
Complex & Intelligent Systems (2022) 8:141–161
https://doi.org/10.1007/s40747-021-00354-5

ORIG INAL ART ICLE

Amemetic discrete differential evolution algorithm for the distributed
permutation flow shop scheduling problem

Fuqing Zhao1 · Xiaotong Hu1 · Ling Wang2 · Zekai Li1

Received: 24 September 2020 / Accepted: 25 March 2021 / Published online: 10 April 2021
© The Author(s) 2021

Abstract
The distributed manufacturing has become a prevail production mode under the economic globalization. In this article, a
memetic discrete differential evolution (MDDE) algorithm is proposed to address the distributed permutation flow shop
scheduling problem (DPFSP) with the minimization of the makespan. An enhanced NEH (Nawaz–Enscore–Ham) method is
presented to produce potential candidate solutions and Taillard’s acceleration method is adopted to ameliorate the operational
efficiency of the MDDE. A new discrete mutation strategy is introduced to promote the search efficiency of the MDDE. Four
neighborhood structures, which are based on job sequence and factory assignment adjustment mechanisms, are introduced to
prevent the candidates from falling the local optimumduring the search process. A neighborhood searchmechanism is selected
adaptively through a knowledge-based strategy which focuses on the adaptive evaluation for the neighborhood selection. The
optimal combinations of parameters in the MDDE algorithm are testified by the design of experiment. The computational
results and comparisons demonstrated the effectiveness of the MDDE algorithm for solving the DPFSP.

Keywords Distributed permutation flow shop scheduling · Neighborhood structures · Differential evolution · Knowledge ·
Makespan

Introduction

In the context of globalization, intelligent manufacturing
has become a common production mode. With the increas-
ing cooperation between factories, distributedmanufacturing
systems have been widely applied [1,2]. The distributed
scheduling contributes to reduce the management risk and
improve the efficiency of transportation [3,4]. Among vari-
ous types of scheduling problems, the flow shop scheduling
problem has attracted widespread attention from researchers

B Fuqing Zhao
Fzhao2000@hotmail.com

Xiaotong Hu
huxt826@163.com

Ling Wang
wangling@tsinghua.edu.cn

Zekai Li
410379065@qq.com

1 School of Computer and Communication Technology,
Lanzhou University of Technology, Lanzhou 730050, China

2 Department of Automation, Tsinghua University, Beijing
10084, China

[5,6]. The permutation flow shop scheduling problem (PFSP)
is one of the classic combinatorial optimization problems,
which has been proved as an NP-hard problem [7,8]. Due
to its importance in engineering applications and academic,
certainmethods have been proposed to solve the PFSP [9,10].

The distributed permutation flow shop scheduling prob-
lem (DPFSP) is a generalization of classical permutation
flow shop scheduling problem, which is used to fill the
gap between practical application and academic research
[5,11], as shown in Fig. 1. The DPFSP is expressed as
DP/prmu/Cmax , where DP represents the distributed fac-
tory; prmu represents permutation features, and Cmax rep-
resents the target is to minimize the maximum completion
time. In the DPFSP, there are F factories with the same m
machines. In addition to the constraints of PFSP, DPFSP
also stipulates that once a job is assigned to a factory, it
is not allowed to be re-distributed. The processing times of
the jobs do not differ between factories [12,13]. This addi-
tional dimension minimizes the maximum global makespan
of Ffactories to determine the jobs that should be assigned
to each factory. Therefore, from the specific situation of
F = 1 in [14], DPFSP is a typical PFSP problem. For
DPFSP, several integer linear programming models and two

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40747-021-00354-5&domain=pdf
http://orcid.org/0000-0002-7336-9699


142 Complex & Intelligent Systems (2022) 8:141–161

Task assignment

 Machine A-1 Machine A-2 Machine A-3 ...

PFSP constraint

Machine B-1 Machine B-2 Machine B-3

PFSP constraint

...

Machine C-1 Machine C-2 Machine C-3

PFSP constraint

...

Production center A

Production center B

Production center C

 ...

...

...

Task assignment

 Machine A-1 Machine A-2 Machine A-3 ...

PFSP constraint

Machine B-1 Machine B-2 Machine B-3

PFSP constraint

...

Machine C-1 Machine C-2 Machine C-3

PFSP constraint

...

Production center A

Production center B

Production center C

 ...

...

...

Fig. 1 The production model in distributed environment

factory assignment methods based on dispatching rules were
proposed by Naderi [11]. Recently, several meta-heuristics
have been developed to solve the DPFSP, including Iterated
Greedy Algorithm (IG) [15,16], Estimation of Distributed
Algorithm (EDA) [1], Discrete Artificial Bee Colony (ABC)
and Iterated Local Search Algorithm (ILS) [13]. Differential
Evolution Algorithms have rarely been studied to solve the
DPFSP.

Differential evolution (DE) algorithm [17] is an intelligent
optimization algorithm, including three critical components,
mutation, crossover, and selection. In DE, three operations
are repeated after population initialization until the termi-
nation condition is satisfied. The convergence result of DE
is mainly determined by the mutation operation and the
crossover operation [18,19]. To improve the performance of
DE, researchers have proposed a series of improvement mea-
sures from the aspects of mutation strategy, population size,
parameter design and fusion of other algorithms.

In terms of mutation strategy, Zhang and Sanderson [20]
proposed a new mutation strategy “DE/current-to-pbest ”
to update the scale factor in an adaptive way to enhance
the optimization performance (JADE). The jSO [21] is a
variant of iL-SHADE algorithm [22] and it is the winner
algorithm in the CEC2017 benchmark. In the jSO, a muta-
tion strategy named “DE/current-to-pBest-w/1” is proposed.
For the size of the population, Tanabe and Fukunaga pro-
posed an adaptive algorithm (LSHADE) [23], which is based
on linear population size reduction (LPSR). In LSHADE,
the LPSR rule is applied to save expensive evaluations.
For the parameters, Mohamed, Hadi, Fattouh and Jambi
proposed LSHADE-SPACMA [24], which adopted a semi-
parametric adaptive method based on randomization and
self-adaptation. Furthermore, a hybridization framework is
introduced between the modified versions of LSHADE-SPA

and the Covariance Matrix Adaptation Evolution Strategy
(CMA-ES). In recent years, DE has been fused with other
algorithms to improve its performance. The search mech-
anism of DE is introduced into the Biogeography-Based
Optimization algorithm (BBO) to improve the anti-rotation
of the algorithm (TDBBO) [25]. The simulation results of
TDBBO based on the CEC2017 benchmark test suit show
that TDBBO has better accuracy and convergence speed than
the most advanced BBO. In the Gravitational Search Algo-
rithm (GSA), the crossover and mutation operations of DE
are used to realize the diversity of population,which is named
SGSADE [26].

DE and its variant algorithms have been widely used in
production scheduling problems. The IDESAA algorithm
which was integrated with the simulated annealing (SA) and
DE was proposed by Xiuli and Xiajing [27] to solve the dis-
tributed flexible job-shop scheduling problem. A hybrid DE
algorithm based on set model (eEDA) with distribution esti-
mation algorithm is proposed by Zhou et al. [28] to solve
the scheduling problem of reentrant hybrid flow shop. A dis-
crete differential evolution (DDE) algorithm was designed
by Zhang et al. [29] to solve the distributed blocking flow-
shop scheduling. In the following research work, the author
designed a CDE algorithm based on DDE to solve the dis-
tributed limited-buffer flow shop scheduling problem [30].
Wang et al. [31] proposed a novel hybrid discrete differen-
tial evolution (HDDE) algorithm for solving the blocking
flow-shop scheduling problem. In HDDE, the permutations
between jobs are discrete, thus the algorithm is directly oper-
ated in the discrete domain. Furthermore, a local search
strategybasedon the inserted neighborhood structure is intro-
duced into the algorithm to enhance the ability of local search.

Inspired by the framework of MDDE, the MDDE is pro-
posed to address the DPFSP. The search operator of the

123



Complex & Intelligent Systems (2022) 8:141–161 143

general heuristic is randomly searched during the prime
search process, which leads to the phenomenon of unde-
sirable search efficiency. In general, the effectiveness in
the search process is promoted by the previously acquired
prior knowledge. An effective method of decomposition and
coordination is formed by cooperative optimization. First, a
constructive method named DNEH+T is used to create ini-
tial population for the MDDE. Second, a discrete mutation
strategy is proposed to generate new solutions. Finally, four
neighborhood search mechanisms and local search strategies
are embedded in the MDDE to further improve the quality of
solutions. Meanwhile, an appropriate neighborhood search
mechanism is adaptively selected by a knowledge-based opti-
mization strategy and is applied to promote the global search
capacity of the MDDE.

The effectiveness of the four integration strategies in the
MDDE are demonstrated by the experimental results. The
contributions in this study are summarized as follows.

– An improvedNEHmethod is designed to generate poten-
tial candidate solution and the Taillard’s acceleration
method is adopted to ameliorate the efficiency of the
insertion process for jobs.

