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In this paper, the dynamics of a three-species food chain model with two predators infected by
an infectious disease is investigated. The positivity and boundedness of the system, the existence
of the equilibria and the basic reproductive number are given. Sufficient conditions for the local
stability of all equilibria are obtained by analyzing the corresponding characteristic equations. By
constructing suitable Lyapunov functions and taking the geometric approach, the global stability
of all equilibria is proved. According to the center manifold theory, this model undergoes the
phenomenon of backward and forward bifurcations in a certain range of the basic reproductive
number R0. By taking the disease transmission coefficient of predator as bifurcation parameter,
Hopf bifurcation emerges in the neighborhood of the endemic equilibrium. Furthermore, the
optimal control of the disease is discussed by the Pontryagin’s maximum principle. Various
simulations are given to support the analytical results.

Keywords : Food chain; backward and forward bifurcation; Hopf bifurcation; global stability;
Pontryagin’s maximum principle.

1. Introduction

In recent years, the food chain models including
three populations are widely investigated (see
[Holmes & Bethel, 1972; Gard & Hallam, 1979;
Fryxell & Lundberg, 1997; Hsu et al., 2015; Jiang
et al., 2017; Dutta et al., 2017; Meng et al., 2011;
Ma et al., 2020; Ma & Zhang, 2018; Meng & Wu,
2018; Zeng et al., 2018; Yu et al., 2019; Meng & Wu,
2020]). For example, Meng and Wu [2018] inves-
tigated a phytoplankton–zooplankton-fish model
with nonlinear fish harvesting and taxation. How-
ever, diseases are not to be ignored in ecological
population. Most of the ecological populations suf-
fer from various infectious diseases which have a
significant influence on population size. Infectious

diseases may disrupt the homeostatic state of an
ecosystem, that is, the stability of the system may
be destroyed and the species may become extinct as
time goes on. Thus, some scholars have expanded
their interests in diseases in different ecological
systems, which is known as eco-epidemiological.
Anderson and May [1986] first investigated an eco-
epidemiological model where the predator inter-
acts with infected prey species. Then, this problem
attracted much more attention from many experts
(see [Haladar et al., 2015; Xu & Zhang, 2013; Das,
2016; Kant & Kumar, 2017; Wang & Feng, 2015;
Hao et al., 2016; Mbava et al., 2017; Meng &
Li, 2020] and references therein). The dynam-
ics of an infectious disease transmission modified
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Leslie–Gower type eco-epidemiological model in
both deterministic and stochastic fluctuating envi-
ronment was considered by Haladar et al. [2015].
Global stability of a predator–prey system with
a transmissible disease in the predator population
and a time delay representing the gestation period
of the predator was studied by Xu and Zhang [2013].
Das [2016] described a predator–prey system with
disease in both populations.

The functional response is a response in which
the predation rate of each predator per unit time
varies with the density of its prey, that is, the pre-
dation effect of predators on prey. Depending upon
type of species and their living environment, the
predation terms are of different forms where the
amount of food consumed by the predator is not
only related to the prey density but also to the cap-
ture ability of the predator. Recently, many scholars
have preferred to study the predator–prey systems
with functional response (see [Meng et al., 2011;
Wang & Wei, 2015; Zhang & Sun, 2005; Tewa et al.,
2013; Pei et al., 2005; Meng et al., 2018; Meng &
Wu, 2018; Meng & Wang, 2019; Jia et al., 2019; Huo
et al., 2019; Yang & Wang, 2020]). For instance,
Meng et al. [2011] investigated a three-species sys-
tem with Holling-II type functional response and
feedback delays. Wang and Wei [2015] proposed a
predator–prey system with strong Allee effect and
an Ivlve-type functional response. Zhang and Sun
[2005] studied the permanence of a predator–prey
system with disease in the predator and Holling-II
type functional response.

Some authors considered that the predators
only catch the infected prey. Johri et al. [2012] pro-
posed a Lotka–Volterra type predator–prey model
with disease in prey. Meng et al. [2018] investi-
gated a predator–prey system with harvesting prey
and disease in prey species. Sharma and Samanta
[2015] presented an eco-epidemiological system with
two preys, one predator and disease in the first
prey species. However, the predators cannot distin-
guish between the infected and susceptible prey, so
the predators eat both the infected prey and the
susceptible prey. Rossi et al. [2015] investigated a
three-level food chain where a transmissible disease
spreads only among the bottom prey species and
the predator consumes the infected and susceptible
bottom prey. In addition, most of the scholars con-
sidered that the predators are not infected through
infected prey in eco-epidemiological system. But, it
is not always true from the biological viewpoint.

For instance, a predator–prey system where both
population are subjected to parasitism has been
proposed and analyzed by Hadeler and Freedman
[1989]. They assumed that the predators become
infected by feeding on the infected prey.

In our model, because the susceptible super-
predator can distinguish the infected predator
and susceptible predator, the susceptible super-
predator captures not only the susceptible preda-
tor but also the infective predator based on the
work [Rossi et al., 2015]. In addition, due to the
super-predator becoming infected by feeding on the
infected prey [Hadeler & Freedman, 1989], we will
divide the super-predator population into two com-
partments: susceptible super-predator and infective
super-predator, where infective super-predator has
no capture ability. Based on the above analysis, we
will propose a three-species food chain model with
Holling-II type functional response and disease in
the predator and super-predator. Detailed assump-
tions are listed in the next section.

The rest of the paper is organized as follows:
In Sec. 2, we will formulate an eco-epidemiological
model and discuss the basic properties of such
model. In Sec. 3, by analyzing the corresponding
characteristic equations, we will prove the local
asymptotic stability of the system around equilib-
ria. By constructing the suitable Lyapunov func-
tions and the geometric approach, we will also
prove the global stability of all equilibria. In Sec. 4,
we will study backward bifurcation, forward bifur-
cation and Hopf bifurcation. By using the clas-
sical method of Pontryagin’s maximum principle,
the optimal control strategies will be discussed in
Sec. 5. To support our theoretical analysis, some
numerical simulations will be given in Sec. 6. We
end with a brief conclusion and discussion in the
last section.

2. A Three-Species Food Chain
Eco-Epidemiological Model

2.1. Model description

We consider a three-species food chain eco-
epidemiological model. We assume that X(t), P (t)
and Q(t) are the density of prey, predator and
super-predator at time t, respectively. The ecologi-
cal system is based on the following assumptions.

(A1) In the absence of predator and super-predator,
the prey population X(t) grows logistically with the
intrinsic growth rate r and carrying capacity r/a.
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The prey is consumed by the predator with
Holling-I functional response.

(A2) Predator population is divided into two
classes: susceptible predator P1(t) and infective
predator P2(t). Therefore, the total of the preda-
tor population is P1(t)+ P2(t). The disease spreads
among the predator population only by contact,
but cannot be transmitted vertically. The infected
predators do not recover or become immune. The
disease incidence is assumed to be the simple mass
action incidence βP1P2, where β > 0 is called the
coefficient of disease transmission. The susceptible
predator is captured by the super-predator with the
linear function. The infective predator is captured
by the super-predator with the Holling-II function.

(A3) Only the susceptible predator and super-
predator have capture ability, and the suscepti-
ble super-predators have the ability to distinguish
the susceptible predator and infective predator
because the susceptible predators are much stronger
than the infected predators. Therefore, the super-
predator can catch not only the susceptible predator
but also the infected predator. The super-predator
becomes the infected super-predator by feeding
on the infected predator. Thus the super-predator
population is also composed of two parts: sus-
ceptible super-predator Q1(t) and infective super-
predator Q2(t). Then, the total biomass of the
super-predator is Q1(t) + Q2(t).

(A4) The infected predator and infected super-
predator populations have their mortality due to
infection.

From the aforementioned assumptions, we can
get the model structure shown in Fig. 1 and the

Fig. 1. Transfer diagram of eco-epidemiological model.

corresponding system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dX

dt
= X(r − aX) − a1XP1,

dP1

dt
= e1a1XP1 − a2P1Q1 − βP1P2 − d1P1,

dP2

dt
= βP1P2 − a3P2Q1

1 + bP2
− (d2 + c1)P2,

dQ1

dt
= e2a2P1Q1 +

e3a3P2Q1

1 + bP2

− ma3P2Q1

1 + bP2
− d3Q1,

dQ2

dt
=

ma3P2Q1

1 + bP2
− (d4 + c2)Q2,

(1)

with the initial conditions

X(0) > 0, P1(0) > 0, P2(0) > 0,

Q1(0) > 0, Q2(0) > 0.

We assume that all parameters of system (1)
are positive. The biological meanings of parameters
are given in Table 1.

