) ∈ D0

N , it follows from (3.9)
that

‖uN (T, ·;u1
0, v

1
0) − uN (T, ·;u2

0, v
2
0)‖ = sup

z∈[−N,N ]

|e−α1T

N∫

−N

Γ1(T, x, y)
(
u1

0 − u2
0

)
dy|

�e−α1T ‖u1
0 − u2

0‖C([−N,N ]).

On the same way,

‖vN (T, ·;u1
0, v

1
0) − vN (T, ·;u2

0, v
2
0)‖ � e−α2T ‖v1

0 − v2
0‖C([−N,N ]).
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Since e−αiT < 1 for i = 1, 2, one has that F(u,v) : D0
N → D0

N is a contraction map. As a conse-
quence, the Banach fixed point theorem implies that F(ū,v̄) admits a unique fixed point (u∗

0, v
∗
0) ∈ D0

N .
Let (ū∗

N (t, z), v̄∗
N (t, z)) = (uN (t, z;u∗

0, v
∗
0), vN (t, z;u∗

0, v
∗
0)) for any t ∈ [0,∞) and z ∈ [−N,N ], where

(uN (t, z;u∗
0, v

∗
0), vN (t, z;u∗

0, v
∗
0)) is the solution of system (3.7) with initial value (u∗

0, v
∗
0). In view of

(u∗
0(z), v∗

0(z)) = (uN (T, z;u∗
0, v

∗
0), vN (T, z;u∗

0, v
∗
0)), we get (ū∗

N (t+T, z), v̄∗
N (t+T, z)) = (ū∗

N (t, z), v̄∗
N (t, z))

for all t ∈ [0,∞) and z ∈ [−N,N ]. Define (ū∗
N (t, z), v̄∗

N (t, z)) = (ū∗
N (t − kT, z), v̄∗

N (t − kT, z)) for
t ∈ R and z ∈ [−N,N ], where k ∈ Z satisfies kT � t � (k + 1)T . Then (ū∗

N (t, z), v̄∗
N (t, z)) =

(ū∗
N (t + T, z), v̄∗

N (t + T, z)) for all t ∈ [0,∞) and z ∈ [−N,N ]. According to Lemma 3.4, it is easy
to see that (ū∗

N (t, z), v̄∗
N (t, z)) ∈ DN . Moreover, (ū∗

N (t, z), v̄∗
N (t, z)) satisfies

⎧
⎪⎪⎨

⎪⎪⎩

ū∗
N (t) = T1(t − s)(ū∗

N (s) − Ḡu(s)) +
t∫

s

T1(t − m)
(
f1[ū∗

N , v̄∗
N ](m) + F̃u(m)

)
dm + Ḡu(t),

v̄∗
N (t) = T2(t − s)(v̄∗

N (s) − Ḡv(s)) +
t∫

s

T2(t − m)
(
f2[ū∗

N , v̄∗
N ](m) + F̃v(m)

)
dm + Ḡv(t),

(3.10)

for any t � s. On the basis of the above discussion, we obtain the following theorem.

Theorem 3.5. For any given (ū, v̄) ∈ DN , there exists a unique solution (ū∗
N , v̄∗

N ) ∈ DN so that (3.10)
holds.

By virtue of Theorem 3.5, we can define an operator E : DN → DN by E(ū, v̄) = (ū∗
N , v̄∗

N ). In what
follows, by using the similar arguments to [36, Lemma 3.5] and [37, Lemma 2.6], we present the complete
continuity of the operator E without proof.

Lemma 3.6. The operator E : DN → DN is completely continuous.

