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Abstract
In this paper, we study the following fractional Kirchhoff-type equation

{
−(a + b

∫
RN

∫
RN |u(x) − u(y)|2K (x − y)dxdy)LK u = |u|2∗

α−2u + μ f (u), x ∈ �,

u = 0, x ∈ R
N \�,

where � ⊂ R
N is a bounded domain with a smooth boundary, α ∈ (0, 1), 2α <

N < 4α, 2∗
α is the fractional critical Sobolev exponent and μ, a, b > 0; LK is non-

local integrodifferential operator. Under suitable conditions on f , for μ large enough,
by using constraint variational method and the quantitative deformation lemma, we
obtain a ground state sign-changing (or nodal) solution to this problem, and its energy
is strictly larger than twice that of the ground state solutions.

Keywords Sign-changing solution · Non-local integrodifferential operator ·
Variational methods

1 Introduction andMain Results

In this article, we are interested in the existence of the ground state sign-changing
solution for the following fractional Kirchhoff-type equation

{
−(a + b

∫
RN

∫
RN |u(x) − u(y)|2K (x − y)dxdy)LK u = |u|2∗

α−2u + μ f (u), x ∈ �,

u = 0, x ∈ R
N \�,

(1.1)
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where � ⊂ R
N is a bounded domain with a smooth boundary, α ∈ (0, 1), 2α < N <

4α, 2∗
α = 2N

N−2α is the fractional critical Sobolev exponent and μ, a, b > 0. Non-local
integrodifferential operator LK is defined by

LK u(x) = 1

2

∫
RN

(u(x + y) + u(x − y) − 2u(x))K (y)dy, x ∈ R
N ,

where K : R
N\{0} → (0,∞) satisfies following properties:

(K1) γ K ∈ L1(RN ), where γ (x) = min{|x |2, 1};
(K2) there exists λ > 0 such that K (x) ≥ λ|x |−(N+2α) for any x ∈ R

N\{0};
(K3) K (−x) = K (x) for any x ∈ R

N\{0}.
As for the function f , we assume f ∈ C1(R, R) and satisfies the following hypothe-

ses:

( f1) limt→0
f (t)
t3

= 0;
( f2) There exist q ∈ (4, 2∗

α) and C > 0 such that

| f (t)| ≤ C(1 + |t |q−1), for all t ∈ R;

( f3)
f (t)
|t |3 is increasing on R\{0}.

Remark 1.1 (i) According to definition of 2∗
α and condition ( f2), it must need that

2∗
α > 4. So, in this paper, we must need 2α < N < 4α. Certainly, we choice

α ∈ (0, 1) and α is large so that 2α < N < 4α can satisfy.
(ii) If f = |t |q−2t for q ∈ (4, 2∗

α), then conditions ( f1) − ( f3) are all satisfied.

The motivation to study problem (1.1) comes from the following general fractional
Kirchhoff-type equation

{
−(a + b

∫
RN

∫
RN |u(x) − u(y)|2K (x − y)dxdy)LK u = g(u), x ∈ �,

u = 0, x ∈ R
N\�.

(1.2)

When K (x) = |x |−(N+2α), LK is the fractional Laplace operator (−	)α , which
may be defined as

(−	)αu(x) = −1

2

∫
RN

u(x + y) + u(x − y) − 2u(x)

| y |N+2α dy,

and problem (1.2) reduces to the following fractional Kirchhoff equation

{
(a + b

∫
RN

∫
RN

|u(x)−u(y)|2
|x−y|N+2α dxdy)(−	)αu = g(u), x ∈ �,

u = 0, x ∈ R
N\�.

(1.3)
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It follows from Proposition 4.4 in [17] that limα→1−(−	)αu = − 	 u. So, if
α → 1−, problem (1.3) becomes the following Kirchhoff equation

{
−(a + b

∫
�

|∇u|2dx)�u = g(u), x ∈ �,

u = 0, x ∈ R
N\�.

(1.4)

In the past decades, a great attention has been given to the Kirchhoff equation
(1.4). Problem (1.4) is related to the following stationary analogue of the equation of
Kirchhoff type

utt − (a + b
∫

�

|∇u|2dx)�u = g(u), (1.5)

which was introduced by Kirchhoff [24] as a generalization of the well-known
D’Alembert wave equation

ρ
∂2u

∂t2
− (

P0
h

+ E

2L

∫ L

0
|∂u
∂x

|2dx)∂
2u

∂x2
= g(u), (1.6)

for free vibration of elastic strings.
Kirchhoff’s model takes into account the changes in length of the string produced

by transverse vibrations, so the nonlocal term appears. For more mathematical and
physical background on Kirchhoff type problems, we refer the readers to [6,38].

Because the so-called nonlocal term (
∫
�

|∇u|2dx)�u is involved in the equation,
problem (1.4) is called nonlocal problem. The appearance of nonlocal term in the
equations not only make its importance in many physical applications but also causes
some difficulties and challenges fromamathematical point of view. This factmakes the
study of problem (1.4) or similar problems particularly interesting. After the pioneer
work of Lions [27], in which a functional analysis approach was proposed to Eq. (1.5)
with Dirichlet boundary condition, a lots of interesting results to problem (1.4) or
similar Kirchhoff-type equations were obtained in last decades, for the sake of space,
we do not list them here.

Especially, there are some interesting results about sign-changing solutions to prob-
lem (1.4) or similar Kirchhoff-type equations. For examples, Zhang and Perera [56],
and Mao and Zhang [33] used the method of invariant sets of descent flow [28] to
obtain the existence of sign-changing solution for problem (1.4). In [19], Figueiredo
and Nascimento considered the following Kirchhoff equation of the type

{
−M(

∫
�

|∇u|2dx)�u = f (u), x ∈ �,

u = 0, x ∈ ∂�,
(1.7)

where � is a bounded domain in R
3, M is a general C1 class function and f is a

superlinearC1 class functionwith subcritical growth.By usingminimization argument
and a quantitative deformation lemma, the existence of a sign-changing solution for
this Kirchhoff equation was obtained.
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In unbounded domains, Figueiredo and Santos Júnior [20] studied a class of non-
local Schrödinger–Kirchhof problems involving only continuous functions. Using a
minimization argument and a quantitative deformation lemma, they obtained a least
energy sign-changing solution to Schrödinger–Kirchhoff problems. Moreover, when
the problem presents symmetry, the authors showed that it has infinitely many non-
trivial solutions.