Notice that the first, second, third and fourth
equations of system (1) are independent of the vari-
able Q2(t). Therefore, we can consider the following
system:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dX

dt
= X(r − aX) − a1XP1,

dP1

dt
= e1a1XP1 − a2P1Q1 − βP1P2 − d1P1,

dP2

dt
= βP1P2 − a3P2Q1

1 + bP2
− (d2 + c1)P2,

dQ1

dt
= e2a2P1Q1 +

e3a3P2Q1

1 + bP2

− ma3P2Q1

1 + bP2
− d3Q1,

(2)

and the initial conditions are

X(0) > 0, P1(0) > 0, P2(0) > 0, Q1(0) > 0.

The purpose of this paper is to study the
dynamics of system (2).
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Table 1. Biological meanings of parameters.

Parameters Biological Meanings

r Intrinsic growth rate of the prey
a The intra-specific competition rate of the prey population
a1 Capture rate of the prey by the susceptible predator
a2 Capture rate of the susceptible predator by the susceptible super-predator
a3 Capture rate of the infected predator by the susceptible super-predator
β The disease transmission coefficient
e1 Conversion coefficient from prey to susceptible predator
e2 Conversion coefficient from susceptible predator to susceptible super-predator
e3 Conversion coefficient from infected predator to susceptible super-predator
d1 Natural death rate of the susceptible predator
d2 Natural death rate of the infected predator
d3 Natural death rate of the susceptible super-predator
d4 Natural death rate of the infected super-predator
c1 Death rate of the infected predator due to infection
c2 Death rate of the infected super-predator due to infection
m Conversion coefficient from susceptible super-predator to infected super-predator
b The half-saturation constant

2.2. Basic properties

In this subsection, we will investigate the positivity
and boundedness of the solutions of system (2) with
the initial conditions.

Lemma 1. Every solution of system (2) with the
initial conditions exists in the interval [0,∞), and
X(t)> 0, P1(t)> 0, P2(t)> 0, Q1(t)> 0, for all t≥ 0.

Proof. Since the right-hand side of system (2) is
completely continuous and locally Lipschitz on
C(R4

+), here R
4
+ = {(X(t), P1(t), P2(t), Q1(t)) :

X(t) ≥ 0, P1(t) ≥ 0, P2(t) ≥ 0, Q1(t) ≥ 0}, the solu-
tion (X(t), P1(t), P2(t), Q1(t)) of system (2) with
the initial conditions exists and is unique on [0, ζ],
here 0 < ζ ≤ +∞ [Hale, 1971]. From the initial
conditions of system (2), we have

X(t) = X(0) exp
[∫ t

0
{r − aX(θ) − a1P1(θ)}dθ

]
> 0,

P1(t) = P1(0) exp
[∫ t

0
{e1a1X(θ) − a2Q1(θ) − βP2(θ) − d1}dθ

]
> 0,

P2(t) = P2(0) exp
[∫ t

0

{
βP1(θ) − a3Q1(θ)

1 + bP2(θ)
− (d2 + c1)

}
dθ

]
> 0,

Q1(t) = Q1(0) exp
[∫ t

0

{
e2a2P1(θ) +

e3a3P2(θ)
1 + bP2(θ)

− ma3P2(θ)
1 + bP2(θ)

− d3

}
dθ

]
> 0,

which completes the proof. �

Lemma 2. Positive solutions of system (2) with the
initial conditions are ultimately bounded.

Proof. Let (X(t), P1(t), P2(t), Q1(t)) be any posi-
tive solution of system (2) with the initial condi-
tions. Define a function

W (t) = X(t) + P1(t) + P2(t) + Q1(t).

Calculating the derivative of W (t) along positive
solutions of system (2), it follows that

dW (t)
dt

=
dX(t)

dt
+

dP1(t)
dt

+
dP2(t)

dt
+

dQ1(t)
dt

= rX(t) − aX2(t) + a1XP1(t)(e1 − 1)

+
a3P2(t)Q1(t)
1 + bP2(t)

(e3 − m − 1)

+ a2P1(t)Q1(t)(e2 − 1) − d1P1(t)

− (d2 + c1)P2(t) − d3Q1(t).
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Now we choose μ such that μ = min{d1, d2 + c1,
d3} and 0 < ei < 1 (i = 1, 2, 3). Then the above
inequality reduces to

dW (t)
dt

≤ rX(t) − aX2(t) − μ(W (t) − X(t))

= −a

(
X(t) − r + μ

2a

)2

− μW (t) +
(r + μ)2

4a

≤ (r + μ)2

4a
− μW (t),

which yields

lim sup
t→∞

W (t) ≤ (r + μ)2

4aμ
.

We observe that all the solutions of system (2)
initiating in R

4
+ eventually lie in the region Ω

defined by

Ω =
{

(X(t), P1(t), P2(t), Q1(t)) ∈ R
4
+ :

W (t) ≤ (r + μ)2

4aμ

}
,

which is a positively invariant set for system (2). So
we will study system (2) in the set Ω. �

3. Stability Analysis of All
Equilibria

3.1. Equilibria and the basic
reproductive number

In this subsection, we will investigate the existence
of the equilibria and the basic reproductive num-
ber of system (2). Firstly, we calculate the basic
reproductive number R0 of system (2) by using the
next-generation method [van den Driessche & Wat-
mough, 2002]. Here, we have the following matrix
of new infection F(x), and the matrix of transfer
V(x). Let x = (X,P1, P2, Q1)T . Thus, system (2)
can be written as

dx

dt
= F(x) − V(x),

where

F(x) =

⎛
⎜⎜⎜⎜⎝

βP1P2

0

0

0

⎞
⎟⎟⎟⎟⎠,

V(x) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a3P2Q1

1 + bP2
+ (d2 + c1)P2

−e2a2P1Q1 +
(m − e3)a3P2Q1

1 + bP2
+ d3Q1

−rX + aX2 + a1XP1

−e1a1XP1 + a2P1Q1 + βP1P2 + d1P1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The Jacobian matrices of F(x) and V(x) at the
disease-free equilibrium E4 are, respectively,

DF(E4) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

βd3

e2a2
0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

DV(E4) =

⎛
⎜⎜⎜⎜⎝

v11 0 0 0

v21 v22 0 −e2a2Q1

0 0 v33 a1X

βP1 a2P1 −e1a1P1 v44

⎞
⎟⎟⎟⎟⎠,

here v11 = a3Q1 + (d2 + c1), v21 = −e3a3Q1 +
ma3Q1, v22 = −e2a2P1 + d3, v33 = −r + 2aX +
a1P1, v44 = −e1a1X + a2Q1 + d1.

The reproduction number, denoted by R0 is
given by

R0 =
βaa2d3

e2a2a3(re1a1−ad1)−e1a2
1a3d3 +ae2a2

2(d2+c1)
.

In order for the convenience of computation,
some notations are also given as follows

R00 =
re1a1

ad1
, R01 =

βr

a1(d2 + c1)
,

R03 =
re2a2

a1d3
, R02 =

βre1a1

βad1 + βe1a
2
1(d2 + c1)

,

R04 =
re1e2a1a2

e1a2
1d3 + ae2a2d1

.

Next, we will study the existence of the bound-
ary equilibria of system (2). Biologically, system (2)
may have the following boundary equilibria.

The trivial equilibrium is E0(0, 0, 0, 0). The
prey-only equilibrium is E1( r

a , 0, 0, 0). The equi-
librium is E2(X(2), P

(2)
1 , 0, 0), where X(2) = d1

e1a1
,

P
(2)
1 = re1a1−ad1

e1a2
1

, and the existence condition of this
equilibrium is R00 > 1.
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The super-predator free equilibrium is E3(X(3),

P
(3)
1 , P

(3)
2 , 0), where

X(3) =
βr − a1(d2 + c1)

βa
, P

(3)
1 =

d2 + c1

β
,

P
(3)
2 =

βre1a1 − βad1 − βe1a
2
1(d2 + c1)

β2a
.

This equilibrium exists if R01 > 1 and R02 > 1
hold.

The disease-free equilibrium is E4(X(4), P
(4)
1 , 0,

Q
(4)
1 ), where

X(4) =
re2a2 − a1d3

ae2a2
, P

(4)
1 =

d3

e2a2
,

Q
(4)
1 =

re1e2a1a2 − e1a
2
1d3 − ae2a2d1

ae2a
2
2

,

and the existence conditions of the disease-free equi-
librium are R03 > 1 and R04 > 1.

Lastly, we will calculate the endemic equi-
librium of system (2). The endemic equilibrium
E∗(X∗, P ∗

1, P
∗
2, Q

∗
1) of system (2) can be deduced

by the following equations⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

X∗(r − aX∗) − a1X
∗P ∗

1 = 0,

e1a1X
∗P ∗

1 − a2P
∗
1Q

∗
1 − βP ∗

1P
∗
2 − d1P

∗
1 = 0,

βP ∗
1P

∗
2 −

a3P
∗
2Q

∗
1

1 + bP ∗
2

− (d2 + c1)P ∗
2 = 0,

e2a2P
∗
1Q

∗
1 +

e3a3P
∗
2Q

∗
1

1+ bP ∗
2

− ma3P
∗
2Q

∗
1

1+ bP ∗
2

− d3Q
∗
1 = 0.