Based on the above arguments, the Schauder’s fixed point theorem implies that E admits a fixed
point (û∗

N , v̂∗
N ) ∈ DN . In addition, (û∗

N (t + T, ·), v̂∗
N (t + T, ·)) = (û∗

N (t, ·), v̂∗
N (t, ·)) for all t ∈ R. Note

that û∗
N , v̂∗

N ∈ C
θ
2 ,θ(R × [−N,N ]) for some θ ∈ (0, 1). By [21, Theorem 5.1.18 and 5.1.19], it follows that

û∗
N , v̂∗

N ∈ C1,2(R × [−N,N ]) satisfy
⎧
⎪⎨

⎪⎩

∂tû
∗
N = dS∂zzû

∗
N − c∂zû

∗
N + μ(t) − β(t) û∗

N v̂∗
N

û∗
N+v̂∗

N
− μ(t)û∗

N , t ∈ R, z ∈ [−N,N ],

∂tv̂
∗
N = ∂zz v̂

∗
N − c∂z v̂

∗
N + β(t) û∗

N v̂∗
N

û∗
N+v̂∗

N
− r(t)v̂∗

N , t ∈ R, z ∈ [−N,N ],

û∗(t,±N) = u−(t,±N), v̂∗(t,±N) = v−(t,±N), ∀t ∈ R.

(3.11)

Similar to [36, Theorem 3.6] and [37, Theorem 2.7], we have the following local uniform estimates on
û∗

N and v̂∗
N .

Lemma 3.7. Let p � 2. For any given L > 0, there exists a constant C(p, L) > 0 such that for N >
max{L,−z2} large enough, then

‖û∗
N‖W 1,2

p ([0,T ]×[−L,L]), ‖v̂∗
N‖W 1,2

p ([0,T ]×[−L,L]) � C.

In addition, there exists a constant Ĉ(L) > 0 such that, for any z0 ∈ R,

‖û∗
N‖

C
1+θ
2 ,1+θ([0,T ]×[z0−L,z0+L])

, ‖v̂∗
N‖

C
1+θ
2 ,1+θ([0,T ]×[z0−L,z0+L])

� Ĉ

for N > max{L + |z0|,−z2}, where θ ∈ (0, 1).

Now we are in a position to show the main results in this section.

Theorem 3.8. Assume that R0 :=
∫ T
0 β(t)dt
∫ T
0 r(t)dt

> 1. For any c > c∗, system (1.1) admits a time-periodic

traveling wave solution (u∗, v∗) satisfying (3.2) and

lim
z→−∞ u∗(t, z) = 1, inf

t∈R,z∈R

u∗(t, z) ≥ Λ1, lim
z→−∞ v∗(t, z) = 0, lim inf

z→∞ v∗(t, z) ≥ Λ2

uniformly for t ∈ R. In particular, both Λ1 and Λ2 are independent of c > c∗.
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Proof. Firstly, we show the existence of the periodic traveling waves for (1.1). Let {Nm}m�1 be an
increasing sequence such that Nm � −z2 for m ≥ 1,m ∈ N and limm→∞ Nm = ∞. It then follows
that the solution (û∗

Nm
, v̂∗

Nm
) ∈ DNm

satisfies Lemma 3.7 and (3.11). By virtue of the periodicity of the
solution (û∗

Nm
, v̂∗

Nm
) with t ∈ R, we can extract a subsequence of (û∗

Nm
, v̂∗

Nm
), still denoted by (û∗

Nm
, v̂∗

Nm
),

converging toward a function (u∗, v∗) ∈ Cloc(R2) in the following topologies

(û∗
Nm

, v̂∗
Nm

) → (u∗, v∗) in C
1+β
2 ,1+β

loc (R2), in H1
loc(R

2) and in L2
loc(R,H2

loc(R
2)) weakly,

where β ∈ (0, θ) and θ ∈ (0, 1). Obviously,

(u∗, v∗) ∈ C
1+β
2 ,1+β

loc (R2) ∩ H1
loc(R

2) ∩ L2
loc(R,H2

loc(R
2)).