It is noticed that, combining constraint variational methods and quantitative defor-
mation lemma, Shuai [40] studied the existence and asymptotic behavior of least
energy sign-changing solution to problem (1.4). Latter, under some weaker assump-
tions on f (especially, Nehari type monotonicity condition has been removed), with
the aid of some new analytical skills and Non-Nehari manifold method, Tang and
Cheng [43] improved and generalized some results obtained in [40].

In [14], Deng et al. studied the following Kirchhoff problem

− (a + b
∫
R3

|∇u|2dx)�u + V (x)u = f (x, u), in R
3. (1.8)

The authors proved the existence of a sign-changing solution to Kirchhoff problem
(1.8), which changes signs exactly k times for any k ∈ N. Moreover, they investigated
the energy property and the asymptotic behavior of sign-changing solution.

By using invariant sets method of descent flow or the Ljusternik–Schnirelman type
minimaxmethod, in [7,42], the existence of multiple sign-changing solutions for some
Kirchhoff problem were considered.

For more results on sign-changing solutions for Kirchhoff-type equations, we refer
the reader to [12,26,29,32,39,49,55] and the references therein.

On the other hand, when a = 1, b = 0, problem (1.2) and problem (1.3) stem from
the following problems {

−LK u = g(x, u), x ∈ �,

u = 0, x ∈ R
N\�,

(1.9)

and {
(−	)αu = g(x, u), x ∈ �,

u = 0, x ∈ R
N\�,

(1.10)

respectively.
Different from the operator −	, the fractional Laplacian operator (−	)α is

nonlocal. From a physical point of view, nonlocal operators play a crucial rule
in describing several different physical phenomena, details are available for Refs.
[1,3,18,25,34,37,45]. It is noticed that, to overcome some difficulties that come from
the nonlocal feature of fractional Laplacian, Caffarelli and Silvestre developed a pow-
erful extension method in [5]. By using the extension method, one can transform Eq.
(1.10) into a local problem settled onR

N+ . Because there has nonlocal operator (−	)α ,
from a mathematical point of view, the existence of sign-changing solution is an inter-
esting and important aspect to problem (1.10). By applying the Caffarelli–Silvestre
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extension method and invariant sets of descending flow, Chang andWang [8] obtained
the existence and multiplicity of sign-changing solution to problem (1.10). In [13], via
variational method combining invariant sets of descending, Deng and Shuai proved
that problem (1.10) has a positive solution, a negative solution and a sign-changing
solution under suitable conditions; meanwhile, when g(x, u) satisfies a monotonicity
condition, they showed that the problemhas a ground state sign-changing solutionwith
its energy is strictly larger than that of the ground state solution of Nehari type; More-
over, if g(x, u) is odd in u, they obtained an unbounded sequence of sign-changing
solutions by using genus and relative genus. For more results on sign-changing solu-
tions for problem (1.10) or similar fractional Laplacian equations, we refer the reader
to [4,22,44,53] and the reference therein.

However, it’s worth noting that we do not know whether the Caffarelli–Silvestre
extensionmethod is still valid for the general non-local integrodifferential operatorLK

or not. It seems that, to the best of our knowledge, problem (1.9) was first studied by
Servadei andValdinoci [36]. In fact, Servadei andValdinoci established the variational
setting and obtained a nontrivial solution of problem (1.9) via mountain pass theorem.
Fortunately, many of additional difficulties coming from nonlocal feature of the non-
local integrodifferential operator have been overcame by Servadei and Valdinoci.

Regarding the existence of sign-changing solutions for problem (1.9), there are few
results in the literature. In [23], Gu et al. obtained the existence of infinitely many sign-
changing solutions to problem (1.9) by combining critical point theory and invariant
sets of descending flow. When g(x, u) is asymptotically linear at infinity with respect
to u, Luo et al. [31] investigated the existence of sign-changing solutions for problem
(1.9).

The nonlocal term in problem (1.2) and problem (1.3), which can be regarded as a
combination of the general non-local integrodifferential operator LK or the fractional
Laplacian operator (−	)α and the nonlocal term of Kirchhoff type, makes problem
(1.2) and problem (1.3) even more complicated. Due to this fact, comparing with
problem (1.9) and problem (1.10) respectively, there are very few results involving
sign-changing solutions for problem (1.2) and problem (1.3). In [11], Cheng and Gao
considered following fractional Kirchhoff equation

(a + b
∫
RN

∫
RN

|u(x)−u(y)|2
|x−y|N+2α dxdy)(−	)αu + V (x)u = g(x, u), x ∈ R

N ,

(1.11)

where α ∈ (0, 1) and 2α < N , a and b are positive constant. By the minimization
argument on the nodal Nehari manifold and quantitative deformation lemma, they
proved the existence and asymptotic behavior of ground state sign-changing solutions
for problem (1.11). Latterly, without the usual Nehari-type monotonicity condition on
g, Chen et al. [10] improved and generalized some results obtained in [11].

Very recently, by using the non-Nehari manifold method, Luo et al. [30] studied
the existence of ground state sign-changing solutions to fractional Kirchhoff equation
(1.2). Their results generalized some results obtained by [40,43].

However, regarding the existence of sign-changing solutions for Kirchhoff-type
equations, to the best of our knowledge, it seems that few results involved the
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sign-changing solutions to critical problem [46,51]. On the other hand, there are
some essential differences in studying the sign-changing solutions for Kirchhoff-type
equations between critical problem and subcritical problem. Obviously, essential dif-
ferences come from the critical term. So, from a mathematical point of view, the
problem of sign-changing solutions for Kirchhoff-type equations with critical growth
is challenged and interested. Inspired by above results, in this paper, we investigate
the existence and asymptotic behavior of ground state sign-changing solutions for
critical problem (1.1). It is noticed that there are some interesting results, for example
[2,9,41,47,48,50,52,57], considered sign-changing solutions for Schrödinger–Poisson
systems.