(3)

From the fourth equation of (3), we have

P ∗
1 =

d3(1 + bP ∗
2) − a3P

∗
2(e3 − m)

e2a2(1 + bP ∗
2)

.

Substituting P ∗
1 into the first equation of (3), we

can obtain

X∗ =
(1 + bP ∗

2)(re2a2 − a1d3) + a1a3(e3 − m)P ∗
2

aa2e2(1 + bP ∗
2)

.

Substituting P ∗
1 into the third equation of (3), we

can obtain

Q∗
1 =

(1 + bP ∗
2)[βd3 − e2a2(d2 + c1)] − βa3(e3 − m)P ∗

2

e2a2a3
.

Substituting X∗, P ∗
1 and Q∗

1 into the second equa-
tion of (3), we have a quadratic equation of P ∗

2 as
follows

m1(P ∗
2)

2 + m2P
∗
2 + m3 = 0,

where

m1 = e2aa2
2b

2(d2 + c1) + βaa2a3b(e3 − e2 − m)

−βaa2b
2d3,

m2 = 1 − R0,

m2 = b(1 − R0) + a3(e3 − m)(e1a
2
1a3 + βaa2)

−βaa2(bd2 + e2a3) + e2aa2
2b(d2 + c1).

It is easy to show that if the following assumption

(H1) re2a2(1 + bP ∗
2) + a1a3(e3 − m)P ∗

2

> a1d3(1 + bP ∗
2),

d3(1 + bP ∗
2) > a3P

∗
2(e3 − m),

βd3(1 + bP ∗
2) > a2e2(d2 + c1)(1 + bP ∗

2)

+ βa3(e3 − m)P ∗
2

holds, then X∗ > 0, P ∗
1 > 0 and Q∗

1 > 0. Thus, the
following results are established.

Theorem 1. The system (2) has

(i) a unique endemic equilibrium E∗
1(X

∗, P ∗
1, P

∗
2,

Q∗
1) when R0 > 1;

(ii) a unique endemic equilibrium E∗
2 when m2 < 0

and m3 = 0 or � = m2
2 − 4m1m3 = 0;

(iii) two different endemic equilibria E∗
3 and E∗

4
when m2 < 0, R0 < 1 and � = m2

2 −
4m1m3 > 0;

(iv) no endemic equilibrium under the otherwise
cases.

Remark 3.1. In what follows, we will only discuss
the unique endemic equilibrium E∗

1, which is writ-
ten as E∗(X∗, P ∗

1, P
∗
2, Q

∗
1). Similar method can be

used for the other cases.

3.2. Local stability of all equilibria

In this part, we will investigate the local stability
of system (2) in the neighborhood of the equilibria
by analyzing the corresponding characteristic equa-
tions. The Jacobian matrix of system (2) is given

2150019-6

In
t. 

J.
 B

if
ur

ca
tio

n 
C

ha
os

 2
02

1.
31

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 C
H

IN
E

SE
 A

C
A

D
E

M
Y

 O
F 

SC
IE

N
C

E
S 

on
 0

6/
01

/2
2.

 R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



February 23, 2021 12:8 WSPC/S0218-1274 2150019

Dynamics of a Food Chain Model with Two Infected Predators

by

J =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a11 −a1X 0 0

e1a1P1 a22 −βP1 −a2P1

0 βP2 a33 − a3P2

1+ bP2

0 ea2Q1
(e3 −m)a3Q1

(1+ bP2)2
a44

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where

a11 = r − 2aX − a1P1,

a22 = e1a1X − a2Q1 − βP2 − d1,

a33 = βP1 − a3Q1

(1 + bP2)2
− (d2 + c1),

a44 = e2a2P1 − d3 +
(e3 − m)a3P2

1 + bP2
.

With help of this matrix, we will analyze the
local stability of equilibria of system (2).

It is easy to calculate that eigenvalues of the
Jacobian matrix at E0 are

λ1 = r, λ2 = −d1,

λ3 = −(d2 + c1), λ4 = −d3.

Hence, the trivial equilibrium E0 is not a stable
equilibrium. In fact, it is a saddle point.

The eigenvalues of the Jacobian matrix at E1

are

λ1 = −r, λ2 =
re1a1 − ad1

a
,

λ3 = −(d2 + c1), λ4 = −d3.

It is clear that the prey-only equilibrium E1 is
locally asymptotically stable when R00 < 1.

The eigenvalues of the Jacobian matrix at E2

are λ1 = βP
(2)
1 − (d2 + c1) and λ2 = e3a3P

(2)
1 − d3,

and the others satisfying the following equation

λ2 + ã1λ + ã2 = 0,

here ã1 = a1X
(2) and ã2 = e1a

2
1X

(2)P
(2)
1 . It is clear

that the equilibrium E2 is locally asymptotically
stable when R02 < 1 and R04 < 1.

One eigenvalue of the Jacobian matrix at E3

is λ1 = e2a2P
(3)
1 + e3a3P

(3)
2

1+bP
(3)
2

− ma3P
(3)
2

1+bP
(3)
2

− d3, and the

other eigenvalues satisfy the equation

λ3 + b1λ
2 + b2λ + b3 = 0,

where b1 = aX(3), b2 = e1a
2
1X

(3)P
(3)
1 + β2P

(3)
1 P

(3)
2

and b3 = β2aX(3)P
(3)
1 P

(3)
2 . It is clear that b1 > 0,

b2 > 0 and b3 > 0. According to the Routh–Hurwitz
criterion, the super-predator-free equilibrium E3 is
locally asymptotically stable when b1b2 > b3 and

e2a2P
(3)
1 + e3a3P

(3)
2

1+bP
(3)
2

<
ma3P

(3)
2

1+bP
(3)
2

+ d3.

From the above discussion, we have the follow-
ing results.

Theorem 2

(i) The trivial equilibrium E0 is not locally asymp-
totically stable for all parameters, and the prey-
only equilibrium E1 is locally asymptotically
stable when R00 < 1.

(ii) The boundary equilibrium E2 is locally asymp-
totically stable when R02 < 1 and R04 < 1,
and the super-predator-free equilibrium E3 is
locally asymptotically stable when b1b2 > b3 and

e2a2P
(3)
1 + e3a3P

(3)
2

1+bP
(3)
2

<
ma3P

(3)
2

1+bP
(3)
2

+ d3.

In addition, we have the following results on the
local stability of the disease-free equilibrium E4 and
the endemic equilibrium E∗

1.

Theorem 3

(i) If R03 > 1, R04 > 1, R0 < 1 and d̃1d̃2 > d̃3,
then the disease-free equilibrium E4 is locally
asymptotically stable.

(ii) If R0 > 1 and the assumption

(H2) m1m2 − m3 > 0 and

m3(m1m2 − m3) − m2
1m4 > 0

hold on, then the endemic equilibrium E∗
1 is

locally asymptotically stable.

Proof

(i) One of the eigenvalues of the Jacobian matrix at
E4 is λ1 = βP

(4)
1 −a3Q

(4)
1 −(d2 +c1), and the others

satisfy the following equation

λ3 + d̃1λ
2 + d̃2λ + d̃3 = 0, (4)

here d̃1 = aX(4) > 0, d̃2 = e1a
2
1X

(4)P
(4)
1 +

e2a
2
2P

(4)
1 Q

(4)
1 > 0 and d̃3 = ae2a

2
2X

(4)P
(4)
1 Q

(4)
1 > 0

when R03 > 1 and R04 > 1. If d̃1d̃2 > d̃3, then
all eigenvalues of the Eq. (4) are negative by the
Routh–Hurwitz criterion. That is, the disease-free
equilibrium E4 is locally asymptotically stable if
R03 > 1, R04 > 1, R0 < 1 and d̃1d̃2 > d̃3.
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(ii) The characteristic equation of the linearization
of system (2) at the endemic equilibrium E∗

1 is∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ + aX∗ a1X
∗ 0 0

−e1a1P
∗
1 λ βP ∗

1 a2P
∗
1

0 −βP ∗
2 λ

a3P
∗
2

1 + bP ∗
2

0 −e2a2Q
∗
1

(m − e3)a3Q
∗
1

(1 + bP ∗
2)2

λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0.

Simplifying the above determinant, the characteris-
tic equation can be rewritten as

F (λ) = λ4 + m1λ
3 + m2λ

2 + m3λ + m4 = 0, (5)

where

m1 = aX∗,

m2 = e2a
2
2P

∗
1Q

∗
1 + β2P ∗

1P
∗
2 +

(e3 − m)a2
3

(1 + bP ∗
2)2

P ∗
2Q

∗
1

+ e1a
2
1X

∗P ∗
1,

m3 =
(

βa2a3(e3 − m)
(1 + bP ∗

2)2
− βe2a2a3

1 + bP ∗
2

)
P ∗

1P
∗
2Q

∗
1

+ ae2a
2
2X

∗P ∗
1Q

∗
1 + β2aX∗P ∗

1P
∗
2

+
a(e3 − m)a2

3

(1 + bP ∗
2)3

X∗P ∗
2Q

∗
1,

m4 =
(
−βae2a2a3

1 + bP ∗
2

+
βaa2a3(e3 − m)

(1 + bP ∗
2)2

+
e1a

2
1a2a3(e3 − m)
(1 + bP ∗

2)3

)
X∗P ∗

1P
∗
2Q

∗
1.