Since (û∗
Nm

, v̂∗
Nm

) is T -periodic in t, we have

(u∗(t + T, z), u∗(t + T, z)) = (u∗(t, z), u∗(t, z)), (t, z) ∈ R
2

and hence, for any L > 0 there exists a positive constant C0(L) such that

‖u∗‖
C

1+β
2 ,1+β

[0,T ]×[−L,L](R
2)

+ ‖v∗‖
C

1+β
2 ,1+β

[0,T ]×[−L,L](R
2)

� C0

due to Lemma 3.7. Consequently, similar to [36, Theorem 3.6] and [37, Theorem 2.9], we have that (u∗, v∗)
is in C1+ ν

2 ,2+ν(R2) for some ν ∈ (0, 1) and satisfies
{

∂tu
∗ = dS∂zzu

∗ − c∂zu
∗ + μ(t) − β(t) u∗v∗

u∗+v∗ − μ(t)u∗, (t, z) ∈ R
2,

∂tv
∗ = ∂zzv

∗ − c∂zv
∗ + β(t) u∗v∗

u∗+v∗ − r(t)v∗, (t, z) ∈ R
2.

In addition, it follows from (û∗
Nm

, v̂∗
Nm

) ∈ DNm
that

u−(t, z) ≤ u∗(t, z) ≤ 1, v−(t, z) ≤ v∗(t, z) ≤ min{v+(t, z),Λ}, ∀(t, z) ∈ R
2. (3.12)

Next, we intend to verify that (u∗, v∗) satisfies the boundary conditions (3.3). Using (3.12) and the
definitions of u− and v±, one easily gets

u∗ → 1, v∗ → 0 uniformly in t ∈ R as z → −∞.

Since u∗(t, z) satisfies

∂tu
∗ ≥ dS∂zzu

∗ − c∂zu
∗ + μ(t) − (β(t) + μ(t))u∗, (t, z) ∈ R

2,

u∗(t, z) > 0, u∗(t, z) = u∗(t + T, z) (t, z) ∈ R
2,

it is easy to show that

inf
(t,z)∈R2

u∗(t, z) ≥ Λ1. (3.13)

where Λ1 := mint∈R

μ(t)
β(t)+μ(t) . Fix c̄ ∈ [0, c∗). It follows from Theorem 2.5 that there exists a constant

ε̂ > 0 such that

lim inf
t→∞ v∗(t, x + ct + c̄t) � ε̂, ∀x ∈ R. (3.14)

By (3.14), we have lim inf
n→∞ v∗(nT, (c+c̄)nT ) ≥ ε̂, which together with the periodicity of v∗(t, z) on t implies

lim inf
n→∞ v∗(0, (c + c̄)nT ) � ε̂. Now applying the Harnack inequality for the parabolic equations [11,32], we

conclude that there exists a constant ε > 0 such that lim inf
z→∞ v∗(t, z) ≥ ε uniformly in t ∈ R. In view of

(3.13), we further have that v∗(t, z) satisfies

∂tv
∗ ≥ ∂zzv

∗ − c∂zv
∗ +

(
β(t)Λ1

Λ1 + v∗(t, z)
− r(t)

)

v∗(t, z), (t, z) ∈ R
2,

v∗(t, z) > 0, v∗(t, z) = v∗(t + T, z) (t, z) ∈ R
2.
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Note that R0 =
∫ T
0 β(t)dt
∫ T
0 r(t)dt

> 1. Then by [42, Theorem 3.1.2], the following periodic ordinary differential
equation

u′(t) =
(

β(t)Λ1

Λ1 + u(t)
− r(t)

)

u(t)

admits a unique positive T -periodic solution u�(t) and u�(t) is globally asymptotically stable. Consider
the following periodic reaction–diffusion equation

∂tU = ∂xxU +
(

β(t)Λ1

Λ1 + U(t, x)
− r(t)

)

U(t, x), t > 0, x ∈ R. (3.15)

With the aid of general results in [23], we conclude that for any c > c∗, equation (3.15) admits a traveling
waves φ(t, x + ct) = φ(t, z) satisfying

φ(t,−∞) = 0, φ(t,+∞) = u�(t), φ(t + T, z) = φ(t, z), φ(t, z) > 0

for (t, z) ∈ R
2, and for any U0(z) satisfying

U0(z) ∼ Aeλcz, as z → −∞, lim inf
z→+∞ U0(z) > 0,

there holds

lim
t→∞

|U(t, x;U0) − φ(t, x + ct)|
φ(t, x + ct)

= 0. (3.16)