Before presenting our main results, we denote by L p(�) a Lebesgue space with

the norm |u|p := (
∫
�

|u|pdx) 1
p , 1 ≤ p < ∞.

Denote Hα(�) the usual fractional Sobolev space equipped with the inner product
and norm

(u, v)Hα(�) =
∫

�

uvdx +
∫

�

∫
�

(u(x) − u(y))(v(x) − v(y))

| x − y |N+2α dxdy,

‖u‖Hα(�) = (u, u)
1
2
Hα(�) = (

∫
�

|u|2dx +
∫

�

∫
�

| u(x) − u(y) |2
| x − y |N+2α dxdy)

1
2 .

(1.12)

Let

X ={u : R
N → R|u is Lebesgue measurable, u|� ∈ L2(�)

and
∫
Q

|u(x) − u(y)|2K (x − y)dxdy < ∞}, (1.13)

where Q = R
2N\(�c × �c) and �c = R

N\�. The function space X is equipped
with the following norm:

‖u‖2X =‖ u ‖22 +
∫
Q

|u(x) − u(y)|2K (x − y)dxdy.

It is noticed that the space X was introduced by Servadei and Valdinoci [36].
Set

X0 = {u ∈ X : u = 0 a.e. R
N\�}

with norm

‖u‖2 =
∫
Q

|u(x) − u(y)|2K (x − y)dxdy, (1.14)
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and scalar product

(u, v) :=
∫
Q
(u(x) − u(y))(v(x) − v(y))K (x − y)dxdy,∀u, v ∈ X0.

We should notice that the norms in (1.12) and (1.13) are not the same (even in
the case of K (x) = |x |−(N+2α)), because � × � is strictly contained in Q. This fact
implies that the usual fractional Sobolev space approach is not sufficient for studying
problem (1.1).

The energy functional associated with problem (1.1) is defined by

I (u) = a

2

∫
Q

|u(x) − u(y)|2K (x − y)dxdy + b

4

(∫
Q

|u(x) − u(y)|2K (x − y)dxdy

)2

− μ

∫
�

F(u)dx − 1

2∗
α

∫
�

|u|2∗
αdx

= a

2
‖u‖2 + b

4
‖u‖4 − μ

∫
�

F(u)dx − 1

2∗
α

∫
�

|u|2∗
αdx,

for any u ∈ X0.
Moreover, under our conditions, I (u) belongs to C1, and the Fréchet derivative of

I is

〈I ′(u), v〉 = (a + b‖u‖2)(u, v) − μ

∫
�

f (u)vdx −
∫

�

|u|2∗
α−2uvdx

for any u, v ∈ X0.
The solution of problem (1.1) is the critical point of the functional I (u). Further-

more, if u ∈ X0 is a solution of problem (1.1) and u± �= 0, then u is a sign-changing
solution of problem (1.1), where

u+ = max{u(x), 0}, u− = min{u(x), 0}.

Our goal in this paper is to seek the ground state sign-changing solutions to problem
(1.1). So, we borrow some ideals from [10,11,19,20,22,26,30,40,43,46,51,55]. That
is, we first try to seek a minimizer of the energy functional I over the following
constraint:

M = {u ∈ X0, u
± �= 0 and 〈I ′(u), u+〉 = 〈I ′(u), u−〉 = 0}, (1.15)

and then prove that the minimizer is a sign-changing solution of problem (1.1).
However, since the lack of the compactness caused by the critical term, it is rather

difficult to show that infu∈M I (u) is achieved in M. This problem prevent us from
using the standard way. So, we need some new ideas to deal with this essential problem
(see Lemmas 2.3 and 2.4).

The main results can be stated as follows.
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Theorem 1.1 Suppose that ( f1) − ( f3) are satisfied. Then, there exists μ	 > 0 such
that for all μ ≥ μ	, the problem (1.1) has a ground state sign-changing solution u.

We first prove several technical lemmas, especially Lemmas 2.3 and 2.4, and obtain
that cμ = infu∈M I (u) is achieved in M for μ large enough, and then we prove that
the minimizer of cμ is just a least energy sign-changing solution of (1.1).

Theorem 1.2 Suppose that ( f1)–( f3) are satisfied. Then, there exists μ		 > 0 such
that for all μ ≥ μ		, the c∗ > 0 is achieved and

I (u) > 2c∗,

where c∗ = infu∈N I (u), N = {u ∈ X0\ {0}|〈I ′(u), u〉 = 0}, and u is the ground
state sign-changing solution obtained in Theorem1.1. In particular, c∗ > 0 is achieved
either by a positive or a negative function.

Theorem 1.2 indicates that the energy of each sign-changing solution of (1.1) is
strictly larger than two times of the ground state energy, i.e., the least energy among
all solutions in X0 of (1.1).

The paper is organized as follows. In Sect. 2, we prove several technical lem-
mas, especially Lemmas 2.3 and 2.4, which are crucial to prove our main results. In
Sect. 3, by quantitative deformation lemma and degree theory, we first obtain that the
minimizer of the constrained problem is a sign-changing solution. Then, by energy
comparisons, we prove Theorem 1.2.

2 Technical Lemmas

In this section, we prove several technical lemmas, which help us use constraint min-
imization on M to seek a critical point of I . Firstly, we cit one important imbedding
theorem about fractional Sobolev space.

Lemma 2.1 ([36]) Let α ∈ (0, 1), 2α < N , � be an open bounded set of R
N , then

the embedding X0 ↪→ Lr (�) is continuous for any r ∈ [2, 2∗
α] and compact for any

r ∈ [2, 2∗
α).

Now, fixed u ∈ X0 with u± �= 0, define function ψu : [0,∞) × [0,∞) → R and
mapping Wu : [0,∞) × [0,∞) → R

2 by

ψu(s, t) = I (su+ + tu−),

Wu(s, t) = (〈I ′(su+ + tu−), su+〉, 〈I ′(su+ + tu−), tu−〉).

The following lemma shows that the set M is nonempty in X0.