– A new discrete mutation strategy is proposed for MDDE
algorithm to ameliorate the exploration ability. In the dis-
crete mutation strategy, the best solution information is
used to balance the diversity of population and the greed-
iness of mutation.

– Four neighborhood structures based on job sequence and
factory assignment adjustment mechanisms are designed
to enhanced the search around the current best candi-
date solution. Furthermore, an appropriate neighborhood
searchmechanism is adaptively selected by a knowledge-
based optimization strategy.

The structure of this study is as follows. The definition
and details of DPFSP and the traditional DE are introduced
in “Background”. The proposed MDDE algorithm are intro-
duced in “MDDE for DPFSP with minimizing makespan”.
The related experimental analysis and discussion are in “The
experiments and comparisons”. The conclusion and future
works are suggested in “Conclusions and future research”.

Background

The distributed permutation flow shop scheduling
problem

According to the literature [32], the DPFSP is described
as follows. A set of jobs J is processed in F factories,
where J = j1, j2, . . . , jn and F = f1, f2, . . . , fl . Each

factory includes an identical flow shop with M machines,
M = m1,m2, . . . ,mm . In each factory, the operation of jobs
j onmachine i is denoted as Oi j . One job is processed on the
only one machine at a time and each job has to go through
all the machines in the factory to which it is assigned. In
addition, each operation is not interrupted once it started.
The setting time of the machine and the transmission time
between operations are not considered. The notations in this
study are shown as follows.

i Index for machines where i = 1, 2, . . . ,m
ω The scaling factor
j Index for jobs where j = 1, 2, . . . , n
F The number of factories
f Index for factories where f = 1, 2, . . . , l
Cr Crossover rate
n The number of jobs
N P The population size
m The number of machines
P1 Neighborhood search random value
Pj,i The processing time of operation O( j, i) on machine Mi
Avg The average
Ii,k, f The idle time
Wi,k, f Indicates the completion time of the job in position k

on machine i in factory f
X j,k, f Binary variable that takes values 1 if job j occupies

position k in factory f , and 0 otherwise

In this study, the purpose is to minimize the maximum
completion time (completion time) with the sequence of jobs
in the assigned factory. DPFSP detailed mixed-integer pro-
gramming model is shown in the literature of Naderi and
Ruiz [11]. Therefore, the maximum completion time mini-
mization is calculated as follows.

minCmax (1)
n∑

k=1

F∑

f=1

X( j, k, f ) = 1,∀ j (2)

n∑

j=1

F∑

f=1

X( j, k, f ) = 1,∀k (3)

Ii,k, f +
n∑

j=1

·Pj,i + Wi,k+1, f − Wi,k, f

−
n∑

j=1

X( j, k, f ) · Pj,i+1− Ii+1,k, f =0,∀k<n,i<m, f

(4)

C f =
m−1∑

i=1

n∑

j=1

X( j, 1, f ) · Pj,i +
n−1∑

k=1

I(m, k, f )

+
n∑

j=1

n∑

k=1

X( j, k, f ) · Pj,m,∀ f (5)

123



144 Complex & Intelligent Systems (2022) 8:141–161

Fig. 2 The example of DPFSP

Cmax ≥ C f ,∀ f (6)

Ii,k, f ≥ 0,∀i,k<n, f (7)

Wi,k, f ≥ 0,∀k,i<m, f (8)

X j,k, f ∈ {0, 1},∀ j,k, f (9)

The constraint set (2) ensures that each job is assigned
to only one location in a factory. All n positions that must
occupy nF are indicated in the constraint set (3). The con-
straint set (4) is expressed as the idle time of the machine
i after the job execution is completed at the position k of
the factory f and before the job processing is started at the
position k + 1, where k ≤ n. The completion time of differ-
ent factories is expressed in the constraint set (5), while the
completion time of the entire problem is represented by the
constraint set (6). Constraint sets (7)–(9) define the decision
variables. The constraint sets (7) and (8) ensure that the com-
pletion time of each job and the machine idle time before the
next job which is processed are non-negative.

Comparedwith traditional single factory scheduling prob-
lem, scheduling problem in distributed factory is more
complex. n jobs need to be assigned to F suitable facto-
ries. The possible combination for assigning jobs to factory
f1 is

( n
f1

)
and there are f1! sequences in each of the com-

binations. fh represents the number of jobs assigned to
factory h.The result of n jobs assigned to F factories is
( n
f1

)
f1! × (n− f2

f2

)
f2! × · · · × (n−∑F−1

h=1 fh
fF

)
fF ! . The result of

the problem is n!.
In addition, there are different ways to assign n jobs to F

different factories. The number of these methods is
(n+F−1

F−1

)
.

So, the complexity of the DPFSP is
(n+F−1

F−1

)
n!.

Factory 1: The maximum completion time Cmax of the job
sequence 1, 2, 3 is 41.

Factory 2: The maximum completion time Cmax of the job
sequence 4, 5, 6 is 37. So, the maximum comple-
tion time in the example is 41.

When the number of jobs is 6 and the number of factories is
2, the DPFSP problem complexity is 5040.

f(1)(6, 2) =
(
6 + 2 − 1
2 − 1

)
6! =

(
7
1

)
6! = 7 ∗ 720 = 5040

Brief introduction to DE algorithm

Traditional DE algorithm is an intelligent metaheuristic
method introduced by Storn and Price [17]. The convergence
result of DE is mainly determined by the mutation operator
and the crossover operator. Starting from the random ini-
tialization of individuals in the population, it creates new
candidate solutions by mutation strategy and crossover oper-
ator, and then the selection operators are used to determine
the next generation of target individuals. Furthermore, the
control parameters of DE play an important role in balanc-
ing the convergence speed of the algorithm and diversity of
population, such as population size N P , scaling factor ω,
crossover rate Cr . The basic DE algorithm process is proce-
dure as follows.

Step 1: Initialization phase. The algorithm randomly gener-
ates NP particles to form the initial population and
set the parameters.

Step 2: Mutation phase. Mutation vector vi,g is created in
DE using the “DE/rand/1” mutation strategy. Two
vectors are randomly selected in “DE/rand/1”. The
differenceof the twovectors ismultipliedby the scal-
ing factor ω and added to a third randomly selected
vector as follows.

vi, j = xr1, j + ω · (vr2, j − vr3, j ), r1 �= r2 �= r3 �= i (10)

where r1, r2, and r3 are different from each other and
randomly selected indexes of the [1, N P].

Step 3: Crossover phase. Themutation vector vgi,g generated
by the mutation operation is used for crossover oper-
ation to generate a trial vector ugi,g .

ugi, j =
{
vgi, j , if(rand(0, 1) ≤ Cr or j = jrand)
xgi, j , otherwise

(11)

where i ∈ [1, N P] and j ∈ [1, D], Cr ∈ [0, 1]
is crossover rate, a random integer uniformly dis-
tributed in [1, D] is represented by jr and, D is the
dimension of the search space.

Step 4: Selection phase. The options are as follows.

xg+1
i =

{
ugi , if( f (u

g
i ) < f (xgi ))

xgi , otherwise
(12)

123



Complex & Intelligent Systems (2022) 8:141–161 145

Step 5: If a stopping criterion is not satisfied, the result is
output; otherwise it returns to step 2.

MDDE for DPFSP withminimizingmakespan

The DE algorithm was originally designed to solve the con-
tinuous optimization problem, it is not used to directly gener-
ate discrete job sequences. Therefore, the MDDE algorithm
for solving the problem of blocking flow shop scheduling is
proposed by Wang et al. [27]. Inspired by the HDDE algo-
rithm, the MDDE algorithm for solving the DPFSP with a
makespan criterion is presented. The details of MDDE algo-
rithm details include population initialization, mutation and
crossover operator design, local search and variable neigh-
borhood search, and elite retention strategies.

Initial population of DNEH+T

The principle of distributing two kinds of jobs to the factories
is proposed by Naderi and Ruiz [11]. The first is to assign the
job to the factory with the lowest current makespan, exclud-
ing the inserting job (denoted as NEH1). The second is the
lowest current makespan (denoted NEH2) after the job is
assigned to the factory. The “NEH” is the Nawaz–Enscore–
Ham algorithm which is one of the most effective heuristic
algorithms. An improved NEH (DNEH + Dipak) was pro-
posed by Shao et al. [4] to solve the distributed no-wait flow
shop scheduling problem (DNWFSP).

In this study, a modified version of DNEH + Dipak is
applied to construct the initial population, which is named as
DNEH + T. The detail of DNEH + T method is described as
follows.

Supposing s is a sequence of k jobs to be assigned, assign-
ing the k jobs to two factories, the steps are as follows.

Step 1: According to the principle of the shortest processing
time (SPT Rule), the total processing time of each
job is arranged in ascending order, obtaining a new
sequence s

′
of jobs to be assigned.

Step 2: Insert the first two jobs of s
′
into the two factories,

respectively.
Step 3: Insert the third job of s

′
into all possible locations in

the two factories, respectively. Find the best factory
location for the job.

Step 4: Repeat the Step 3 until all jobs of s
′
have been allo-

cated.