Based on the above analysis for v∗(t, z), it follows that ψ(t, x) := v∗(t, x + ct) satisfies

∂tψ ≥ ∂xxψ +
(

β(t)Λ1

Λ1 + ψ(t, x)
− r(t)

)

ψ(t, x), (t, x) ∈ R
2,

and hence, the comparison principle implies that

v∗(t, x + ct) = ψ(t, x) ≥ U(t, x; v∗(0, ·)), ∀t ≥ 0, x ∈ R. (3.17)

Thus, it follows from (3.16) and (3.17) that

v∗(t, z) ≥ φ(t, z) − 1
2

min
t∈R

u�(t), ∀ z ∈ R and t ≥ nT

for some n ∈ N large enough. Furthermore, we can conclude that

lim inf
z→+∞ v∗(t, z) ≥ 1

2
min
t∈R

u�(t) =: Λ2 uniformly in t ∈ R.

This completes the proof. �

Theorem 3.9. Assume that R0 =
∫ T
0 β(t)dt
∫ T
0 r(t)dt

> 1. For c = c∗, system (1.1) admits a time-periodic traveling

wave solution (u, v) satisfying (3.2) and (3.3).

Proof. Let {cm} ∈ (c∗, c∗+1) be a decreasing sequence such that limm→∞ cm = c∗. It follows Theorem 3.8
that for each cm, there exists a solution (u∗

m, v∗
m) of (3.2)–(3.3). By a shift, it is always assumed that

v∗
m(0, 0) =

1
2
Λ2, v∗

m(0, z) <
1
2
Λ2, z < 0.

Without loss of generality, we can extract a subsequence of {(u∗
m, v∗

m)}m∈N, again denoted by {(u∗
m, v∗

m)}m∈N,
such that

(u∗
m(t, z), v∗

m(t, z)) → (u	(t, z), v	(t, z)) as m → ∞ in C1,2
loc (R, R2).
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Moreover, (u	(t, z), v	(t, z)) satisfies (u	(t, z), v	(t, z)) = (u	(t + T, z), v	(t + T, z)) for all (t, z) ∈ R,
Λ1 ≤ u	(t, z) ≤ 1 for all (t, z) ∈ R, v	(0, 0) = 1

2Λ2, v
	(0, z) ≤ 1

2Λ2 for z < 0, and
{

∂tu
	 = dSu	

zz(t, z) − cu	
z(t, z) + μ(t) − β(t) u�(t,z)v�(t,z)

u�(t,z)+v�(t,z) − μ(t)u	(t, z),

∂tv
	 = v	

zz(t, z) − cv	
z(t, z) + β(t) u�(t,z)v�(t,z)

u�(t,z)+v�(t,z) − r(t)v	(t, z).
(3.18)

Similarly, to the proof of Theorem 3.8, we can obtain that

inf
t∈R,x∈R

u	(t, z) ≥ Λ1, lim inf
z→+∞ v	(t, z) > ε (3.19)

uniformly for t ∈ R for some constant ε > 0.
It still has to show that limz→−∞ u	(t, z) = 1 and limz→−∞ v	(t, z) = 0. We first prove the lat-

ter. Here we use an argument similar to that in [36, Theorem 3.9]. On the contrary, we suppose that
lim supz→−∞ maxt∈R v	(t, z) = Λ3 ∈ (0, Λ2

2

)
. Then there exists a sequence (tj , zj) ∈ [0, T ) × R satisfying

tj → t∗ ∈ [0, T ] and zj → −∞ as j → +∞ such that lim supj→∞ v	(tj , zj) = Λ3. Set vj(t, z) = v	(t, z+zj)
for any (t, z) ∈ R

2. Then there exists a function Θ(t, z) such that vj(t, z) → Θ(t, z) in C1,2
loc (R×R) up to a

subsequence. Moreover, Θ(t, z) satisfies Θ(t + T, z) = Θ(t, z), 0 < Θ(t, z) ≤ Θ(t∗, 0) = Λ3 for (t, z) ∈ R
2.