It is assumed that mi > 0 (i = 1, 2, 3, 4).
According to the Routh–Hurwitz criterion, E∗

1 is
locally asymptotically stable if the assumption (H2)
holds on. �
Remark 3.2. Despite the complexity of system (2),
we can find that the endemic equilibrium E∗

2 is a
saddle-node point, E∗

3 is an unstable node point and
E∗

4 is a stable node point. Some related proofs are
omitted here in theory.

3.3. Global stability of all equilibria

In this part, we will not only study the local
asymptotic stability of endemic equilibrium E∗

1 of

system (2), but also investigate the global asymp-
totic stability of the three subsystems of system (2)
around the boundary equilibria E2, E3 and E4,
respectively.

Theorem 4. The subsystem of system (2) with

(i) the prey and the susceptible predator popula-
tions are globally asymptotically stable around
the equilibrium E2(X(2), P

(2)
1 , 0, 0);

(ii) the prey, the susceptible predator and the
infected predator population are globally
asymptotically stable around the equilibrium
E3(X(3), P

(3)
1 , P

(3)
2 , 0);

(iii) the prey, the susceptible predator and the sus-
ceptible super-predator population are globally
asymptotically stable around the equilibrium
E4(X(4), P

(4)
1 , 0, Q(4)

1 ).

Proof

(i) Let us consider a suitable Lyapunov function

V1(X,P1)= e1

∫ X

X(2)

x−X(2)

x
dx+

∫ P1

P
(2)
1

y−P
(2)
1

y
dy.

It is easy to verify that the function V1(X(2), P
(2)
1 ) =

0 and V1(X,P1) > 0 for all the other positive values
X(2) and P

(2)
1 .

Differentiating V1 along the solutions of the
respective subsystem of system (2) with respect to
t and using the fact P2 = 0, Q1 = 0, we can obtain

dV1

dt
= e1

X − X(2)

X

dX

dt
+

P1 − P
(2)
1

P1

dP1

dt

= e1(X −X(2))[−a(X −X(2))− a1(P1 −P
(2)
1 )]

+ e1a1(X − X(2))(P1 − P
(2)
1 )

= −e1a(X − X(2))2 ≤ 0.

When X = X(2), P1 = P
(2)
1 , dV1

dt = 0. Therefore, the
largest invariant set at which dV1

dt = 0 is the equi-
librium E2(X(2), P

(2)
1 , 0, 0). By LaSalle’s invariance

principle [LaSalle, 1968], subsystem of system (2)
with the prey and the susceptible predator popula-
tion is globally asymptotically stable at the equilib-
rium E2(X(2), P

(2)
1 , 0, 0).

Similarly, we can prove the other results. �

In order to prove the global stability of the
endemic equilibrium of system (2), we need the
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following results, which can be found in reference
[Thieme, 1992].

We will get simple sufficient conditions that
the endemic equilibrium E∗

1 is globally asymptot-
ically stable when R0 > 1 by using the geometrical
approach of Li and Muldowney [1995]. Above all,
we give a brief outline of this geometrical approach.
Let |x| → f(x) ∈ Rn be a C1 function for x in
an open set D ∈ Rn. We consider the differential
equation

dx

dt
= f(x) (6)

and denote that x(t, x0) is the solution to (6) such
that x(0, x0) = x0. We make the following two
assumptions.

(H3) There exists a compact absorbing set K ⊂ D.
(H4) Equation (6) has a unique equilibrium x in D.

The equilibrium x is said to be globally stable in
D, if it is locally stable and all trajectories in D con-
verge to x. For n ≥ 2, by Bendixson’s criterion we
obtain a condition satisfied by f which precludes the
existence of nonconstant periodic solutions of (6).
The classical Bendixson’s condition div f(x) < 0 for
n = 2 is robust under C1 local perturbations of f .
For higher-dimensional systems, the robust proper-
ties of C1 are discussed in reference [Hirsch, 1990].

Theorem 5. If R0 > 1, then the unique endemic
equilibrium E∗

1 of system (2) is globally asymptoti-
cally stable.

Proof. For system (2), we will show the global
stability of the endemic equilibrium E∗

1 when R0 >

1. Since X + P1 + P2 + Q1 → (r+μ)2

4aμ as t → ∞,
system (2) is a three-dimensional asymptotically
autonomous differential system with the limit
system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dP1

dt
= e1a1P1

(
(r + μ)2

4aμ
− P1 − P2 − Q1

)

− a2P1Q1 − βP1P2 − d1P1,

dP2

dt
= βP1P2 − a3P2Q1

1 + bP2
− (d2 + c1)P2,

dQ1

dt
= e2a2P1Q1 +

e3a3P2Q1

1 + bP2

− ma3P2Q1

1 + bP2
− d3Q1.

(7)

The Jacobian matrix of system (7) is given by

J =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

b11 −e1a1P1 −βP1 −e1a1P1 −a2P1

βP2 b22 − a3P2

1 + bP2

e2a2Q1
a3Q1(e3 − m)

(1 + bP2)2
b33

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

(8)

where

b11 =
e1a1(r + μ)2

4aμ
− e1a1(2P1 + P2 + Q1)

− a2Q1 − βP2 − d1,

b22 = βP1 − a3Q1

(1 + bP2)2
− (d2 + c1),

b33 = e2a2P1 +
a3P2(e3 − m)

1 + bP2
− d3.

Then the global stability analysis of E∗
1 will be per-

formed through the geometric approach due to [Li &
Muldowney, 1995]. From the results of [Hirsch,
1990], we can see that the method requires the fol-
lowing sufficient conditions of the global stability
of E∗

1:

(i) the uniqueness of E∗
1 in the interior of Ω [i.e.

condition (H3)],
(ii) the existence of an absorbing compact set

in the interior of Ω [i.e. condition (H4)],
(iii) the fulfillment of a Bendixson’s criterion (i.e.

the inequality q2 < 0).

Under the assumption R0 > 1, system (2) satis-
fies conditions (H3) and (H4). In fact, when R0 > 1,
the disease-free equilibrium E4 is unstable. The
instability of E4 together with E4 ∈ ∂Ω implies the
uniform persistence [Freedman et al., 1994]. That
is, there exists a constant c > 0 such that

lim
t→∞ inf X(t) > c, lim

t→∞ inf P1(t) > c,

lim
t→∞ inf P2(t) > c, lim

t→∞ inf Q1(t) > c.

The uniform persistence, because of bounded-
ness of Ω, is equivalent to the existence of a compact
set in the interior of Ω which is absorbing for (2)
(see [Hutson & Schmitt, 1992]). Thus, (H3) is veri-
fied. Moreover, as previously shown, E∗

1 is the only
equilibrium in the interior of Ω, so that (H4) is also
verified.
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Now, we need to find the conditions of the
Bendixson’s criterion. Taking into account the Jaco-
bian matrix (8), we obtain the second additive com-
pound matrix J [2](X,P1, P2, Q1)

J [2] =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

c11 − a3P2

1+ bP2
e1a1P1 + a2P1

a3Q1(e3 −m)
(1+ bP2)2

c22 −e1a1P1 −βP1

−e2a2Q1 βP2 c33

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

(9)

where

c11 =
e1a1(r + μ)2

4aμ
+ e1a1(2P1 + P2) − a3Q1

(1 + bP2)2

+ e1a1Q1 − a2Q1 + β(P1 − P2)

− (d1 + d2 + c1),

c22 =
e1a1(r + μ)2

4aμ
+

a3P2(e3 − m)
1 + bP2

+ e1a1(2P1 + P2 + Q1) + e2a2P1

− a2Q1 − βP2 − (d1 + d3),

c33 = βP1 − a3Q1

(1 + bP2)2
+

a3P2(e3 − m)
1 + bP2

+ e2a2P1 − (d2 + d3 + c1).