In addition, the insertion process of jobs using Taillard’s
acceleration method [33] greatly increase the speed of oper-
ation. The pseudo-code of initial population is shown in
Algorithm 1. The detailed application rules of DNEH + T
are shown in Fig. 3.

Algorithm 1 DNEH+T
Calculate Pj = ∑m

i=1 pi, j , j = 1, 2, . . . , n
Sort all jobs in descending order according to Pj , denoted as σ =
[σ1, σ2, · · · , σn]
for k = 1 : n
insert the job σk in all possible
if the job number of the factory >2
for each job in this factory
insert the job in other positions of the factory
place the job in the position of the current factory with the lowest

makespan
end for

end if
end for

The job permutation-basedmutation operator

Mutation operator is one of the significant operators of DE
algorithms. A good mutation operator can prevent the algo-
rithm from falling into the local optimal solution, and makes
the algorithm perform well in solving speed and precision.
Inspired by the LSAHDE [21] algorithm, the mutation strat-
egy current− to− pbest/1 is used in theMDDE algorithm.

vi,g = xi,g ⊕ ω ⊗ (vpb,g − xi,g) ⊕ ω ⊗ (xr1,g − xr2,g)

(13)

where xpb,g is the best individual at the current generation
g. xr1,g and xr2,g are two different individuals at the current
population. xi,g is the individual involved in mutation. vi,g
is the offspring individual of xi,g by the mutation operation.
The definitions of ‘−’, ‘⊗’ and ‘⊕’ in Eq. (13) are separately
described as follows.

�1 = ω ⊗ (xr1,g − xr2,g)

⇔ σ j =
{
xr1,g − xr2,g, if rand(0, 1) < ω

0, otherwise.
(14)

�2 = ω ⊗ (xpb,g − xi,g)

⇔ π j =
{
xpb,g − xi,g, if rand(0, 1) < ω

0, otherwise.
(15)

where �1 and �2 are temporary vector.

vi,g = xi,g ⊕ �1 ⊕ �2 = mod((xi,g + �1 + �2 + n), n)

(16)

where ‘mod’ represents the mathematical operation of Mod.
n is the dimension of the individual. The detailed pseudo-
code of mutation operator is shown in Algorithm 2.

From Algorithm 2, vi,g does not represent a complete
sequence, as individual jobs are repeated multiple times or
lost. Mutant individuals are used to enhance the perturba-
tion to the target individuals to increase the exploitation and

123



146 Complex & Intelligent Systems (2022) 8:141–161

Fig. 3 The examples of Initial population

exploration ability of the algorithm. Therefore, the legiti-
mate target individuals are obtained through the following
crossover operators.

Crossover operator

The mutant individual Vi,g and the target individual xi,g−1

are combined to generate a trial individual ui,g by crossover

operator. The purpose of crossover operation is to transform
the unreasonable sequence of jobs produced by mutation
operation into reasonable sequence of jobs. The details are
as follows.

Assuming that vi is a sequence of repeated jobs produced
by the mutation operation, and xi is a sequence containing
non-repeated jobs. The length of vi and xi is n.

123



Complex & Intelligent Systems (2022) 8:141–161 147

Algorithm 2 Mutation operator
for pop = 1 : N P
The r1, r2 are randomly selected in the population N P , and r1 �= r2;
if rand() < ω

Calculate the values of σ j and π j ;
end if
The values of σ j and π j are 0;
Calculate vi,g according to Eq.(16);

end for

Fig. 4 The examples of crossover operators

Step 1: From j = 1 to n, if rand() > Cr or the job is not
the first time appear in vi , the job is deleted from vi .
Assigning vi that completes the step to Vi , that is,
Vi = vi .

Step 2: Remove jobs contained in Vi from xi and assigning
the xi that completes the step toUi , that is,Ui = xi .

Step 3: Each job is fetched from Vi and re-inserted to any
possible location inUi , until the best location for the
job is found.

The detailed process is shown in Fig. 4. Assuming that ui =
(5, 0, 2, 3, 5, 4) is the mutation sequence.

Switchingmechanism based on neighborhood
structures

The main ideas of neighborhood search are divided into the
following aspects. First, a local minimum in a neighborhood
structure is not necessarily applied to another neighborhood
structure. Second, the global optimal value is the local opti-
mal value involving all possible neighborhood structures.
Finally, for various problems, the local optimal values ofmul-

tiple neighborhoods are relatively close to each other [4]. In
the design of the neighborhood, supposing that if the sched-
ule in the factory of the largest makespan (represented as the
critical factory fc) is not changed, the solution makespan is
not reduced. In MDDE, four neighborhood structures are
introduced in this paper, improving the exploitation and
exploration ability of the algorithm. These neighborhood
structures are divided into two categories. One is assignment
based on factory, including Critical-swap-multi (N1) and
Critical-insert-multi (N2). The other is adjustment based on
job order, including Critical-swap-single (N3) and Critical-
insert-single (N4). An example of the four neighborhood
structures is shown in Fig. 5. The detailed descriptions of
the four neighborhood structures are as follows.

– N1: A job J is randomly selected from the fc factory.
Randomly select a job J f from other factories, and then
exchange the positions of J and J f respectively. Then,
F−1newsolutions are generated, and the current optimal
solution is selected as the next neighborhood for local
search.

– N2: A job J is randomly selected from the factory fc,
and insert it into a randomly selected position in other
factories.

– N3: Randomly select l jobs from the factory fc. A job
J is randomly selected from l jobs and exchanged with
other l − 1 jobs in the factory.

Neighborhood structure based local search

The local search takes a significant effect in theMDDE algo-
rithm. Four local search methods are used to improve the
solution as shown in Fig. 6. LS_insert_critical_factory1 and
LS_insert_critical_factory2 indicate that a job is taken from
the critical factory fc and inserted into all other factories or
critical factory. The location of the best makespan is chosen
for that factory. Each job in the critical factory is exchanged
with each job of another factory as shown in LS_swap.
LS_insert means that a pair of job taken from critical fac-
tory and non-critical factory and then they are inserted into
other factories respectively to find the best completion time.
The local search is terminated when the maximummakespan
is no longer improved.

TheMDDE algorithm

The general diagram of MDDE algorithm is shown in Fig. 7.
The detailed pseudo-code of MDDE is summarized in Algo-
rithm 3.

In the initialization stage, the DNEH+T method is intro-
duced to generate potential candidate solution. The improved
mutation strategies are used to assist in the exploration and

123



148 Complex & Intelligent Systems (2022) 8:141–161

f1

fc

f3

1 2 3 4

5 6 7 8 9

10 11 12 13 14

swap(6,4)

swap(6,12)

f1

fc

f3

1 2 3 4

5 6 7 8 9

10 11 12 13 14

swap(6,4)

swap(6,12)

1 2 3 4

5 6 7 8 9

10 11 12 13 14

insert(6, f1(4))

insert(6, f3(3))

1 2 3 4

5 6 7 8 9

10 11 12 13 14

insert(6, f1(4))

insert(6, f3(3))

f1

fc

f3

1 2 3 4

5 6 7 8 9

10 11 12 13 14

swap(6,5) swap(6,8)
f1

fc

f3

1 2 3 4

5 6 7 8 9

10 11 12 13 14

swap(6,5) swap(6,8)

1 2 3 4

5 6 7 8 9

10 11 12 13 14

insert(6, fc(1)) insert(6, fc(4))
1 2 3 4

5 6 7 8 9

10 11 12 13 14

insert(6, fc(1)) insert(6, fc(4))

Critical_swap_mulyi Critical_insert_mulyi Critical_swap_single Critical_insert_single

Fig. 5 Neighborhood structures of MDDE

f1

fc

f3

1 2 3 4

5 6 7 8 9

10 11 12 13 14

f1

fc

f3

1 2 3 4

5 6 7 8 9

10 11 12 13 14

f1

fc

f3

1 2 3 4

5 6 7 8 9

10 11 12 13 14

f1

fc

f3

1 2 3 4

5 6 7 8 9

10 11 12 13 14

f1

fc

f3

1 2 3 4

5 6 7 8 9

10 11 12 13 14

f1

fc

f3

1 2 3 4

5 6 7 8 9

10 11 12 13 14

f1

fc

f3

1 2 3 4

5 6 7 8 9

10 11 12 13 14

f1

fc

f3

1 2 3 4

5 6 7 8 9

10 11 12 13 14

LS_insert_critical_factory1 LS_insert_critical_factory2 LS_swap LS_insert

f1

fc

f3

1 2 3 4

5 6 7 8 9

10 11 12 13 14

f1

fc

f3

1 2 3 4

5 6 7 8 9

10 11 12 13 14

f1

fc

f3

1 2 3 4

5 6 7 8 9

10 11 12 13 14

f1

fc

f3

1 2 3 4

5 6 7 8 9

10 11 12 13 14

LS_insert_critical_factory1 LS_insert_critical_factory2 LS_swap LS_insert

Fig. 6 Local search methods of MDDE

Fig. 7 Generic diagram of MDDE

123



Complex & Intelligent Systems (2022) 8:141–161 149

Algorithm 3 The main procedure of MDDE
Input:Test function
Initialize population with DNEH+T strategy
Initialize operator ω, Cr and P1
while t ≤ T
for i = 1 : Np
Mutation operation
The trial individual ui,g is generated by the crossover operator.
if rand() ≤ P1
while k < Kmax
Select variable neighborhood search
while(flag)
Select local search

end while
k = k + 1

end while
end if
Greedy selection is used to preserve the local optimum.

end for
end while
Output Cmax

exploitation of the algorithms. A switching mechanism is
designed to determine whether to enter variable neighbor-
hood search after the crossover operation ofMDDE to reduce
the complexity of the algorithm. A switch probability P1 is
given and a random number between 0 and 1 is generated
after each mutation operation of the population. If the ran-
dom number is less than probability P1, the individual enters
variable neighborhood search and local search. The selec-
tion of neighborhood is also one of the important factors to
improve the search ability of the algorithm. Finally, the tar-
get individuals in the population are selected for the next
generation by greedy selection.