Lemma 2.2 Assume that ( f1)–( f3) hold, if u ∈ X0 with u± �= 0, then ψu has the
following properties:

(i)The pair (s, t) is a critical point ofψu with s, t > 0 if and only if su++tu− ∈ M,
where M is defined as in (1.15);
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(ii) The function ψu has a unique critical point (su, tu) on (0,∞) × (0,∞),
which is also the unique maximum point of ψu on [0,∞) × [0,∞); Furthermore,
if 〈I ′(u), u+〉 ≤ 0 and 〈I ′(u), u−〉 ≤ 0 then 0 < su, tu ≤ 1.

Proof Let

�(u) := −
∫
RN

∫
RN

(u−(x)u+(y) + u−(y)u+(x))K (x − y)dxdy.

(i) By definition of ψu , we have that

∇ψu(s, t) = (〈I ′(su+ + tu−), u+〉, 〈I ′(su+ + tu−), u−〉)
= (

1

s
〈I ′(su+ + tu−), su+〉, 1

t
〈I ′(su+ + tu−), βu−〉), (2.1)

where

〈I ′(su+ + tu−), su+〉 = as2‖u+‖2 + bs4‖u+‖4 + bs2t2‖u+‖2‖u−‖2 + ast�(u)

+ 3bs3t‖u+‖2�(u) + bst3‖u−‖2�(u) + 2bs2t2�2(u)

− s2
∗
α

∫
�

|u+|2∗
αdx − μ

∫
�

f (su+)su+dx, (2.2)

〈I ′(su+ + tu−), tu−〉 = at2‖u−‖2 + bt4‖u−‖4 + bs2t2‖u+‖2‖u−‖2 + ast�(u)

+ 3bst3‖u−‖2�(u) + bs3t‖u+‖2�(u) + 2bs2t2�2(u)

− t2
∗
α

∫
�

|u−|2∗
αdx − μ

∫
�

f (tu−)tu−dx . (2.3)

From (2.1), the definition ofM and facts (su++tu−)+ = su+ and (su++tu−)− =
tu−, item (i) is obvious.

(ii) Firstly, we prove the existence of su and tu .
From ( f1) and ( f2), for any ε > 0, there is Cε > 0 satisfies

| f (t)| ≤ ε|t | + Cε|t |q−1, (2.4)

for all t ∈ R.
On the other hand, by ( f1) and ( f3), we have that

f (t)t > 0, t �= 0; F(t) ≥ 0, t ∈ R. (2.5)

Then, by (2.4), (2.5) and Sobolev embedding theorem, there exist τ1 > 0 and τ2
large enough such that

〈I ′(τ1u+ + tu−), τ1u
+〉 > 0, 〈I ′(su+ + τ1u

−), τ1u
−〉 > 0 (2.6)
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for all s, t ≥ 0;

〈I ′(τ2u+ + tu−), τ2u
+〉 < 0, 〈I ′

b(su
+ + τ2u

−), τ2u
−〉 < 0 (2.7)

for all s, t ∈ [τ1, τ2].
So, together (2.6), (2.7) with Miranda’s Theorem [35], there exists (su, tu) ∈

(0,∞) × (0,∞) such that Wu(s, t) = (0, 0), i.e., suu+ + tuu− ∈ M.
In the following, we prove the uniqueness of the pair (su, tu). By standard argu-

ments, we only prove the uniqueness in case of u ∈ M here.
For any u ∈ M, we have that

a‖u+‖2 + b‖u+‖4 + b‖u+‖2‖u−‖2 + (a + 3b‖u+‖2 + b‖u−‖2 + 2b�(u))�(u)

=
∫

�

|u+|2∗
αdx + μ

∫
�

f (u+)u+dx, (2.8)

and

a‖u−‖2 + b‖u−‖4 + b‖u+‖2‖u−‖2 + (a + 3b‖u−‖2 + b‖u+‖2 + 2b�(u))�(u)

=
∫

�

|u−|2∗
αdx + μ

∫
�

f (u−)u−dx . (2.9)

Let (s0, t0) be a pair of numbers such that s0u+ + t0u− ∈ M with 0 < s0 ≤ t0. So,
one has that

as20‖u+‖2 + bs40‖u+‖4 + bs20 t
2
0‖u+‖2‖u−‖2

+ (as0t0 + 3bs30 t0‖u+‖2 + bs0t
3
0‖u−‖2 + 2bs20 t

2
0�(u))�(u)

= s
2∗
α

0

∫
�

|u+|2∗
αdx + μ

∫
�

f (s20u
+)s20u

+dx, (2.10)

and

at20‖u−‖2 + bt40‖u−‖4 + bs20 t
2
0‖u+‖2‖u−‖2

+ (as0t0 + 3bt30 s0‖u−‖2 + bt0s
3
0‖u+‖2 + 2bs20 t

2
0�(u))�(u)

= t
2∗
α

0

∫
�

|u−|2∗
αdx + μ

∫
�

f (t0u
−)t0u

−dx . (2.11)

Hence, thanks to 0 < s0 ≤ t0, we have that

a‖u−‖2
t20

+ a�(u)

t20
+ b‖u−‖4 + b‖u+‖2‖u−‖2 + (3b‖u−‖2 + b‖u+‖2 + 2b�(u))�(u)

≥ t
2∗
α−4

0

∫
�

|u−|2∗
αdx + μ

∫
�

[
f (t0u−)

(t0u−)3

]
(u−)4dx . (2.12)
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Combining (2.9) with (2.12), one has that

a

(
1

t20
− 1

)
(‖u−‖2 + �(u)) ≥ (t

2∗
α−4

0 − 1)
∫

�

|u−|2∗
αdx

+μ

∫
�

[
f (t0u−)

(t0u−)3
− f (u−)

(u−)3

]
(u−)4dx .

If t0 > 1, the left side of above inequality is negative, which is absurd because the
right hand side is positive by condition ( f3). Therefore,weobtain that 0 < s0 ≤ t0 ≤ 1.

Similarly, by (2.10) and 0 < s0 ≤ t0, we get

a

(
1

s20
− 1

)
(‖u+‖2 + �(u)) ≤ (s

2∗
α−4

0 − 1)
∫

�

|u+|2∗
αdx

+μ

∫
�

[
f (s0u+)

(s0u+)3
− f (u+)

(u+)3

]
(u+)4dx .