Set the function p(x) = E(P1, P2, Q1) =
diag{ P2

Q1
, P2

Q1
, P2

Q1
}. Then EfE−1 = diag{ Ṗ2

P2
− Q̇1

Q1
,

Ṗ2
P2

− Q̇1

Q1
, Ṗ2

P2
− Q̇1

Q1
}. Incorporating (8), the matrix

B = EfE−1 + EJ [2]E−1 can be written in block
form as

B =

(
B11 B12

B21 B22

)
,

where

B11 =
Ṗ2

P2
− Q̇1

Q1
+

e1a1(r + μ)2

4aμ

− e1a1(2P1 + P2 + Q1) − a3Q1

(1 + bP2)2

− a2Q1 + β(P1 − P2) − (d1 + d2 + c1),

B12 =
(
− a3P2

1 + bP2
, e1a1P1 + a2P1

)
,

B21 =
(

a3Q1(e3 − m)
(1 + bP2)2

,−e2a2Q1

)T

,

B22 =

(
d11 −e1a1P1 − βP1

βP2 d22

)
,

here

d11 =
Ṗ2

P2
− Q̇1

Q1
+

e1a1(r + μ)2

4aμ

− e1a1(2P1 + P2 + Q1) +
a3P2(e3 − m)

1 + bP2

− a2Q1 − βP2 + e2a2P2 − (d1 + d3),

d22 =
Ṗ2

P2
− Q̇1

Q1
− βP1 − a3Q1

(1 + bP2)2
+ e2a2P1

+
a3P2(e3 − m)

1 + bP2
− (d2 + d3 + c1).

Let (u, v,w) be the vectors in R3 	 R
(n

2

)
. We

select a norm in R3 as |(u, v,w)| = max{|u|, |v| +
|w|}. Furthermore, let μ(·) be the Lozinskĭi measure
with respect to this norm. Following the method in
[Martin, 1974] we can get

μ(B) ≤ sup{g1, g2}, (10)

where g1 = μ(B11) + |B12|, g2 = μ(B22) + |B21|.
|B12| and |B21| are the matrix norms. More
specifically,

μ(B11) =
Ṗ2

P2
− Q̇1

Q1
− e1a1(2P1 + P2 + Q1)

− a3Q1

(1 + bP2)2
+

e1a1(r + μ)2

4aμ

− a2Q1 − β(P2 − P1) − (d1 + d2 + c1),

|B12| = max
{
− a3P2

1 + bP2
, e1a1P1 + a2P1

}

= e1a1P1 + a2P1,

|B21| = max
{

a3Q1(e3 − m)
(1 + bP2)2

,−e2a2Q1

}

=
a3Q1(e3 − m)

(1 + bP2)2
.

To calculate μ(B22), we add the absolute value of
the off-diagonal elements to the diagonal one in
each column of B22, and then take the maximum of
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two sums. This leads to

μ(B22) = max

{
Ṗ2

P2
− Q̇1

Q1
− e1a1(2P1 + P2 + Q1)− a2Q1 + e2a2P2 − (d1 + d3)+

a3P2(e3 −m)
1+ bP2

+
e1a1(r + μ)2

4aμ
,

Ṗ2

P2
− Q̇1

Q1
− e1a1P1 − a3Q1

(1 + bP2)2
+

a3P2(e3 − m)
1 + bP2

+ e2a2P1 − (d2 + d3 + c1)

}

=
Ṗ2

P2
− Q̇1

Q1
+

a3P2(e3 − m)
1 + bP2

− d3 + e2a2P1 − e1a1P1

+ max
{
−e1a1(P1 + P2 + Q1) − a2Q1 +

e1a1(r + μ)2

4aμ
− d1,− a3Q1

(1 + bP2)2
− (d2 + c1)

}

=
Ṗ2

P2
− Q̇1

Q1
+

a3P2(e3 −m)
1+ bP2

− d3 + e2a2P1 +
e1a1(r + μ)2

4aμ
− 2e1a1P1 − e1a1(P2 + Q1)− a2Q1 − d1.

From the second and the third equations of system (7), we have

Ṗ2

P2
= βP1 − a3Q1

1 + bP2
− (d2 + c1),

Q̇1

Q1
= e2a2P1 +

e3a3P2

1 + bP2
− ma3P2

1 + bP2
− d3.

Therefore, we can get

g1 = μ1(B11) + |B12|

=
Ṗ2

P2
− Q̇1

Q1
+

e1a1(r + μ)2

4aμ
− e1a1(2P1 + P2 + Q1) − a3Q1

(1 + bP2)2

− a2Q1 − β(P2 − P1) + e1a1P1 + a2P1 − (d1 + d2 + c1)

≤ Ṗ2

P2
+

e1a1(r + μ)2

4aμ
− a2Q1 − a3Q1

(1 + bP2)2
+ a2P1 − β(P1 − P2) − (d1 + d2 + c1),

g2 = μ(B22) + |B21|

=
Ṗ2

P2
− Q̇1

Q1
+

a2P2(e3 − m)
1 + bP2

+
e1a1(r − μ)2

4aμ
− e1a1P1 + e2a2P1 − e1a1(P1 + P2 + Q1)

− a2Q1 +
a3Q1(e3 − m)

(1 + bP2)2
− (d1 + d3)

≤ Ṗ2

P2
+

e1a1(r + μ)2

4aμ
− e1a1P1 − a1Q1 +

a3Q1(e3 − m)
(1 + bP2)2

− d1.

Hence by (10) we have

μ(B) ≤ Ṗ2

P2
+

e1a1(r + μ)2

4aμ
− d1

+ max
{

a2P1 − a2Q1 − β(P1 − P2) − a3Q1

(1 + bP2)2
− (d2 + c1),

a3Q1(e3 − m)
(1 + bP2)2

− e1a1P1 − a1Q1

}
.
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In view of P1 ≤ (r+μ)2

4aμ , P2 ≥ c, Q1 ≥ c, here c is
the constant of uniform persistence, we can deduce
that if

e1a1(r + μ)2

4aμ
< β

(
(r + μ)2

4aμ
− c

)

+
a3c

(1 + bc)2
+ d1 + d2 + c1,

a3c(e3 − m)
(1 + bc)2

< a1c + d1,

holds, then

μ(B) ≤ Ṗ2

P2
− d,

where

d = min
{

β

(
(r + μ)2

4aμ
− c

)
+

a3c

(1 + bc)2
+ d1 + d2

+ c1 − e1a1(r + μ)2

4aμ
, a1c + d1 − a3c(e3 − m)

(1 + bc)2

}

> 0.

Along each solution (P1(t), P2(t), Q1(t)) of sys-
tem (7) for which (P1(0), P2(0), Q1(0)) ∈ Ω, we have

1
t

∫ t

0
μ(B)ds

≤ 1
t

∫ t1

0
μ(B)ds +

1
t

∫ t2

t1

μ(B)ds

≤ 1
t

∫ t1

0
μ(B)ds +

1
t

log
P2(t)
P2(t1)

− d,

which implies that

q2 = lim
t→∞ sup

x0∈Ω

1
t

∫ t

0
μ(B(x(s, x0)))ds ≤ −d

2
< 0.

According to the results in [Hirsch, 1990] and The-
orem 3(ii), if R0 > 1, then the endemic equilibrium
E∗

1 of system (2) is globally stable in Ω. �

4. Analysis of Bifurcation

4.1. Backward bifurcation and
forward bifurcation

Theorem 3 shows that R0 = 1 is a bifurcation value.
In fact, the disease-free equilibrium changes its sta-
bility properties when the basic reproduction num-
ber R0 passes through the value 1. In order to look
for conditions on the parameter values causing a

forward bifurcation or a backward bifurcation, we
will make use of the result in [Castillo-Chavez &
Song, 2004], which is based on the general center
manifold theory [Guckenheimer & Holmes, 1983].

We consider a general system of ODEs with a
parameter φ:

dx

dt
= f(x, φ), (11)

where f : R
n × R

n, is continuously differentiable at
least twice in both x and φ. Without loss of gen-
erality, we assume that x = 0 is an equilibrium of
system (11) for all values of the parameter φ. That
is, f(0, φ) ≡ 0, for all φ. In what follows, we give one
important result [Castillo-Chavez & Song, 2004].

Lemma 3 [Castillo-Chavez & Song, 2004]. Assume
that

(B1) A = Dxf(0, 0) is the linearization matrix of
system (11) around the equilibrium x = 0 with
φ evaluated at 0. Zero is a simple eigenvalue
of A and all other eigenvalues have negative
real parts.

(B2) Matrix A has a (non-negative) right eigenvec-
tor w and a left eigenvector v corresponding
to the zero eigenvalue.

Let fk denote the kth component of f, and

a =
n∑

k,i,j=1

vkwiwj
∂2fk

∂xi∂xj
(0, 0),

b =
n∑

k,i=1

vkwi
∂2fk

∂xi∂φ
(0, 0).

Then the local dynamics of system (11) around
x = 0 are totally determined by a and b.

(1) a > 0, b > 0. When φ < 0 and |φ| � 1, x = 0 is
locally asymptotically stable and there exists a
positive unstable equilibrium; when 0 < φ � 1,
x = 0 is unstable and there exists a negative
and locally asymptotically stable equilibrium.

(2) a < 0, b < 0. When φ < 0 and |φ| � 1, x = 0
is unstable; when 0 < φ � 1, x = 0 is locally
asymptotically stable and there exists a positive
unstable equilibrium.