In this paper, the knowledgeused to guide search is divided
into two kinds: knowledge of problem and knowledge of
algorithm optimization.

For the distributed permutation flow-shop scheduling
problem, optimal sequence of jobs needs to be found to
minimize the maximum completion time. In the process of
algorithm search, it is easy to find multiple local optimal
solutions. In order to further optimize the current solution, it
is necessary to set the neighborhood structure of the solution.
A local optimum is optimal in a certain neighborhood, but it
may not be optimal after changing the neighborhood. At this
point, the solution has room for improvement. Therefore, the
design of reasonable neighborhood structure based on prob-
lem knowledge can guide the evolution of individuals.

The local search of variable neighborhood is the key oper-
ation in this algorithm. In this section, four neighborhood
structures are designed and a knowledge-based neighbor-
hood selection strategy is proposed. The feedback results
of local search in the neighborhood during the evolution
of the algorithm are extracted to decide whether to switch
neighborhoods or not. When there are still potential can-
didate solutions in the neighborhood, the local search is

continued in the neighborhood. The algorithm switches to
the next neighborhood to continue searching, when potential
candidate solution is not found in this neighborhood. The his-
torical information in the evolutionprocess of the algorithm is
extracted as a kind of guiding knowledge to switch neighbor-
hood search, which helps to further enhance the exploitation
ability of MDDE.

The experiments and comparisons

In this section, the optimal combinations of parameters in
the MDDE algorithm are testified by the DOE. Afterwards,
MDDE is compared with the other four state-of-the-art algo-
rithms. The computational simulation used the benchmark
proposed by Naderi and Ruiz [11], which is extension of
the Taillard [34] benchmark. The small instance problem of
DPFSP has been well solved by various algorithms, so the
algorithm in this study is used to solve the large instance of
DPFSP. The number of factories is set to F = 2, 3, . . . , 7.
More details are found at http://soa.iti.es.

Design of the experiments

The same experimental conditions are used in the exper-
iment, including the same stopping criteria and the same
programming language.All algorithms are programmedwith
MATLAB (2016b). The experiments run on a PC with 3.4
GHz Intel (R) Core i7-6700 CPU, 16GBRAMand 64-bit OS
to ensure the fairness of the algorithm. The average relative
percentage deviation (ARPD) index is used to measure the
results and is calculated as follows.

ARPD = 1

R
·

R∑

i=1

Ci − Copt

Copt
· 100 (17)

where Ci represents the solution generated by the specific
algorithm in the i th experiment of the given instance. R is
expressed as the number of runs. Copt is represented as the
optimal value of the results of all algorithms. ARPD repre-
sents the minimum found by all the algorithms in this paper.

In this study, the termination time of all comparison algo-
rithms is set to Tmax = n×m× f ×C millisecond (ms), and
the time-level C = 5, 15, 30. All comparison algorithms are
run independently 10 times on the benchmark function.

Parameters analysis

The parameter calibration experiments contribute to improve
the efficiency and performance of the algorithm because the
control parameters have an important influence inDE [35]. In
this section, the DOE method is used to determine a suitable

123

http://soa.iti.es


150 Complex & Intelligent Systems (2022) 8:141–161

Table 1 ANOVA results for parameter of MDDE

Source Sum of
squares

Degrees of
freedom

Mean square F-ratio P value

Cr 25.86 4 12.63 19.3 0.0044

ω 37.93 3 18.96 15.8 0.0216

P1 2.15 2 1.07 0.9 0.4145

N P 2.22 2 0.11 0.09 0.9116

Cr ∗ ω 5.02 4 1.26 1.05 0.3927

Cr ∗ P1 7.05 4 1.76 1.47 0.2257

Cr ∗ N P 5.16 4 1.29 1.08 0.3787

ω ∗ P1 0.51 4 0.13 0.11 0.9797

ω ∗ N P 1.81 4 0.45 0.38 0.8229

P1 ∗ N P 4.68 4 1.17 0.98 0.4291

Residual 57.53 48 1.99

Total 88.18 80

Fig. 8 Main effects plot of parameters

set of parameters for MDDE [32]. MDDE has four critical
parameters: Cr (crossover rate), ω (scaling factor), P1, N P
(population size). The selected parameters are as follows:
Cr ∈ 0.3, 0.5, 0.6, ω ∈ 0.5, 0.6, 0.7, P1 ∈ 0.2, 0.4, 0.5,
N P ∈ 20, 40, 50. The configurations of all possible com-
binations of the four parameters are 3 × 3 × 3 × 3 = 81.
Since the calibration algorithmusing the same example result
in over fitted results [36], 52 instances of randomly gener-
ated with various numbers of jobs, machines, and factories.
Each parameter combination is executed 5 times. Following
the literature [37], the experimental results are analyzed by
the multivariate analysis of variance (ANOVA). In the DOE
experiment, the parameters have a distinctiveness effect on
the algorithm, when the confidence level of the P value is
less than 0.05. The results of ANOVA are reported in Table
1.

After running all parameter configurations, the results
show that the parameters P1 and N P have no significantly
effect on MDDE. According to the results from Table 1, the
P values of parametersCr and ω are less than the confidence
level (α = 0.05), indicating that these parameters have a

greater impact onMDDE than other parameters. Meanwhile,
the parametersCr corresponds to the greatest F-ratio. It sug-
gests that the parameters Cr have the greatest effect on the
average performance of MDDE among all factors of consid-
eration. From Fig. 8, the parameters are selected as follows:
Cr = 0.5, ω = 0.5, P1 = 0.4, and N P = 50.

Analysis and discussion

In this study, the proposed MDDE algorithm is compared
with the four optimal competitive algorithms for FSFP. The
details of four comparison algorithms are described as fol-
lows.

– In the HDDE algorithm [31], discrete mutation and
crossover operators, and local search are used to solve
the problem of blocking flow shop scheduling.

– An efficient hybrid DDE algorithm is used to solve dis-
tributed blocking flow shop scheduling problem, includ-
ing a unique elitist retain strategy and a biased selection
operator [29].

– The CDE algorithm is used to solve the distributed finite
buffer flow shop scheduling problem, using two construc-
tive heuristics to create excellent initialization [30].

– A two-stage Iterated greedy algorithm [5] is used to
solve the distributed permutation flow shop schedul-
ing problem, which includes construction improvement,
destruction procedures, and a local search.

The MDDE algorithm is used to test on 720 large-scale
instances. TheARPDvalues grouped by the number of facto-
ries F are listed in Table 2, 3 and 4, where the best results are
shown in boldface. From Table 2, 3 and 4, the performance
of MDDE is better than other variants on the most instances.
The reason is that MDDE algorithm uses a knowledge-based
ensemble strategy,which improves the search accuracy of the
algorithm. The mean and 95% Fisher’s least-significant dif-
ference (LSD) interval for MDDE is presented in Fig. 9, 10
and 11. Therefore, the proposed MDDE algorithm is slightly
better than the other four comparison algorithms.

Statistical tests show thatMDDEalgorithmhas significant
improvement compared with the comparison algorithms. In
this study, Wilcoxon’s sign rank test [38] is selected for non-
parametric statistical tests. From Table 5, R+ represents that
the sum of ranks for the functions of MDDE is better than
the comparison algorithm in the row, and R− represents that
the sum of ranks the functions of the comparison algorithm
is superior to the MDDE.

It is worth noting that in pair-wise comparison, MDDE is
the first algorithm in the row. The statistical results are listed
in Table 5, MDDE is significantly better than the other four
comparison algorithms in the case of C = 15.