In view of ( f3), we have that s0 ≥ 1. Consequently, s0 = t0 = 1.
So, we conclude that (su, tu) = (1, 1) is the unique pair of numbers such that

suu+ + tuu− ∈ M if u ∈ M.
Next, we will prove that (su, tu) is the unique maximum point of ψu on [0,∞) ×

[0,∞).

For any u ∈ X0 with u± �= 0, by (2.5), we have that

lim|(s,t)|→∞ ψu(s, t) = −∞.

Hence, (su, tu) is the unique critical point of ψu in [0,∞) × [0,∞). On the other
hand, let s0, t0 ≥ 0 be fixed, it is easy to see that ψu(s, t0) andψu(s0, t) are increasing
functions if s and t is small enough respectively. So, maximum point of ψu cannot be
achieved on the boundary of [0,∞) × [0,∞).

Lastly, we will prove that 0 < su, tu ≤ 1 if 〈I ′(u), u±〉 ≤ 0.
Suppose su ≥ tu > 0. By suu+ + tuu− ∈ M, one has

as2u‖u+‖2 + bs4u‖u+‖4 + bs4u‖u+‖2‖u−‖2
+ (as2u + 3bs4u‖u+‖2 + bs4u‖u−‖2 + 2bs4u�(u))�(u)

≥ as2u‖u+‖2 + bs4u‖u+‖4 + bs2u t
2
u‖u+‖2‖u−‖2

+ (asutu + 3bs3u tu‖u+‖2 + bsut
3
u‖u−‖2 + 2bs2u t

2
u�(u))�(u)

= s
2∗
α

u

∫
�

|u+|2∗
αdx + μ

∫
�

f (s2uu
+)s2uu

+dx . (2.13)

On the other hand, by 〈I ′(u), u+〉 ≤ 0, one has

a‖u+‖2 + b‖u+‖4 + b‖u+‖2‖u−‖2 + (a + 3b‖u+‖2 + b‖u−‖2 + 2b�(u))�(u)

123



S110 Applied Mathematics & Optimization (2021) 84 (Suppl 1):S99–S121

≤
∫

�

|u+|2∗
αdx + μ

∫
�

f (u+)u+dx . (2.14)

According to (2.13) and (2.14), we have that

a(
1

s2u
− 1)(‖u+‖2 + �(u)) ≥ (s

2∗
α−4

u − 1)
∫

�

|u+|2∗
αdx

+μ

∫
�

[ f (suu
+)

(suu+)3
− f (u+)

(u+)3
](u+)4dx .

Thanks to condition ( f3), we get su ≤ 1. Thus, we have that 0 < su, tu ≤ 1. ��
The following result is very important to prove that cμ = infu∈M I (u) is achieved.

Lemma 2.3 Let cμ = infu∈M I (u), then we have that

lim
μ→∞ cμ = 0.

Proof By (2.4) and Sobolev inequalities, we can prove that there exists ρ > 0 such
that ‖u±‖ ≥ ρ for all u ∈ M.

For any u ∈ M, it is obvious that 〈I ′(u), u〉 = 0. Thanks to ( f3), we conclude that

f (t)t − 4F(t) ≥ 0, (2.15)

and is increasing when t > 0 and decreasing when t < 0.
Then, ones get

I (u) = I (u) − 1

4
〈I ′(u), u〉

= a

4
‖u‖2 + (

1

4
− 1

2∗
α

)

∫
�

|u|2∗
αdx + μ

4

∫
�

[ f (u)u − 4F(u)]dx

≥ a

4
‖u‖2,

for any u ∈ M.
So, I is bounded below onM, that is, cμ = infu∈M I (u) is well-defined.
Let u ∈ X0 with u± �= 0 be fixed. By Lemma 2.2, for each μ > 0, there are

sμ, tμ > 0 such that sμu+ + tμu− ∈ M.
Thanks to (2.5), we have that

0 ≤ cμ = inf
u∈M

I (u) = I (sμu
+ + tμu

−)

≤ a

2
‖sμu+ + tμu

−‖2 + b

4
‖sμu+ + tμu

−‖4

≤ as2μ‖u+‖2 + at2μ‖u−‖2 + 2bs4μ‖u+‖4 + 2bt4μ‖u−‖4.
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Next, we prove that sμ → 0 and tμ → 0, as μ → ∞.
Let

�u = {(sμ, tμ) ∈ [0,∞) × [0,∞) : Wu(sμ, tμ) = (0, 0), μ > 0},

where Wu was defined as in Lemma 2.2. Thanks to (2.5), ones has

s
2∗
α

μ

∫
�

|u+|2∗
αdx + t

2∗
α

μ

∫
�

|u−|2∗
αdx

≤ s
2∗
α

μ

∫
�

|u+|2∗
αdx + t

2∗
α

μ

∫
�

|u−|2∗
αdx

+μ

∫
�

f (sμu
+)sμu

+dx + μ

∫
�

f (tμu
−)tμu

−dx

= a‖sμu+ + tμu
−‖2 + b‖sμu+ + tμu

−‖4
≤ 2as2μ‖u+‖2 + 2at2μ‖u−‖2 + 8bs4μ‖u+‖4 + 8bt4μ‖u−‖4.

Since 2∗
α > 4, we conclude that �u is bounded.

Let {μn} ⊂ (0,∞) be such that μn → ∞ as n → ∞. Then, in subsequence sense,
there are s0 and t0 such that

(sμn , tμn ) → (s0, t0),

as n → ∞.
We prove s0 = t0 = 0. By contradiction, we suppose that s0 > 0 or t0 > 0. Thanks

to sμn u
+ + tμn u

− ∈ M, for any n ∈ N, we have

a‖sμn u
+ + tμn u

−‖2 + b‖sμn u
+ + tμn u

−‖4

=
∫

�

|sμn u
+ + tμn u

−|2∗
αdx + μn

∫
�

f (sμn u
+ + tμn u

−)(sμn u
+ + tμn u

−)dx .