(3) a > 0, b < 0. When φ < 0 and |φ| � 1,
x = 0 is unstable and there exists a locally
asymptotically stable negative equilibrium; when
0 < φ � 1, x = 0 is stable and a positive unsta-
ble equilibrium appears.
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(4) a < 0, b > 0. When φ changes from neg-
ative to positive, x = 0 changes its stabil-
ity from stable to unstable. Correspondingly, a
negative unstable equilibrium becomes positive
and locally asymptotically stable.

It clearly appears that a transcritical bifurca-
tion takes place when φ = 0. More precisely, when
a < 0 and b > 0, such bifurcation is forward; when
a > 0 and b > 0, this bifurcation at φ = 0 is
backward.

Now let φ = β be the bifurcation parameter,
such that R0 < 1 for φ < 0 and R0 > 1 for φ > 0,
and such that x0 is a disease-free equilibrium for
all values of φ. The disease-free equilibrium is the
point (x0;φ) and the local stability of the disease-
free equilibrium changes at the point (x0;φ) [van
den Driessche & Watmough, 2002]. Now we want
to show that there are nontrivial equilibria near the
bifurcation point (x0; 0). Let X = x1, P1 = x2,

P2 = x3, and Q1 = x4, then system (2) can be
written as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx1

dt
= x1(r − ax1) − a1x1x2,

dx2

dt
= e1a1x1x2 − a2x2x4 − βx2x3 − d1x2,

dx3

dt
= βx2x3 − a3x3x4

1 + bx3
− (d2 + c1)x3,

dx4

dt
= e2a2x2x4 +

e3a3x3x4

1 + bx3
− ma3x3x4

1 + bx3
− d3x4.

(12)

We will apply Lemma 3 to show that sys-
tem (12) may exhibit a backward bifurcation when
R0 = 1. We consider that the disease-free equilib-
rium E4 is E4 = (x(4)

1 , x
(4)
2 , x

(4)
3 , x

(4)
4 ). We observe

that the condition R0 = 1 can be given in terms of
the parameter β while

β = β∗ =
re1e2a1a2a3 − e1a

2
1a3d3 − ae2a2a3d1 + ae2a

2
2(d2 + c1)

aa2d3
.

Therefore, when β = β∗, the characteristic matrix of the linearization of system (12) at the disease-free
equilibrium E4 is

J(E4, β
∗) =

⎛
⎜⎜⎜⎜⎜⎜⎝

−ax
(4)
1 a1x

(4)
1 0 0

e1a1x
(4)
2 0 −β∗x(4)

2 −a2x
(4)
2

0 0 0 0

0 e2a2x
(4)
4 e3a3x

(4)
4 − ma3x

(4)
4 0

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Through simplification, the characteristic equation
corresponding to the Jacobian matrix J(E4, β

∗) at
E4 can be reduced to

λ(λ3 + C1λ
2 + C2λ + C3) = 0, (13)

where C1 = ax
(4)
1 , C2 = e1a

2
1x

(4)
1 x

(4)
2 + e2a

2
2x

(4)
1 x

(4)
4

and C3 = ae2a
2
2x

(4)
1 x

(4)
2 x

(4)
4 .

Thus, a simple zero eigenvalue of (13) exists
and the other eigenvalues are real and negative

when C1C2 > C3. By using the center manifold
theory, the disease-free equilibrium E4 is a non-
hyperbolic equilibrium when β = β∗. Hence, the
assumption (B1) of Lemma 3 is also verified.

Now we denote

w = (w1, w2, w3, w4)T

as a right eigenvector associated with the zero eigen-
value. It follows that⎛

⎜⎜⎜⎜⎜⎜⎝

−ax
(4)
1 a1x

(4)
1 0 0

e1a1x
(4)
2 0 −β∗x(4)

2 −a2x
(4)
2

0 0 0 0

0 e2a2x
(4)
4 e3a3x

(4)
4 − ma3x

(4)
4 0

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

w1

w2

w3

w4

⎞
⎟⎟⎟⎟⎠ = 0.
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Then we can get

w =
(

(e3 − m)a1a3

ae2e3
,
(m − e3)a3

e2a2
, 1,

e1a
2
1a3(e3 − m)

ae2a2
2

− β∗

a2

)T

.

Furthermore, the components of the left eigen-
vector v = (v1, v2, v3, v4) must satisfy the equalities⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−ax
(4)
1 v1 + e1a1x

(4)
2 v2 = 0,

−a1x
(4)
1 v1 + e2a2x

(4)
4 v4 = 0,

−β∗x(4)
2 v2 + (e3a3x

(4)
4 − ma3x

(4)
4 )v4 = 0,

−a2x
(4)
2 v2 = 0

(14)

and w · v = 1. By simple computation, we can get
v = (0, 0, 1, 0).

According to the coefficients a and b defined
in Lemma 3 and substituting the values of all the
second-order derivatives evaluated at the disease-
free equilibrium and β = β∗, we have

a =
4∑

k,i,j=1

vkωiωj
∂2fk

∂xi∂xj
(E4, β

∗)

= v3

(
w2w3

∂2f3

∂x2∂x3
+ w3w2

∂2f3

∂x3∂x2

+ w3w4
∂2f3

∂x3∂x4
+ w4w3

∂2f3

∂x4∂x3
+ w2

3

∂2f3

∂x2
2

)

+ 2w3(β∗w2 − a3w4 + a3x4bw3)

=
2a3

ae2a2
2

(β∗aa2(m − e3) − e1a
2
1a3(e3 − m)

+ β∗ae2a2 + b(re1e2a1a2 − e1a
2
1d3 − ae2a2d1))

=
2a3d3

ae2a
2
2

[−(e3 − m)(re1e2a1a2a3 − e1a
2
1a3d3

− ae3a2a3d1 + ae2a
2
2(d2 + c1) + e1a

2
1a3d3)

+ e2(re1e2a1a2a3 − e1a
2
1a3d3 − ae2a2a3d1

+ ae2a
2
2(d2 + c1)) + bd3(re1e2a1a2

− e1a
2
1d3 − ae2a3d1)]

and

b =
n∑

k,i=1

vkωi
∂2fk

∂xi∂φ
(E4, β

∗)

= v3

(
w2

∂2f3

∂x2∂β
+ w3

∂2f3

∂x3∂β

)

= v3(w2x3 + w3x2)

=
d3

e2a2
> 0.

Note that the coefficient b is always positive.
According to Lemma 3, the sign of the coefficient a
decides the local dynamics around the disease-free
equilibrium for β = β∗.

Define

R∗
1 =

R∗
10

R∗
100

,

where

R∗
10 = (e3 − m)(e1a

2
1a3d3 + ae2a2a3d1)

+ re1e
2
2a1a2a3 + ae2

2(d2 + c1)

+ re1e2a1a2bd3 − e1a
2
1bd

2
3,

R∗
100 = (e3 − m)(re1e2a1a2a3 + ae2a

2
2(d2 + c1)

+ e1a
2
1a3d3) + e2a3(e1a

2
1d3

+ ae2a2d1 + abd1d3).

Furthermore, when R∗
1 < 1, then a < 0; when

R∗
1 > 1, then a > 0. From the above discussions, we

have the following result.

Theorem 6. If R∗
1 > 1, then system (2) exhibits

a backward bifurcation when R0 = 1. If R∗
1 < 1,

then system (2) exhibits a forward bifurcation when
R0 = 1.

4.2. Hopf bifurcation

In this subsection, we choose transmission coeffi-
cient from the susceptible intermediate predator
compartment to the infective intermediate preda-
tor compartment as the bifurcation parameter, and
study the existence of Hopf bifurcation.

Theorem 7. Hopf bifurcation occurs at the endemic
equilibrium E∗

1 when β = β∗∗ if and only if

(i) there exists a critical value β = β∗∗ such that
f(β∗∗) = m1(β∗∗)m2(β∗∗)m3(β∗∗)−m2

3(β
∗∗)−

m4(β∗∗)m2
1(β

∗∗) = 0;
(ii) ρ(β) is purely imaginary number at β = β∗∗,

but all other eigenvalues are real negative parts;
(iii) L(β∗∗)N(β∗∗) + K(β∗∗)M(β∗∗) �= 0, here

L(β),K(β),M(β) and N(β) are defined
in (20).

2150019-14

In
t. 

J.
 B

if
ur

ca
tio

n 
C

ha
os

 2
02

1.
31

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 C
H

IN
E

SE
 A

C
A

D
E

M
Y

 O
F 

SC
IE

N
C

E
S 

on
 0

6/
01

/2
2.