123



Complex & Intelligent Systems (2022) 8:141–161 151

Table 2 Calculation results of ARPD value with C = 5

n*m F2 F3 F4

HDDE DDE CDE IG MDDE HDDE DDE CDE IG MDDE HDDE DDE CDE IG MDDE

20*5 1.482 1.539 1.812 0.296 0.213 1.55 2.448 1.83 0.309 0.282 1.832 1.774 2.585 0.558 0.202

20*10 2.004 2.143 2.623 0.293 0.31 2 1.353 1.954 0.18 0.274 2.08 1.632 2.199 0.349 0.158

20*20 1.118 1.885 1.585 0.137 0.241 1.374 1.463 1.421 0.241 0.284 1.05 2.078 1.852 0.325 0.213

50*5 2.408 1.293 0.658 0.488 0.423 3.549 1.14 0.829 0.723 0.217 4.252 0.705 1.406 0.207 0.319

50*10 2.713 1.068 1.739 0.656 0.215 3.528 0.962 1.672 0.173 0.287 3.814 1.674 1.688 0.233 0.319

50*20 3.163 1.564 1.633 1.003 0.081 2.849 1.297 1.055 0.252 0.213 3.215 1.598 1.577 0.346 0.264

100*5 1.42 0.75 0.499 0.28 0.022 2.548 0.483 0.62 0.397 0.168 3.797 0.838 0.975 0.523 0.325

100*10 3.154 1.272 0.979 0.792 0.038 4.006 0.966 1.348 0.84 0.126 4.572 1.042 1.574 0.654 0.225

100*20 3.34 1.61 1.063 1.286 0.062 3.565 1.102 0.943 0.945 0.057 3.677 0.975 1.017 0.551 0.199

200*10 2.416 0.644 0.825 0.659 0.095 3.448 0.889 1.059 0.868 0.079 4.064 0.905 1.101 0.825 0.076

200*20 3.205 1.033 1.006 1.001 0.025 3.949 1.216 0.986 1.026 0.004 3.995 0.742 0.724 1.054 0.055

500*20 3.01 0.777 1.183 1.023 0.793 2.963 0.423 0.406 0.529 0.34 3.819 0.525 0.795 0.72 0.219

Avg 2.45 1.3 1.3 0.66 0.21 2.94 1.15 1.18 0.54 0.19 3.35 1.21 1.46 0.53 0.21

n*m F5 F6 F7

HDDE DDE CDE IG MDDE HDDE DDE CDE IG MDDE HDDE DDE CDE IG MDDE

20*5 1.395 2.24 2.341 0.681 0.347 1.777 4.442 4.606 1.789 0.219 1.624 2.925 3.394 4.786 0.137

20*10 1.717 1.841 3.712 0.665 0.22 1.738 2.882 3.514 2.336 0.288 1.479 4.48 5.013 4.756 0.195

20*20 0.894 2.819 2.093 0.762 0.343 1.084 2.95 2.705 1.933 0.236 0.705 2.093 4.185 3.71 0.266

50*5 5.307 2.222 1.244 0.087 0.598 5.486 2.058 2.513 0 0.604 5.78 2.548 2.161 0.037 0.462

50*10 4.482 1.895 1.505 0.147 0.49 4.364 2.294 1.93 0.127 0.529 4.45 2.441 1.583 0.069 0.391

50*20 3.517 1.555 1.687 0.2 0.448 3.627 1.836 1.909 0.067 0.482 3.628 1.537 1.649 0.021 0.538

100*5 4.468 0.676 0.875 0.19 0.364 5.142 0.964 1.057 0 0.517 5.724 1.437 1.811 0.134 0.301

100*10 4.73 1.057 0.768 0.198 0.254 5.004 1.167 1.3 0.053 0.411 5.128 1.576 1.163 0.031 0.612

100*20 3.997 0.994 1.007 0.352 0.046 4.1 1.264 1.492 0.169 0.328 4.031 1.228 1.29 0.037 0.392

200*10 4.299 0.849 0.787 0.625 0.127 4.721 0.74 1.351 0.561 0.059 4.896 0.767 1.006 0.32 0.16

200*20 4.164 0.92 0.835 0.879 0.097 4.215 0.697 0.821 0.479 0.181 4.299 0.811 0.916 0.474 0.06

500*20 4.037 0.806 0.889 0.552 0.141 3.831 0.573 0.946 0.454 0.277 4.166 0.624 0.903 0.607 0.159

Avg 3.58 1.49 1.48 0.44 0.29 3.76 1.82 2.01 0.66 0.34 3.83 1.87 2.09 1.25 0.31

In 120 instances, the ARPD of MDDE is smaller than that
of the HDDE, DDE, CDE and IG, which means that MDDE
has obtained a better solution. The classical trend graphs of
MDDE and the comparison algorithms are shown in Figs. 12,
13, 14, 15, 16 and 17. In these figures, the horizontal axis
represents the index of the instances in the test suit, and the
vertical axis represents the test results obtained by MDDE
and the four comparison algorithms on all the instances. In
this paper, the algorithm is tested on 120 instances when
F = 2, F = 3, F = 4, F = 5, F = 6, F = 7 respectively.
There are 120 points on the horizontal axis, and each point
corresponds to the ARPD value of the five algorithms. Since
the 120 instances are not related to each other, the ARPD
value on each instance of the algorithm has no correlation.

Bonferroni–Dunn test andFriedman’s test are addressed to
further illustrate the significant differences between MDDE

and the four comparison algorithms, as shown in Figs. 18,
19, 20 and 22. The ARPD values between different plants
are compared in Figs. 18, 19, 20 and 22, and the maximum
runtime is set to Tmax = n×m× f ×15ms. To assess the sig-
nificance level of MDDE and other comparison algorithms,
the Bonferroni–Dunn test is used to calculate the critical dif-
ferences between the algorithms to compare their differences
with α = 0.05 and α = 0.1. Although there is no significant
difference betweenMDDE and the comparison algorithms in
individual cases, the rank ofMDDE is the smallest among all
the test cases. From Figs. 18, 19, 20, 21 and 22, the proposed
MDDE algorithm ranks first in all dimensions.

The effectiveness of discrete mutation strategy, the neigh-
borhood structures and local search method are validated
by the above experimental analysis. Furthermore, compared
with the state-of-the-art algorithms from the literatures, the

123



152 Complex & Intelligent Systems (2022) 8:141–161

Table 3 Calculation results of ARPD value with C = 15

n*m F2 F3 F4

HDDE DDE CDE IG MDDE HDDE DDE CDE IG MDDE HDDE DDE CDE IG MDDE

20*5 1.129 2.475 1.151 0.401 0.611 1.186 2.137 1.272 0.018 0.458 1.801 2.883 2.677 1.366 0.872

20*10 1.867 2.41 2.199 0.334 0.403 1.397 2.645 2.499 0.193 0.373 1.358 2.06 2.587 0.162 0.16

20*20 0.823 2.152 1.632 0.092 0.419 1.022 2.132 1.516 0.165 0.151 0.834 1.874 2.298 0.213 0.26

50*5 1.866 0.748 1.194 0.169 0.415 3.267 1.481 1.486 0.315 0.069 4.039 1.515 1.577 0.036 0.427

50*10 2.527 1.574 2.014 0.278 0.318 3.328 1.954 1.456 0.178 0.403 3.785 1.737 1.071 0.017 0.447

50*20 2.266 1.523 1.17 0.085 0.297 2.901 1.403 1.716 0.157 0.432 3.199 1.766 1.746 0.151 0.439

100*5 1.227 0.396 0.424 0.144 0.149 2.361 0.63 1.025 0.469 0.148 3.119 0.814 0.644 0.21 0.164

100*10 2.655 0.993 0.683 0.719 0.099 3.605 1.215 1.488 0.67 0.009 4.47 1.365 1.29 0.401 0.26

100*20 2.82 0.922 0.857 0.955 0.018 3.044 0.793 1.193 0.501 0.01 3.299 0.828 1.114 0.089 0.221

200*10 2.193 0.805 0.442 0.605 0.022 3.062 0.596 0.781 0.636 0 3.895 0.997 0.939 0.82 0.065

200*20 3.286 0.991 0.963 1.232 0.103 3.764 1.064 0.815 0.918 0.073 3.728 0.44 1.16 0.513 0.089

500*20 2.9 1.026 0.561 0.969 0.731 3.294 0.868 0.833 1.034 0.02 3.684 0.809 1.1 0.855 0.052

Avg 2.13 1.33 1.11 0.5 0.3 2.69 1.41 1.34 0.44 0.18 3.1 1.42 1.52 0.4 0.29

n*m F5 F6 F7

HDDE DDE CDE IG MDDE HDDE DDE CDE IG MDDE HDDE DDE CDE IG MDDE

20*5 0.969 2.908 2.341 1.073 0.239 1.545 3.746 4.416 2.99 0.279 1.63 4.98 4.918 3.65 0.531

20*10 1.712 2.159 2.642 0.686 0.115 1.792 3.366 3.62 2.477 0.031 1.274 3.512 5.4 3.133 0.035

20*20 0.676 2.507 2.659 1.118 0.07 0.56 2.026 2.924 1.779 0.147 1.028 4.179 4.986 4.279 0.324

50*5 5.048 1.812 1.953 0 0.755 5.627 2.961 2.036 0.016 0.752 5.556 2.296 2.896 0.038 0.84

50*10 4.103 2.015 1.565 0.058 0.496 4.568 2.18 1.955 0.044 0.448 4.607 2.084 2.319 0.046 0.414

50*20 3.327 1.737 1.77 0 0.414 3.756 1.574 1.562 0.053 0.515 3.922 2.135 1.705 0.343 0.534

100*5 4.209 0.734 1.104 0.06 0.128 4.657 1.226 1.247 0.047 0.342 5.661 1.253 1.901 0.023 0.388

100*10 4.748 1.339 0.996 0.234 0.132 4.923 1.53 1.511 0.135 0.34 5.257 1.879 0.879 0.276 0.518

100*20 3.888 0.979 1.078 0.108 0.24 3.991 1.043 1.462 0.025 0.248 4.223 1.127 1.44 0 0.363

200*10 4.548 0.987 0.868 0.815 0.24 4.432 0.754 0.975 0.275 0.113 4.891 0.924 0.847 0.14 0.175

200*20 4.013 0.976 0.643 0.392 0.147 4.254 1.21 0.617 0.247 0.145 4.502 1.06 1.611 0.099 0.468

500*20 4.124 0.968 0.922 0.714 0.022 4.172 1.156 1.082 0.844 0.069 4.153 0.865 0.995 0.597 0.106

Avg 3.45 1.59 1.55 0.44 0.25 3.69 1.9 1.95 0.74 0.29 3.89 2.19 2.49 1.05 0.39

proposed MDDE algorithm for solving the DPFSP is effec-
tive. The main reasons are summarized as follows.