(2.16)

According to sμn u
+ → s0u+ and tμn u

− → t0u− in X0, (2.4) and (2.5), we have
that ∫

�

f (sμn u
+ + tμn u

−)(sμn u
+ + tμn u

−)dx

→
∫

�

f (s0u
+ + t0u

−)(s0u
+ + t0u

−)dx > 0,

as n → ∞. Then, we conclude a contradiction with the equality (2.16).
Hence, s0 = t0 = 0. That is, limμ→∞ cμ = 0. ��
With the above results, we shall proceed through three steps to obtain that cμ =

infu∈M I (u) is achieved.
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Lemma 2.4 There exist μ	 > 0 such that for all μ ≥ μ	, the infimum cμ is achieved.

Proof According to definition of cμ, there is a sequence {un} ⊂ M such that

lim
n→∞ I (un) = cμ.

Obviously, {un} is bounded in X0. Then, up to a subsequence, still denoted by {un},
there exist u ∈ X0 such that un⇀u.

By Lemma 2.1, for all p ∈ [2, 2∗
α), we have

un → u in L p(�),

un(x) → u(x) a.e. x ∈ �.

So,

u±
n ⇀u± in X0,

u±
n → u± in L p(�),

u±
n (x) → u±(x) a.e. x ∈ �.

Denote δ := α
N S

N
2α , where

S := inf
u∈X0\{0}

‖u‖2
(
∫
�

|u|2∗
αdx)

2
2∗α

.

According to Lemma 2.3, there is μ	 > 0 such that cμ
b < δ for all μ ≥ μ	.

Fix μ ≥ μ	, it follows from Lemma 2.2 that

I (su+
n + tu−

n ) ≤ I (un)

for all s, t ≥ 0.
By using Brezis–Lieb Lemma and Fatou’s Lemma, we have that

lim inf
n→∞ I (su+

n + tu−
n )

≥ as2

2
lim
n→∞(‖u+

n − u+‖2 + ‖u+‖2) + at2

2
lim
n→∞(‖u−

n − u−‖2 + ‖u−‖2)

+ bs4

4
[ lim
n→∞(‖u+

n − u+‖2 + ‖u+‖2)]2 + bt4

4
[ lim
n→∞(‖u−

n − u−‖2 + ‖u−‖2)]2

− s
2∗
α

u

2∗
α

lim
n→∞(|u+

n − u+|2∗
α

2∗
α

+ |u+|2∗
α

2∗
α
) − t

2∗
α

u

2∗
α

lim
n→∞(|u−

n − u−|2∗
α

2∗
α

+ |u−|2∗
α

2∗
α
)

− μ

∫
�

F(su+)dx − μ

∫
�

F(tu−)dx + ast lim inf
n→∞ �(un)
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+ bs2t2 lim inf
n→∞ �2(un) + bs2t2

2
lim inf
n→∞ (‖u+

n ‖2‖u−
n ‖2)

+ bs3t lim inf
n→∞ (‖u+

n ‖2�(un)) + bt3s lim inf
n→∞ (‖u−

n ‖2�(un))

≥ I (su+ + tu−) + as2

2
lim
n→∞ ‖u+

n − u+‖2 + at2

2
lim
n→∞ ‖u−

n − u−‖2

+ bs4

2
lim
n→∞ ‖u+

n − u+‖2‖u+‖2 + bt4

2
lim
n→∞ ‖u−

n − u−‖2‖u−‖2

+ bs4

4
( lim
n→∞ ‖u+

n − u+‖2)2 + bt4

4
( lim
n→∞ ‖u−

n − u−‖2)2

− s2
∗
α

2∗
α

lim
n→∞ |u+

n − u+|2∗
α

2∗
α

− t2
∗
α

2∗
α

lim
n→∞ |u−

n − u−|2∗
α

2∗
α

= I (su+ + tu−) + as2

2
A1 + bs4

2
A1‖u+‖2 + bs4

4
A2
1 − s2

∗
α

2∗
α

B1

+ at2

2
A2 + bt4

2
A2‖u−‖2 + bt4

4
A2
2 − t2

∗
α

2∗
α

B2

where

A1 = lim
n→∞ ‖u+

n − u+‖2, A2 = lim
n→∞ ‖u−

n − u−‖2,
B1 = lim

n→∞ |u+
n − u+|2∗

α

2∗
α
, B2 = lim

n→∞ |u−
n − u−|2∗

α

2∗
α
.

Hence, we have

I (su+ + tu−) + as2

2
A1 + bs4

2
A1‖u+‖2 + bs4

4
A2
1 − s2

∗
α

2∗
α

B1

+ at2

2
A2 + bt4

2
A2‖u−‖2 + bt4

4
A2
2 − t2

∗
α

2∗
α

B2 ≤ cμ (2.17)

for all s ≥ 0 and all t ≥ 0.
In the following, we shall proceed through three steps to complete the proof.
Step 1 : we prove that u± �= 0.
Fist, we prove u+ �= 0. By contradiction, we suppose u+ = 0. So, let t = 0 in

(2.17), we have that

as2

2
A1 + bs4

4
A2
1 − s2

∗
α

2∗
α

B1 ≤ cμ, (2.18)

for all s ≥ 0.
Case 1 B1 = 0.
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If A1 = 0, that is, u+
n → u+ in X0. According to Lemma 2.2, we obtain ‖u+‖ > 0,

which contradicts our supposition. If A1 > 0, by (2.18), we have that

as2

2
A1 + bs4

4
A2
1 ≤ cμ

for all s ≥ 0, which is absurd. Anyway, we have a contradiction.
Case 2 B1 > 0.
According to definition of S, we have that

δ = α

N
S

N
2α ≤ α

N
(

A1

(B1)
2
2∗α

)
N
2α .

It is easy to see that

α

N

⎛
⎝ A1

(B1)
2
2∗α

⎞
⎠

N
2α

= max
s≥0

{as2
2

A1 − s2
∗
α

2∗
α

B1

}
≤ max

s≥0

{as2
2

A1 + bs4

4
A2
1 − s2

∗
α

2∗
α

B1

}
.

Thanks to cμ < δ and (2.18), we have that

δ ≤ max
s≥0

{as2
2

A1 − s2
∗
α

2∗
α

B1

}
≤ max

s≥0

{as2
2

A1 + bs4

4
A2
1 − s2

∗
α

2∗
α

B1

}
< δ.