 R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



February 23, 2021 12:8 WSPC/S0218-1274 2150019

Dynamics of a Food Chain Model with Two Infected Predators

Proof. By the condition f(β∗∗), the characteristic
equation can be written as(

λ2 +
m3

m1

)(
λ2 + m1λ +

m1m4

m3

)
= 0. (15)

If Eq. (15) has four roots, defined as λi (i =
1, 2, 3, 4) with the pair of purely imaginary roots at
β = β∗∗ as λ1 = λ2, then it follows that

λ3 + λ4 = m1, (16)

ω2
0 + λ3λ4 = m2 =

m2
1m4 + m2

3

m1m3
, (17)

ω2
0(λ3 + λ4) = −m3, (18)

ω2
0λ3λ4 = m4, (19)

here ω0 = Imλ1(β∗∗). By the aforementioned equa-
tion (15), ω0 =

√
m3
m1

. Now, if λ3 and λ4 are com-
plex conjugate, then it follows that 2Re λ3 = −m1

from (16). If they are real roots, then λ3 < 0 and
λ4 < 0 according to Eqs. (16) and (17). To complete
the discussion, we need to verify the transversality
condition.

Because f(β∗∗) is a continuous function of all
its roots, there exists an open interval β ∈ (β∗∗ −
ε, β∗∗ + ε), where λ1(β) and λ2(β) are complex con-
jugates on β. We suppose that their general forms
in this neighborhood are

λ1(β) = a(β) + ib(β), λ2(β) = a(β) − ib(β).

Now, we verify the transversality condition

dRe(λj(β))
dβ

∣∣∣∣
β=β∗∗

�= 0, j = 1, 2.

Substituting λj(β) = a(β) ± ib(β) into (5) and cal-
culating the derivative, we have

K(β)a′(β) − L(β)b′(β) + M(β) = 0,

L(β)a′(β) + M(β)b′(β) + N(β) = 0,

where

K(β) = 4a3(β) − 12a(β)b2(β)

+ 3m1(β)(a2(β) − b2(β))

+ 2m2(β)a(β) + m3(β),

L(β) = 12a2(β)b(β) + 6m1(β)a(β)b(β)

− 4b3(β) + 2m2(β)b(β),

M(β) = m′
1(β)(a3(β) − 3ab2(β))

+ m′
2(β)(a2(β) − b2(β)) + m′

3(β)a(β),

N(β) = m′
1(β)(3a2(β)b(β) − b3(β))

+ 2m′
2(β)a(β)b(β) + m′

3(β)b(β).
(20)

Since

L(β∗∗)N(β∗∗) + K(β∗∗)M(β∗∗) �= 0,

we have

d Re(λj(β))
dβ

∣∣∣∣
β=β∗∗

= −L(β∗∗)N(β∗∗) + K(β∗∗)M(β∗∗)
K2(β∗∗) + L2(β∗∗)

�= 0, j = 1, 2.

Therefore, the transversality condition is true. This
implies that Hopf bifurcation occurs at β = β∗∗.

�

5. Optimal Control Problem

5.1. The existence of optimal
control

In the previous section, we investigate the dynam-
ical behavior of this system. However, we do not
take any measure to the infectious populations.
It is necessary to study infectious disease in eco-
epidemiological system by some control strategies.
In this subsection, we will analyze the minimum
of infective intermediate predator population by
the control theory, and formulate an optimal con-
trol problem by reconsidering system (2) to reduce
the numbers of infectious populations. Therefore,
we introduce two control variables u1(t) and u2(t)
in our system (2), where u1(t) represents efforts
intended to prevent the susceptible intermediate
predator from having contact with the infective
intermediate predator and u2(t) represents the frac-
tion of infective intermediate predator that will be
put under treatment to reduce the number of infec-
tive intermediate predator.

Just as a coin has two sides, there will be a lot
of costs generated during the control process. Our
main aim is to minimize the infective intermediate
predator as well as to reduce the costs required to
control the disease. For this purpose, Pontryagin’s
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maximum principle will be applied [Kar & Batab-
yal, 2011]. Thus, we form the objective function of
our optimal control problem given by

J(u1, u2) =
∫ tf

0

[
P2(t) +

1
2
c1u

2
1(t) +

1
2
c2u

2
2(t)
]
dt,

(21)

subject to the state system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ẋ = X(r − aX) − a1XP1,

Ṗ1 = e1a1XP1 − a2P1Q1

− (1 − u1(t))βP1P2 − d1P1,

Ṗ2 = (1 − u1(t))βP1P2 − a3P2Q1

1 + bP2

− (d2 + c1 + u2(t))P2,

Q̇1 = e2a2P1Q1 +
e3a3P2Q1

1 + bP2
− ma3P2Q1

1 + bP2

− d3Q1 + u2(t)P2,

(22)

with the initial conditions

X(0) ≥ 0, P1(0) ≥ 0, P2(0) ≥ 0, Q1(0) ≥ 0,
(23)

where tf is the final time and c1 ≥ 0, c2 ≥ 0 are
weight factors that adjust the intensity of two dif-
ferent control measures. Our objective function is
a continuously differentiable function of state vari-
ables and control. Pontryagin’s maximum princi-
ple gives the necessary conditions to determine a
feasible value of the control for which the objec-
tive function would be optimized. If this feasible
control exists, then it is said to be the optimal
control [Lenhart & Workman, 2007]. Here, U =
{(u1, u2) |ui(t) is measurable and 0 ≤ ui(t) ≤ 1,
for all t ∈ [0, tf ]}.

Next, we will investigate the existence of the
optimal control of the above-mentioned problem by
the results in [Fleming & Rishel, 1975].

Theorem 8. There exists an optimal control u∗ =
(u∗

1, u
∗
2), t ∈ [0, tf ] such that

J(u∗
1, u

∗
2) = min

u1(t),u2(t)∈U
J(u1, u2),

subject to the control system (22) with the initial
conditions (23).

Proof. To prove the existence of an optimal control,
we have to check the following conditions:

(1) the control and corresponding state variables
are non-negative values;

(2) the control set U is convex and closed;
(3) the right side of the state system (22) is

bounded by linear function in the state and con-
trol variables;

(4) the integrand of the objective functional is con-
cave on U ;

(5) there exist constants such that the integrand
in (21) of the objective functional is satisfied.

In order to verify these conditions, we note
that the control variable and all the state variables
are non-negative. In this minimizing problem, the
necessary convexity of the objective functional in
u1(t), u2(t) is satisfied. Moreover, the control vari-
able (u1, u2) ∈ U is also convex and closed by
definition. The optimal system is bounded, which
determines the compactness. In addition, the inte-
grand in the functional (21), P2(t) + 1

2c1u
2
1(t) +

1
2c2u

2
2(t) is convex on the control set U . There-

fore, these conditions determine the existence of the
optimal control u∗ which minimizes the objective
functional (21) for t ∈ [0, tf ] with the help of the
system (22). Also, we can easily see that there exist
constants b1 > 0, b2 > 0 and α > 1 such that

L(t, u1, u2) ≥ b1(|u1|2 + |u2|2)
α
2 − b2,

which completes the existence of an optimal control.
�

5.2. The characterization
of optimal control

In order to find an optimal solution pair, we will
consider the optimal control problem (21) in this
subsection. We first give the Lagrangian of our opti-
mal control problem as follows

L(P2, u1, u2) = P2(t) +
1
2
c1u

2
1(t) +

1
2
c2u

2
2(t). (24)

In order to find the minimum value of the Lag-
rangian, we define the Hamiltonian H = H(x(t),
u1, u2, λ1, λ2, λ3, λ4, t) given by

H(x(t), u1, u2, λ1, λ2, λ3, λ4, t)

= L(P2, u1, u2) + λ1(t)[X(r − aX) − a1XP1]
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+ λ2[e1a1XP1 −a2P1Q1(1− u1(t))

×βP1P2 − d1P1] + λ3

[
(1 − u1(t))βP1P2

− a3P2Q1

1 + bP2
− (d2 + c1 + u2(t))P2

]

+ λ4

[
e2a2P1Q1 +

e3a3P2Q1

1 + bP2
− ma3P2Q1

1 + bP2

− d3Q1 + u2(t)P2

]
−ω11u1(t)−ω12(1−u1(t))

−ω21u2(t)−ω22(1 − u2(t)), (25)

where ωij(t) ≥ 0, i, j = 1, 2, are the penalty multi-
pliers satisfying

ω11(t)u1(t) = ω12(t)(1 − u1(t)) = 0,

ω21(t)u2(t) = ω22(t)(1 − u2(t)) = 0.

At optimal control u∗
1 and u∗

2, x(t) = (X(t), P1(t),
P2(t), Q1(t)) and λi (i = 1, 2, 3, 4) are known as the
adjoint variables or the costate variables. Now we
apply the necessary conditions to the Hamiltonian
H in (25).