First, the DE algorithm is an efficient intelligent opti-
mization algorithm, which has been applied in various
fields. Although DE is sensitive to parameters including
the crossover rate and mutation factor, it generally provides
excellent results on various complex problems. In addition,
an excellent initial solution assists the algorithm in increas-
ing the diversity of the population to discover the potential
candidate solution. A poor initial population unnecessarily
increases the number of searches or causes the algorithm to
converge at local optima. In MDDE, the constructive DNEH
+ T method is used to initialize the population to increase
the population diversity, and the Taillard’s method is used to
speed up the operational efficiency of the algorithm.

Third, the neighborhood search is one of the important
factors which affect the performance of the algorithm. In
MDDE, an appropriate neighborhood search mechanism is
adaptively selected by a knowledge-based optimization strat-
egy, which enhances the global search ability of the proposed
algorithm. The experiments show that each local search
method plays a different role in the overall performance of the
algorithm. Since various local search methods are explored
in different solution spaces, the mixing local search helps to
avoid local optimum. At the same time, the results prove that
this integration strategy is better than a single local search
strategy.

It is noteworthy that the ensemble strategy focuses on
improving the global search capability in the stage of explo-
ration, including the discrete mutation strategy, neighbor-
hood search and local search. Individuals in the population

123



Complex & Intelligent Systems (2022) 8:141–161 153

Table 4 Calculation results of ARPD value with C = 30

n*m F2 F3 F4

HDDE DDE CDE IG MDDE HDDE DDE CDE IG MDDE HDDE DDE CDE IG MDDE

20*5 0.556 2.296 1.593 0.122 0.25 0.789 1.524 2.281 0.248 0.53 1.073 1.909 2.269 0.519 0.297

20*10 0.871 1.783 2.188 0.084 0.6 0.953 2.78 2.595 0.025 0.664 0.679 1.858 2.633 0.081 0.508

20*20 0.871 2.157 2.07 0 0.428 0.739 1.699 1.509 0.014 0.614 0.578 1.511 2.041 0.177 0.544

50*5 1.706 1.271 1.694 0.467 0.089 2.812 1.288 2.054 0.353 0.133 3.993 1.635 1.994 0.177 0.036

50*10 2.523 2.41 1.706 0.452 0.029 3.339 1.555 1.937 0.254 0.356 3.497 2.141 1.891 0.044 0.594

50*20 2.347 1.516 1.866 0.265 0.043 2.705 1.525 1.517 0.051 0.229 2.93 1.646 1.956 0 0.588

100*5 1.213 0.706 0.689 0.347 0.004 2.07 0.81 0.788 0.388 0 3.221 1.009 1.183 0.28 0.057

100*10 3.11 1.601 1.658 1.051 0 3.873 1.625 1.646 0.852 0 4.225 1.814 1.765 0.367 0

100*20 3.709 2.338 2.375 1.878 0 3.817 2.236 2.321 1.346 0 4.185 1.763 1.654 0.839 0.06

200*10 2.754 1.176 1.201 1.269 0.108 3.664 1.754 1.667 1.476 0.054 4.336 1.755 1.61 1.528 0.156

200*20 4.071 2.051 1.911 2.178 0.024 4.411 1.828 1.943 1.98 0.017 4.609 1.845 2.039 1.567 0

500*20 2.575 0.756 1.233 0.872 0.037 3.171 1.018 1.32 0.949 0.018 3.59 0.869 1.428 0.815 0.008

Avg 2.19 1.67 1.68 0.75 0.13 2.7 1.64 1.8 0.66 0.22 3.08 1.65 1.87 0.53 0.24

n*m F5 F6 F7

HDDE DDE CDE IG MDDE HDDE DDE CDE IG MDDE HDDE DDE CDE IG MDDE

20*5 1.245 2.404 2.798 0.631 0.238 2.059 2.735 4.105 2.441 0.111 2.334 3.94 4.501 3.747 0.211

20*10 1.036 1.787 2.241 0.416 0.281 2.546 2.881 3.752 2.182 0.029 3.222 3.515 4.716 3.648 0.084

20*20 1.094 1.807 1.736 0.601 0.256 1.784 1.938 2.274 1.687 0.269 3.681 3.398 3.431 4.208 0.458

50*5 4.3 2.064 1.848 0 0.448 4.665 1.758 2.062 0 0.59 5.497 2.812 2.639 0 0.773

50*10 4.074 2.021 2.083 0.199 0.695 4.008 2.636 2.03 0 0.592 4.433 2.394 2.11 0.034 0.865

50*20 2.993 1.571 1.634 0 0.526 3.331 1.945 2.657 0 0.787 3.581 2.189 2.292 0.007 0.639

100*5 4.013 1.316 1.164 0.138 0.122 4.565 1.443 1.53 0.098 0.08 5.21 1.485 1.829 0.081 0.225

100*10 5.051 1.891 1.65 0.637 0.699 4.86 1.765 1.689 0.022 0.216 5.263 1.831 2.359 0.307 0.604

100*20 4.102 1.784 2.172 0.643 0.051 4.351 1.535 2.039 0.334 0.085 4.255 1.961 1.649 0.242 0.069

200*10 4.979 2.153 1.899 1.522 0.139 5.086 1.923 1.896 0.868 0 5.468 2.28 1.784 0.808 0.057

200*20 4.557 1.541 1.938 1.067 0.003 4.536 1.69 1.494 0.791 0.129 4.749 1.706 1.857 0.852 0

500*20 3.571 0.626 1.363 0.439 0.101 3.977 0.685 1.451 0.682 0.055 4.782 1.861 1.647 1.625 0.091

Avg 3.42 1.75 1.88 0.52 0.3 3.81 1.91 2.25 0.76 0.25 4.37 2.45 2.57 1.3 0.34

become similar when the MDDE algorithm falls into the
local optimal solution. Mutation strategies and crossover
operations will not produce new individuals and will lead
to population stagnation. For example, when MDDE algo-
rithm falls into local optimum, even if new mutation strategy
is applied inMDDE, none of the mutation strategies can help
MDDE escape from the local optimal. However, the neigh-
borhood search mechanism helps the algorithm to search the
direction that is introduced to another neighborhood.

At the same time, the local search mechanism is com-
plementary to the neighborhood search mechanism, which
increases the small-range search capability of the algorithm.
In addition, the current suitable neighborhood search mech-
anism is adaptively selected by the knowledge-based opti-
mization strategy, which enables the algorithm to implement
a closed-loop control system.Significant differences between
the MDDE algorithm and the comparison algorithms are

shown in Table 5. Results with significant differences are
marked ‘yes’ and highlighted in bold. The experiment results
show that MDDE outperforms other comparison algorithms.
According to Table 5, MDDE proves to be significantly
different from the majority of comparison algorithms by
using Wilcoxon’s test. The convergence accuracy and stabil-
ity of MDDE are superior to other comparison algorithms,
as shown in Figs. 9, 10 and 11. From Figs. 18, 19, 20, 21, 22
and 23, MDDE is superior to other comparison algorithms
because it ranks higher than all comparison algorithms.