That is, we obtain a contradiction.
From above discussions, we have that u+ �= 0.
Similarly, we can prove u− �= 0.
Step 2 : we prove that B1 = B2 = 0.
Since the situation B2 = 0 is analogous, we only prove B1 = 0. By contradiction,

we suppose that B1 > 0.
Case 1 B2 > 0.
Let s̃ and t̃ satisfy

ãs2

2
A1 + b̃s4

4
A2
1 − s̃2

∗
α

2∗
α

B1 = max
s≥0

{as2
2

A1 + bs4

4
A2
1 − s2

∗
α

2∗
α

B1

}
,

ãt2

2
A2 + b̃t4

4
A2
2 − t̃2

∗
α

2∗
α

B2 = max
t≥0

{at2
2

A2 + bt4

4
A2
2 − t2

∗
α

2∗
α

B2

}
.

Because [0, s̃]×[0, t̃] is compact andψu is continuous, there are (su, tu) ∈ [0, s̃]×
[0, t̃] such that

ψu(su, tu) = max
(s,t)∈[0,̃s]×[0,̃t]

ψu(s, t).

123



Applied Mathematics & Optimization (2021) 84 (Suppl 1):S99–S121 S115

In the following, we prove that (su, tu) ∈ (0, s̃) × (0, t̃).
If t small enough, we have that

ψu(s, 0) = I (su+) < I (su+) + I (tu−) ≤ I (su+ + tu−) = ψu(s, t),

for all s ∈ [0, s̃].
So, there is t0 ∈ [0, t̃] such that

ψu(s, 0) ≤ ψu(s, t0),

for all s ∈ [0, s̃].
That is, any point of (s, 0) with 0 ≤ s ≤ s̃ is not the maximizer of ψu . Hence

(su, tu) /∈ [0, s̃] × {0}. By similar discussions, we obtain (su, tu) /∈ {0} × [0, s̃].
On the other hand, we have that

as2

2
A1 + bs4

2
A1‖u+‖2 + bs4

4
A2
1 − s2

∗
α

2∗
α

B1 > 0, (2.19)

at2

2
A2 + bt4

2
A2‖u−‖2 + bt4

4
A2
2 − t2

∗
α

2∗
α

B2 > 0, (2.20)

s ∈ (0, s̃], t ∈ (0, t̃].
Hence,

δ ≤ ãs2

2
A1 + b̃s4

4
A2
1 − s̃2

∗
α

2∗
α

B1 + b̃s4

2
A2‖u+‖2

+ at2

2
A2 + bt4

2
A2‖u−‖2 + bt4

4
A2
2 − t2

∗
α

2∗
α

B2,

δ ≤ ãt2

2
A2 + b̃t4

4
A2
2 − t̃2

∗
α

2∗
α

B2 + b̃t4

2
A2‖u−‖2

+ as2

2
A1 + bs4

2
A1‖u+‖2 + bs4

4
A2
1 − s2

∗
α

2∗
α

B1

for all s ∈ [0, s̃] and all t ∈ [0, t̃].
Therefore, by (2.17), we have that

ψu(s, t̃) ≤ 0, ψu (̃s, t) ≤ 0

for all s ∈ [0, s̃] and all t ∈ [0, t̃].
So, (su, tu) /∈ {̃s} × [0, t̃] and (su, tu) /∈ ×[0, s̃] × {̃t}.
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From above discussions, we obtain (su, tu) ∈ (0, s̃) × (0, t̃). Hence, we conclude
that (su, tu) is a critical point of ψu .

That is, suu+ + tuu− ∈ M.
Therefore, by (2.17), (2.19) and (2.20), it follows from definition of cμ that

cμ ≥ I (suu
+ + tuu

−) + as2u
2

A1 + bs4u
2

A1‖u+‖2 + bs4u
4

A2
1 − s

2∗
α

u

2∗
α

B1

+ at2u
2

A2 + bt4u
2

A2‖u−‖2 + bt4u
4

A2
2 − t

2∗
α

u

2∗
α

B2

> I (suu
+ + tuu

−) ≥ cμ.

That is, we have a contradiction.
Case 2 B2 = 0.
In this case, we can maximize in [0, s̃] × [0,∞). Indeed, it is possible to show that

there exist t0 ∈ [0,∞) such that I (su+ + tu−) ≤ 0, for all (s, t) ∈ [0, s̃] × [t0,∞).
Hence, there are (su, tu) ∈ [0, s̃] × [0,∞) satisfy

ψu(su, tu) = max
s∈[0,̃s]×[0,∞)

ψu(s, t).

Now, we prove that (su, tu) ∈ (0, s̃) × (0,∞).
It is easy to see that ψu(s, 0) < ψu(s, t) for s ∈ [0, s̃] and t small enough, so we

have (su, tu) /∈ [0, s̃] × {0}.
At the same time, ψu(0, t) < ψu(s, t) for t ∈ [0,∞) and s small enough, then we

have (su, tu) /∈ {0} × [0,∞).

On the other hand, we have that

δ ≤ ãs2

2
A1 + b̃s4

4
A2
1 − s̃2

∗
α

2∗
α

B1 + b̃s4

2
A2‖u+‖2

+ at2

2
A2 + bt4

2
A2‖u−‖2 + bt4

4
A2
2,

for all t ∈ [0,∞).
Hence, we have that ψu (̃s, t) ≤ 0 for all t ∈ [0,∞). Thus, (su, tu) /∈ {̃s} × [0,∞).

And so (su, tu) ∈ (0, s̃) × (0,∞). So, (su, tu) is an inner maximizer of ψu in [0, s̃) ×
[0,∞). That is, suu+ + tuu− ∈ M.

Therefore, thanks to (2.19), it follows from definition of cμ that

cμ ≥ I (suu
+ + tuu

−) + as2u
2

A1 + bs4u
2

A1‖u+‖2 + bs4u
4

A2
1 − s

2∗
α

u

2∗
α

B1

+ at2u
2

A2 + bt4u
2

A2‖u−‖2 + bt4u
4

A2
2

> I (suu
+ + tuu

−) ≥ cμ,
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which is a contradiction.
Therefore, from above discussions, we obtain B1 = B2 = 0.
Step 3 : we prove that c¯ is achieved.