Due to (3.19), we have that Π(t, x) = Θ(t, x + c∗t) satisfies

∂tΠ(t, x) ≥ ∂xxΠ(t, x) +
(

β(t)Λ1

Λ1 + Π(t, x)
− r(t)

)

Π(t, x), (t, x) ∈ R
2. (3.20)

Let U(t, x; Π(0, ·)) be the solution of (3.20) with initial value U(0, ·) = Π(0, ·). Then by the theory of the
spreading speed for periodic evolution systems [19,20], we have that

lim
t→∞ sup

x≤(c∗−ε)t

∣
∣U(t, x; Π(0, ·)) − u�(t)

∣
∣ = 0

for any ε ∈ (0, c∗). Consequently, by the comparison principle we can reach a contradiction, namely

Λ3 ≥ Θ(nT, c∗nT ) = Π(nT, 0) ≥ U(nT, 0;Π(0, ·)) → u�(nT ) > Λ3 as n → ∞.

Finally, we show limz→−∞ u	(t, z) = 1. Note that one already has limz→−∞ v	(t, z) = 0. Suppose on
the contrary that limz→−∞ inft∈R u	(t, z) = Λ4 < 1. Similar to the above argument, we have a function
Υ(t, z) ∈ C1,2(R2) such that Υ(t, z) = Υ(t + T, z) and Λ4 = Υ(t′, 0) ≤ Υ(t, z) ≤ 1 for any (t, z) ∈ R

2. In
particular, Υ(t, z) satisfies

∂tΥ(t, z) = dS∂zzΥ(t, z) − c∗∂zΥ(t, z) + μ(t)(1 − Υ(t, z)), ∀(t, z) ∈ R
2.

Let ϕ(t, Λ4
2 ) be the solution of the following ODE with ϕ(0) = Λ4

2

ϕ′(t) = μ(t)(1 − ϕ(t)), t ∈ R.

Then we can also get a contradiction by using the comparison principle:

Λ4 = Υ(t′, 0) = Υ(t′ + nT, 0) ≥ ϕ(t′ + nT,
Λ4

2
) → 1 > Λ4

as n → ∞. This completes the proof. �

Theorem 3.10. Assume that R0 =
∫ T
0 β(t)dt
∫ T
0 r(t)dt

> 1 and 0 < c < c∗. Then system (1.1) admits no positive

T -periodic traveling waves (u, v) satisfying v(t,−∞) = 0 uniformly for t ∈ R.

Proof. Suppose, by contradiction, that for some c0 ∈ (0, c∗), system (1.1) has a periodic traveling wave
(u(t, x + c0t), v(t, x + c0t)) such that v(t,−∞) = 0 uniformly for t ∈ R. Fix c̃ ∈ (c0, c

∗). Since v(0, 0) > 0,
it follows from Theorem 2.5 that there exists a constant ε > 0 such that lim inf

t→∞ v(t, x + c0t − c̃t) ≥ ε for

each x ∈ R. Then by the periodicity of v(t, ·), we have

0 = lim
n→∞ v(0, (c0 − c̃)nT ) = lim

n→∞ v(nT, (c0 − c̃)nT ) ≥ ε > 0.
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This is a contradiction. The proof is complete. �

Theorem 3.11. Assume that R0 =
∫ T
0 β(t)dt
∫ T
0 r(t)dt

� 1. Then for any c � 0, system (1.1) admits no positive

bounded T -periodic traveling waves (u, v).

Proof. Suppose on the contrary that for some c � 0, system (1.1) admits a positive bounded T -periodic
traveling waves (u, v). Then there exists a positive constant Λ∗ > 0 such that u(t, z) � Λ∗ for (t, z) ∈ R

2.
By considering equation

∂tÛ = ∂zzÛ − c∂zÛ +

(
β(t)Λ∗

Λ∗ + Û(t, z)
− r(t)

)

Û(t, z), t > 0, z ∈ R

and using the comparison principle, we can obtain v(t, z) ≡ 0 on (t, z) ∈ R
2 by similar arguments to

those in [32, Theorem 3.1]. Clearly, there is a contradiction due to the fact that v(t, z) is positive. This
completes the proof. �
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