Performance analysis of each component of MDDE

In this section, the contributions of each strategy and mech-
anism to the MDDE algorithm are analyzed experimen-
tally. The MDDE mainly consists of DNEH initialization
method, discrete mutation strategy and adaptive neighbor-

123



154 Complex & Intelligent Systems (2022) 8:141–161

f2 f3 f4

f5 f6 f7

Fig. 9 The variance plot of the algorithms at C = 5

f2 f3 f4

f5 f6 f7

Fig. 10 The variance plot of the algorithms at C = 15

123



Complex & Intelligent Systems (2022) 8:141–161 155

f2 f3 f4

f5 f6 f7

Fig. 11 The variance plot of the algorithms at C = 30

Table 5 Rankings obtained
through the Wilcoxon
signed-rank test

F MDDE VS R+ R− Z P value α = 0.05 α = 0.01

2 HDDE 6443 112 −8.957 3.35E−19 Yes Yes

DDE 5623.5 371.5 −7.96 1.73E−15 Yes Yes

CDE 5176 602 −7.134 9.75E−13 Yes Yes

IG 3108.5 896.5 −4.548 0.000005 Yes Yes

3 HDDE 7236 24 −9.449 3.42E−21 Yes Yes

DDE 6364 77 −9.029 1.73E−19 Yes Yes

CDE 5963.5 141.5 −8.7 3.31E−18 Yes Yes

IG 3370 546 −5.905 3.54E−09 Yes Yes

4 HDDE 6955 66 −9.254 2.16E−20 Yes Yes

DDE 6031 185 −8.635 5.86E−18 Yes Yes

CDE 5767 228 −8.395 4.65E−17 Yes Yes

IG 2218.5 1184.5 −2.407 0.016092 Yes Yes

5 HDDE 6648 22 −9.25 2.25E−20 Yes Yes

DDE 6080.5 135.5 −8.785 1.56E−18 Yes Yes

CDE 5711 284 −8.225 1.94E−16 Yes Yes

IG 2667.5 1427.5 −2.523 0.011649 Yes Yes

6 HDDE 6406 35 −9.128 6.95E−20 Yes Yes

DDE 6303 138 −8.852 8.61E−19 Yes Yes

CDE 5621 157 −8.506 1.80E−17 Yes Yes

IG 2976.5 1488.5 −2.817 0.004852 Yes Yes

7 HDDE 6963 58 −9.273 1.81E−20 Yes Yes

DDE 6589.5 196.5 −8.824 1.10E−18 Yes Yes

CDE 6431.5 354.5 −8.382 5.22E−17 Yes Yes

IG 2632 2024 −1.115 0.264898 No No

123



156 Complex & Intelligent Systems (2022) 8:141–161

0 20 40 60 80 100 120
F2

0

0.5

1

1.5

2

2.5

3
A

R P
D

DDE
HDDE
CDE
IG
MDDE

Fig. 12 ARPD of F=2

0 20 40 60 80 100 120
F7

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

A
R

PD

DDE
HDDE
CDE
IG
MDDE

Fig. 13 ARPD of F=3

0 20 40 60 80 100 120
0

1

2

3

4

5

6

7

A
R

PD

DDE
HDDE
CDE
IG
MDDE

Fig. 14 ARPD of F=4

123



Complex & Intelligent Systems (2022) 8:141–161 157

0 20 40 60 80 100 120
F5

0

1

2

3

4

5

6

7
A

R
PD

DDE
HDDE
CDE
IG
MDDE

Fig. 15 ARPD of F=5

0 20 40 60 80 100 120
F5

0

2

4

6

8

10

12

14

16

AR
PD

DDE
HDDE
CDE
IG
MDDE

Fig. 16 ARPD of F=6

0 20 40 60 80 100 120

F7

0

5

10

15

20

25

A
RP

D

DDE
HDDE
CDE
IG
MDDE

Fig. 17 ARPD of F=7

123



158 Complex & Intelligent Systems (2022) 8:141–161

3.510

4.450

3.050

2.240

1.750

DDE HDDE CDE IG MDDE
Control Algorithms: MDDE

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
Av

er
ag

e
R

an
k

Fig. 18 Rankings for F=2

3.410

4.540

3.350

2.130

1.570

DDE HDDE CDE IG MDDE
Control Algorithms: MDDE

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Av
e r

ag
e

Ra
nk

Fig. 19 Rankings for F=3

3.430

4.490

3.470

1.880
1.740

DDE HDDE CDE IG MDDE
Control Algorithms: MDDE

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Av
er

ag
e

R
an

k

Fig. 20 Rankings for F=4

hood search strategy.Three sets of experiments are conducted
to verify the contribution of these strategies. In the first
experiment (N-DNEH), the improved NEH initialization
method is removed. In the second experiment (N-Mutation),
the discrete mutation and crossover strategy is removed. The
adaptive neighborhood search strategy is removed in the third
experiment (N-LocalSearch). The three algorithms are run on
each instance 10 times and the terminal time is 30 ∗ m ∗ n.
Table 6 is obtained according to the calculation method of
ARPD. In each instance, the smallest value corresponds to

3.470

4.440

3.400

1.950
1.750

DDE HDDE CDE IG MDDE
Control Algorithms: MDDE

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Av
er

ag
e

Ra
nk

Fig. 21 Rankings for F=5

3.530

4.320

3.450

1.940
1.760

DDE HDDE CDE IG MDDE
Control Algorithms: MDDE

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Av
er

ag
e

R
an

k

Fig. 22 Rankings for F=6

3.430

4.300

3.510

1.950
1.820

DDE HDDE CDE IG MDDE
Control Algorithms: MDDE

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Av
er
ag

e
Ra

nk

Fig. 23 Rankings for F=7

the best result. The value with the best result is highlighted
in bold.

It can be seen from the Table 6 that the results of MDDE
are better thanMDDE(N-DNEH), so it can be concluded that
the improved NEH initialization method contributes to the
quality of the initial solution of the algorithm. The results of
MDDE are also superior to theMDDE(N-Mutation) because
the discrete variation strategies guarantee the feasibility of
solutions. The results of the MDDE(N-LocalSearch) are
poor, because the local search method effectively improves
the exploitation of the algorithm and helps the algorithm to
find the global optimal solution quickly.

123



Complex & Intelligent Systems (2022) 8:141–161 159

Table 6 The computational
results of all variants of MDDE

Instance MDDE (N-DNEH) MDDE (N-Mutation) MDDE (N-LocalSearch) MDDE

20*5 0 0.401 1.203 0.401

20*10 0.948 0.19 1.327 0

20*20 1.314 0.657 1.434 0

50*5 0.85 0.071 1.134 0

50*10 2.751 0.168 2.695 0

50*20 3.429 0.394 2.838 0

100*5 0.887 0.035 0.887 0

100*10 3.21 0 3.146 0.578

100*20 2.387 0.289 2.728 0

Average 1.753 0.245 1.932 0.109

Fig. 24 The 95% confidence interval plot

The 95% confidence interval plot is shown in Fig. 24. As
can be seen from the figure, the MDDE performs better than
the other variables in all cases, indicating that each compo-
nent has a significant impact on the proposed algorithm.

Flow shop scheduling problem has n! possible sequences.
It’s expensive to list all the possible sequences. In the flow-
shop scheduling problem, all the jobs must pass through all
the machines in the same order, and the jobs with higher
total machining time have higher priority than those with
lower total machining time. The NEH method is a classical
initialization method. The method can generate a very good
sequence of jobs and solve the large-scale flow-shop schedul-
ing problem well in both static and dynamic scheduling. The
DNEH+T method is an improved version of NEH method,
which is used to initialize the population. It can generate a
good sequence of jobs and effectively solve the permutation
flow shop scheduling problem.

DE algorithm has an efficient global optimization capabil-
ity. Themutation strategy is an operation in theDEalgorithm.
The current individual and the differential vector are used to
form themutation strategy, in which the scaling factor is used
to control the influence of the differential vector. Thismethod

can avoid falling into local optimum in the process of solving
and improve the speed and accuracy.

In the process of iteration,multiple local optimal solutions
are generated. The goal is to find a global optimal solution.
Since a local optimal solutionmaynot be optimal in all neigh-
borhoods, the neighborhoodneeds to be changed to obtain the
global optimal solution. In general, variable neighborhood
search is a local search method, which can further optimize
the current optimal solution.

In the process of solving, DNEH+T is used to generate a
good initial solution, which is conducive to the further search
of the algorithm. Themutation strategy inDE avoids the local
optimum and increases the global searching ability of the
algorithm. The variable neighborhood search strategy further
optimizes the current optimal solution and enhances the local
search ability of the algorithm. The combination of the three
works balances the exploration and exploitation capabilities
of the algorithm.

Conclusions and future research

In this paper, a memetic discrete differential evolutionary
algorithm is proposed to solve the DPFSP problem. In
the proposed MDDE, the neighborhood structure based on
knowledge exchangemechanism strengthens the exploration
and exploitation ability of MDDE. MDDE algorithm adopts
knowledge-based integration strategy, which improves the
search precision of the algorithm. MDDE algorithm is used
to test 720 large instances. The results show that in most
instances, MDDE performs better than other variants of DE.
Wilcoxon’s sign rank test and Friedman test are used to ana-
lyze the data. The results show that in the case of C = 15,
MDDE is superior to the other four comparison algorithms
in terms of solution diversity and convergence accuracy.

The future research is to develop the multi-target MDDE
and design a certain self-learning method to improve the
search ability of MDDE. The MDDE algorithm is used

123



160 Complex & Intelligent Systems (2022) 8:141–161

to solve other distributed scheduling problems, such as
the distributed dynamic scheduling problems. Furthermore,
adopting MDDE to real-world optimization is also the main
direction of future research.