For u± �= 0, according to Lemma 2.2, there exist su, tu > 0 such that ū :=
suu+ + tuu− ∈ M.

At the same time, by B1 = B2 = 0, it is easy to see that 〈I ′(u), u±〉 ≤ 0. So, from
Lemma 2.2 again, we have that 0 < su, tu ≤ 1.

Therefore, in view of un ∈ M, (2.15), B1 = B2 = 0 and the norm in X0 is lower
semicontinuous, ones has

cμ ≤ I (ū)) − 1

4
〈I ′(ū), ū〉

= a

4
‖ū‖2 +

(
1

4
− 1

2∗
α

)
|ū|2∗

α

2∗
α

+ μ

4

∫
R3

[ f (ū)ū − 4F(ū)]dx

= a

4
(‖suu+‖2 + ‖tuu−‖2) +

(
1

4
− 1

2∗
α

)
(|suu+|2∗

α

2∗
α

+ |tuu−|2∗
α

2∗
α
)

+ μ

4

∫
R3

[ f (suu+)(suu
+) − 4F(suu

+)]dx + μ

4

∫
R3

[ f (tuu−)(tuu
−)

− 4F(tuu
−)]dx

≤ a

4
‖u‖2 +

(
1

4
− 1

2∗
α

)
|u|2∗

α

2∗
α

+ μ

4

∫
R3

[ f (u)u − 4F(u)]dx

≤ lim inf
n→∞ [I (un) − 1

4
〈I ′(un), un〉]

= lim inf
n→∞ I (un)

= cμ.

So, su = tu = 1 and cμ is achieved by u := u+ + u− ∈ M. ��

3 The Proof of Main Results

Firstly, we prove Theorem 1.1.

Proof of Theorem 1.1 Since u ∈ M, we have 〈I ′(u), u+〉 = 〈I ′(u), u−〉 = 0. By
Lemma 2.2, for (s, t) ∈ (R+ × R+)\(1, 1), we have

I (su+ + tu−) < I (u+ + u−) = cμ. (3.1)

If I ′(u) �= 0, then there exist δ > 0 and θ > 0 such that

‖I ′(v)‖ ≥ θ, for all ‖v − u‖ ≤ 3δ.
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Choose σ ∈ (0,min{1/2, δ√
2‖u‖ }). Let D := (1 − σ, 1 + σ) × (1 − σ, 1 + σ) and

k(s, t) = su+ + tu−, (s, t) ∈ D. It follows from (3.1) that

cμ := max
∂D

Ib ◦ k < cμ. (3.2)

Let ε := min{(cμ − cμ)/2, θδ/8} and Sδ := B(u, δ), in view of Lemma 2.3 in
[54], there is a deformation η ∈ C([0, 1] × X0, X0) satisfies

(a) η(1, v) = v if v /∈ I−1([cμ − 2ε, cμ + 2ε] ∩ S2δ);
(b) η(1, I c

μ+ε ∩ Sδ) ⊂ I c
μ−ε;

(c) I (η(1, v)) ≤ I (v) for all v ∈ X0.

According to Lemma 2.2 and (b), we can obtain

max
(s,t)∈D̄

I (η(1, k(s, t))) < cμ. (3.3)

Now, we prove that η(1, k(D)) ∩ M �= ∅.
Let γ (s, t) := η(1, k(s, t)) and

�0(s, t) := (〈I ′(k(s, t)), u+〉, 〈I ′(k(s, t)), u−〉)
= (〈I ′(su+ + tu−), u+〉, 〈I ′(su+ + tu−), u−〉)
:= (g1(s, t), g1(s, t))

and

�1(s, t) :=
(1
s
〈I ′(γ (s, t)), (γ (s, t))

+〉, 1
t
〈I ′(γ (s, t)), (γ (s, t))

−〉
)
.

It is noticed that, by ( f3), we have

f ′(s)s2 − 3 f (s)s > 0 for s �= 0. (3.4)

Let

M =
[

∂g1(s,t)
∂s |(1,1) ∂g2(s,t)

∂s |(1,1)
∂g1(s,t)

∂t |(1,1) ∂g2(s,t)
∂t |(1,1)

]
,

then it follows from u ∈ M and (3.4) that

det M = ∂g1(s, t)

∂s
|(1,1) × ∂g2(s, t)

∂t
|(1,1) − ∂g1(s, t)

∂t
|(1,1) × ∂g2(s, t)

∂s
|(1,1) > 0.

Therefore, by degree theory, we conclude that�1(s0, t0) = 0 for some (s0, t0) ∈ D,
so that η(1, k(s0, t0)) = γ (s0, t0) ∈ M. That is, we get a contradiction with (3.3).

Therefore, u is a sign-changing solution for problem (1.1). ��
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Next, we prove that the energy of u is strictly larger than that of the ground state
energy.

Proof of Theorem 1.2 With a similar argument to the proof of Lemma 2.4, we can
obtain that there is μ	

1 > 0 such that for all μ ≥ μ	
1, there exists v ∈ N such that

I (v) = c∗ > 0. By standard arguments, the critical points of the functional I on N
are critical points of I in X0 and we obtain I ′(v) = 0. That is, v is a ground state
solution of problem (1.1).

From Theorem 1.1, for all μ ≥ μ	, the problem (1.1) has a ground state sign-
changing solution u.

Set μ		 = max{μ	,μ	
1}. Similar as the proof of Lemma 2.2, there are su+ , tu− ∈

(0, 1) such that

su+u+ ∈ N , tu−u− ∈ N .

Therefore, in view of Lemma 2.2, we have that

2c∗ ≤ I (su+u+) + I (tu−u−) ≤ I (su+u+ + tu−u−) < I (u+ + u−) = cμ.

Meanwhile, we conclude that c∗ cannot be achieved by a sign-changing function.
��

Remark 3.1 We believe that, by using the abstract tools contained in [15,16], some
additional existence results for Kirchhoff-type equation can be obtained. Further-
more, in our opinion, the same strategy can be useful studying a wide class of elliptic
problems.
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