Acknowledgements This work was financially supported by the
National Key Research and Development Plan under grant number
2020YFB1713600 and the National Natural Science Foundation of
China under grant numbers 62063021. It was also supported by the
Lanzhou Science Bureau project (2018-rc-98), Public Welfare Project
of Zhejiang Natural Science Foundation (LGJ19E050001), and Project
of Zhejiang Natural Science Foundation (LQ20F020011), respectively.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Chen JF, Wang L, Peng ZP (2019) A collaborative optimization
algorithm for energy-efficient multi-objective distributed no-idle
flow-shop scheduling. Swarm Evol Comput 50:100557

2. Shao WS, Pi DC, Shao ZS (2018) A pareto-based estimation of
distribution algorithm for solving multi objective distributed no-
wait flow-shop scheduling problemwith sequence-dependent setup
time. IEEE Trans Autom Sci Eng 16:1344–1360

3. SangHY, PanQK, Li JQ,Wang P, HanYY,GaoKZ, Duan P (2019)
Effective invasive weed optimization algorithms for distributed
assembly permutation flow shop problem with total flowtime cri-
terion. Swarm Evol Comput 44:64–73

4. Shao WS, Pi DC, Shao ZS (2017) Optimization of makespan for
the distributed no-wait flow shop scheduling problem with iterated
greedy algorithms. Knowl Based Syst 137:163–181

5. Ruiz R, Pan QK, Naderi B (2019) Iterated Greedy methods for the
distributed permutation flow shop scheduling problem. Omega Int
J Manag Sci 83:213–222

6. Zhao FQ, Qin S, Zhang Y, Ma WM, Zhang C, Song HB (2019) A
hybrid biogeography-based optimization with variable neighbor-
hood searchmechanism for no-wait flow shop scheduling problem.
Expert Syst Appl 126:321–339

7. Zhao FQ, Liu H, Zhang Y, Ma WM (2018) A discrete water wave
optimization algorithm for no-wait flow shop scheduling problem.
Expert Syst Appl 91:347–363

8. Zhao FQ, Xue FL, Zhang Y,MaWM, Zhang C, Song HB (2019) A
discrete gravitational search algorithm for the blocking flow shop
problem with total flow time minimization. Appl Intell 49:3362–
3382

9. Meng T, Pan QK, Wang L (2019) A distributed permutation
flow shop scheduling problem with the customer order constraint.
Knowl Based Syst 184:104894

10. Tasgetiren MF, Pan Q-K, Kizilay D, Velez-Gallego MC (2019) A
variable block insertion heuristic for permutation flow shops with

makespan criterion. 2017 IEEE congress on evolutionary compu-
tation, vol 12

11. Naderi B, Ruiz R (2010) The distributed permutation flow shop
scheduling problem. Comput Oper Res 37:754–768

12. Fernandez-Viagas V, Perez-Gonzalez P, Framinan JM (2018) The
distributed permutation flow shop to minimise the total flowtime.
Comput Ind Eng 118:464–477

13. PanQK,GaoL,WangL, Liang J, Li XY (2019) Effective heuristics
and metaheuristics to minimize total flowtime for the distributed
permutation flow shop problem. Expert Syst Appl 124:309–324

14. Wang JJ, Wang LA (2020) Knowledge-based cooperative algo-
rithm for energy-efficient scheduling of distributed flow-shop.
IEEE Trans Syst Man Cybern Syst 50:1805–1819

15. Li WH, Li JQ, Gao KZ, Han YY, Niu B, Liu ZM, Sun Q
(2019) Solving robotic distributed flow shop problem using
an improved iterated greedy algorithm. Int J Adv Robot Syst
16:1729881419879819

16. Pan QK, Gao L, Li XY, Jose FM (2019) Effective constructive
heuristics and meta-heuristics for the distributed assembly permu-
tation flow shop scheduling problem.Appl Soft Comput 81:105492

17. Storn R, Price K (1997) Differential evolution—a simple and effi-
cient heuristic for global optimization over continuous spaces. J
Glob Optim 11:341–359

18. Meng Z, Pan J-S, Kong L (2018) Parameters with adaptive learning
mechanism (PALM) for the enhancement of differential evolution.
Knowl Based Syst 141:92–112

19. Meng Z, Pan J-S, Tseng K-K (2019) PaDE: an enhanced differ-
ential evolution algorithm with novel control parameter adaptation
schemes for numerical optimization. Knowl Based Syst 168:80–99

20. Zhang J, Sanderson AC (2009) JADE: adaptive differential evo-
lution with optional external archive. IEEE Trans Evol Comput
13:945–958

21. Brest J, Maucec MS, Boskovic B, (2017) IEEE (2017) Single
objective real-parameter optimization: algorithm jSO. 2017 IEEE
congress on evolutionary computation, pp 1311–1318

22. Brest J, MaucecMS, Boskovic B, (2016) IEEE (2016) iL-SHADE:
improved L-SHADE algorithm for single objective real-parameter
optimization. 2016 IEEE congress on evolutionary computation,
pp 1188–1195

23. Tanabe R, Fukunaga AS, (2014) Improving the search perfor-
mance of shade using linear population size reduction. 2014 IEEE
congress on evolutionary computation. IEEE, pp 1658–1665

24. Mohamed AW, Hadi AA, Fattouh AM, Jambi KM, (2017) IEEE
(2017) LSHADE with semi-parameter adaptation hybrid with
CMA-ES for solving CEC 2017 benchmark problems, 2017 IEEE
congress on evolutionary computation, pp 145–152

25. Zhao F, Qin S, Zhang Y, Ma W, Zhang C, Song H (2019) A two-
stage differential biogeography-based optimization algorithm and
its performance analysis. Expert Syst Appl 115:329–345

26. Zhao F, Xue F, Zhang Y, MaW, Zhang C, Song H (2018) A hybrid
algorithmbased on self-adaptive gravitational search algorithmand
differential evolution. Expert Syst Appl 113:515–530

27. WuX,LiuX (2018)An ImprovedDifferential EvolutionAlgorithm
for Solving a Distributed Flexible Job Shop Scheduling Problem.
In: Reveliotis S, Cappelleri D, Dimarogonas DV et al. (eds) 2018
IEEE 14th international conference on automation science and
engineering, IEEE international conference on automation science
and engineering. pp 968–973

28. Zhou B-H, Hu L-M, Zhong Z-Y (2018) A hybrid differential
evolution algorithm with estimation of distribution algorithm for
reentrant hybrid flow shop scheduling problem. Neural Comput
Appl 30:193–209

29. ZhangG,XingK,CaoF (2018)Discrete differential evolution algo-
rithm for distributed blocking flow shop scheduling with makespan
criterion. Eng Appl Artif Intell 76:96–107

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Complex & Intelligent Systems (2022) 8:141–161 161

30. Zhang G, Xing K (2019) Differential evolution metaheuristics for
distributed limited-buffer flow shop scheduling with makespan cri-
terion. Comput Oper Res 108:33–43

31. WangL, PanQ-K, Suganthan PN,WangW-H,WangY-M (2010)A
novel hybrid discrete differential evolution algorithm for blocking
flow shop scheduling problems. Comput Oper Res 37:509–520

32. Montgomery DC (2006) Design and analysis of experiments, 9th
edn. Wiley, New York

33. Taillard E (1990) Some efficient heuristic methods for the flow
shop sequencing problem. Eur J Oper Res 47:65–74

34. Taillard E (1993) Benchmarks for basic scheduling problems. Eur
J Oper Res 64:278–285

35. Stanovov V, Akhmedova S, Semenkin E, (2018) IEEE (2018)
LSHADE algorithm with rank-based selective pressure strategy
for solving CEC 2017 benchmark problems. 2018 IEEE congress
on evolutionary computation, pp 1–8

36. Pan Q-K, Ruiz R (2014) An effective iterated greedy algorithm
for the mixed no-idle permutation flow shop scheduling problem.
Omega Int J Manag Sci 44:41–50

37. Shao Z, Pi D, Shao W, Yuan P (2019) An efficient discrete inva-
siveweedoptimization for blockingflow-shop schedulingproblem.
Eng Appl Artif Intell 78:124–141

38. Garcia S,MolinaD, LozanoM,Herrera F (2009)A study on the use
of non-parametric tests for analyzing the evolutionary algorithms’
behaviour: a case study on the CEC’2005 special session on real
parameter optimization. J Heuristics 15:617–644

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123


	A memetic discrete differential evolution algorithm for the distributed permutation flow shop scheduling problem
	Abstract
	Introduction
	Background
	The distributed permutation flow shop scheduling problem
	Brief introduction to DE algorithm

	MDDE for DPFSP with minimizing makespan
	Initial population of DNEH+T 
	The job permutation-based mutation operator 
	Crossover operator 
	Switching mechanism based on neighborhood structures 
	Neighborhood structure based local search
	The MDDE algorithm

	The experiments and comparisons
	Design of the experiments
	Parameters analysis
	Analysis and discussion
	Performance analysis of each component of MDDE

	Conclusions and future research
	Acknowledgements
	References