Theorem 9. Let X∗(t), P ∗
1(t), P ∗

2(t), Q∗
1(t) be the

solutions of the control system (22) together with
the control variables u∗

1(t), u∗
2(t) for the optimal

control problem (21), then there exist adjoint vari-
ables λ1, λ2, λ3 and λ4 that satisfy the following
conditions

dλ1

dt
= −λ1(r − 2aX − a1P1) − λ2e1a1P1,

dλ2

dt
= λ1a1X − λ2(e1a1X − a2Q1

− (1 − u1(t))βP2 − d1)

−λ3(1 − u1(t))βP2 − λ4e2a2Q
∗
1,

dλ3

dt
= −1 + λ2(1 − u1(t))βP1

−λ3

[
(1 − u1(t))βP1

− a3Q1

(1 + bP2)2
− (d2 + c1 + u2(t))

]

−λ4

(
e3a3Q1

(1 + bP2)2
− ma3Q1

(1 + bP2)2

)
,

dλ4

dt
= λ2a2P1 + λ3

a3P2

1+ bP2
−λ4

(
e2a2P1 − e3a3P2

1+ bP2

− ma3P2

1 + bP2
− d3 + u2(t)

)
,

(26)

with transversality condition (or boundary condi-
tion)

λi(tf ) = 0, i = 1, 2, 3, 4. (27)

Also, the optimal controls can be obtained from the
following equations

u∗
1(t) = min

{
1,max

{
0,

1
c1

(λ3 − λ2)βP1P2

}}
,

u∗
2(t) = min

{
1,max

{
0,

1
c2

(λ4 − λ3)βP2

}}
.

(28)

Proof. Suppose X(t) = X∗(t), P1(t) = P ∗
1(t),

P2(t) = P ∗
2(t), and Q1(t) = Q∗

1(t). By differenti-
ating the Hamiltonian H with respect to states, we
can get the adjoint system

dλ1

dt
= −∂H

∂X
, λ1(tf ) = 0,

dλ2

dt
= − ∂H

∂P1
, λ2(tf ) = 0,

dλ3

dt
= − ∂H

∂P2
, λ3(tf ) = 0,

dλ4

dt
= − ∂H

∂Q1
, λ4(tf ) = 0.

(29)

Through the calculation, it is easy to verify the
adjoint equation (26). By differentiating the Hamil-
tonian H with respect to the controls, we can obtain
the following optimality conditions⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂H

∂u1
= c1u1(t) + λ2βP1P2 − λ3βP1P2

− ω11 + ω12 = 0,

∂H

∂u2
= c2u2(t) − λ3βP2 − λ4P2 − ω21 + ω22 = 0.

(30)

To determine an explicit expression for the opti-
mal control without ω1 and ω2, a standard optimal-
ity technique is used [Fleming & Rishel, 1975]. We
consider the following three cases.
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(i) If {t | 0 < u∗
1(t) < 1}, then we have ω11 = ω12 =

0. Therefore, the optimal control is

u∗
1(t) =

1
c1

(λ3 − λ2)βP1P2.

(ii) If {t |u∗
1(t) = 1}, then we have ω11 = 0. Thus,

we get

1 = u∗
1(t) =

1
c1

[(λ3 − λ2)βP1P2 − ω12].

This implies that

1
c1

(λ3 − λ2)βP1P2 ≥ 1, since ω12 ≥ 0.

(iii) If {t |u∗
1(t) = 0}, then we have ω12 = 0. There-

fore, we have that

0 = u∗
1(t) =

1
c1

[(λ3 − λ2)βP1P2 + ω11].

This implies that

1
c1

(λ3 − λ2)βP1P2 ≥ 1, since ω11 ≥ 0.

From the above analysis, we can obtain that
the optimal control u∗

1(t) is characterized as

u∗
1(t) = min

{
1,max

{
0,

1
c1

(λ3 − λ2)βP1P2

}}
.

Similarly, we can get

u∗
2(t) = min

{
1,max

{
0,

1
c2

(λ4 − λ3)βP2

}}
.

This completely finishes the proof. �

6. Numerical Simulations

In order to demonstrate the theoretical results
which we have obtained in the previous sections, we
will give a set of values of parameters in Table 2.
We also assume that the initial conditions of sys-
tem (2) are X(0) = 2.25, P1(0) = 1.05, P2(0) = 0.4
and Q1(0) = 0.38.

First, when we choose r = 1.6, a1 = 0.34,
a2 = 0.23, β = 0.28, e1 = 0.28, e3 = 0.25 and
d1 = 0.063, we can obtain the disease-free equilib-
rium E4(1.5894, 0.0511, 0, 0.3839) of system (2) and
R0 = 0.7329 < 1. Thus, the disease-free equilibrium
E4 is globally asymptotically stable [Fig. 2(a)]. If
we choose r = 1.3, a1 = 0.44, a2 = 0.25, β = 0.4,
e1 = 0.23, e3 = 0.35 and d1 = 0.073, then we can

Table 2. Biological meaning of parameters.

Parameters Number Value Source

r Variable Variable
a 0.8 Xu and Zhang

[Xu & Zhang, 2013]
a1 Variable Variable
a2 Variable Variable
a3 0.18 Estimate
β Variable Variable
e1 Variable Variable
e2 0.27 Estimate
e3 Variable Variable
d1 Variable Variable
d2 0.05 Estimate
d3 0.06 Estimate
c1 0.25 Kant

[Kant & Kumar, 2017]
m 0.3 Estimate
b 0.2 Estimate

calculate that R0 > 1. From Fig. 2(b), the endemic
equilibrium E∗

1 is globally asymptotically stable.
Secondly, Fig. 3(a) shows that a forward bifur-

cation happens when R0 crosses unity for sys-
tem (2). A small positive asymptotically stable equi-
librium appears and the disease-free equilibrium
loses its stability. We choose a set of following
parameters: r = 1.9, a = 13.08, a1 = 0.84, a2 = 0.1,
a3 = 0.34, e1 = 0.28, e2 = 0.05, e3 = 0.625, d1 =
0.023, d2 = 0.015, d3 = 0.01, c1 = 0.9, m = 0.01,
b = 1.5, β ∈ {0.539, 0.999}. Therefore, we obtain
that R0 ∈ {0.8093, 1.50}. When R0 < 1, the number
of infective predators reduces to zero; while R0 > 1,
the number of infective predators will increase or
decrease to the curved line that marks the endemic
equilibrium. At the same time, the positive equilib-
rium disappears when R0 < 1. Figure 3(b) shows
that a backward bifurcation takes place. We choose
a set of following parameters: a = 19.98, a3 = 0.18,
e2 = 0.07, d1 = 0.063, d2 = 0.025, c1 = 0.8 and
keep other parameters as the same values. When R0

is less than unity, a small positive unstable equilib-
rium appears while the disease-free equilibrium and
a larger positive equilibrium are locally asymptot-
ically stable. Epidemiologically, backward bifurca-
tion shows that it is not enough to only reduce the
basic reproductive number to less than one to elim-
inate a disease when R0 crosses unity.

Thirdly, we choose a set of following parame-
ters: r = 1.5, a = 0.6, β = 0.8, a1 = 0.44, a2 =
0.05825, a3 = 0.79, e1 = 0.23, e2 = 0.47, e3 = 4.89,
d1 = 0.093, d2 = 0.05, d3 = 0.66, c1 = 0.25,
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(a) (b)

Fig. 2. System (2) is globally asymptotically stable: (a) the disease-free equilibrium E4 and (b) the endemic equilibrium E∗
1.

m = 0.03, b = 0.2. The endemic equilibrium E∗
1 of

system (2) is globally asymptotically stable when
R∗ > 1 and β < β∗∗ (Fig. 4). From Fig. 5, we can
see that the solution curves of system (2) perform
a sustained periodic oscillation and phase trajecto-
ries approach limit cycle when β passes through the
critical value β∗∗ = 0.96. According to the theoreti-
cal results, we know that system (2) converges to a
sustained periodic solution, and undergoes a Hopf
bifurcation around the endemic equilibrium E∗

1.
Lastly, we investigate the optimal solutions to

system (2) by numerical results. We use fourth-
order Runge–Kutta forward iterative method to
solve the state variables of system (2) and then solve
the system (25) for the adjoint variables by back-
ward fourth-order Runge–Kutta iterative method

[Hackbusch, 1978]. Now, we select a set of following
parameter values: r = 1.8, a = 0.9, β = 0.5, a1 =
0.8, a2 = 0.59, a3 = 0.49, e1 = 0.35, e2 = 0.135,
e3 = 0.137, d1 = 0.4, d2 = 0.1, d3 = 0.9, c1 = 0.36,
m = 0.5, b = 0.45. First, when c1 = 10 and c2 = 1,
Fig. 6 indicates the changes of populations P1 and
P2 with the different values of u1, u2. From Fig. 6(a),
we can easily get that system (2) with control is bet-
ter than that without control. When u1 = 0, u2 = 0,
the infected predator P2(t) tends to a lowest value.
When u1 = 0.2, u2 = 0, the number of the suscepti-
ble predators is bigger than that in the case u1 = 0,
u2 = 0.2. Comparing with the case u1 = 0.2, u2 = 0,
the number of susceptible predators is better in the
case u1 = 0.2, u2 = 0.2. From Fig. 6(b), we know
that the density of P2(t) decreases with the values

(a) (b)

Fig. 3. Forward bifurcation or backward bifurcation takes place when R0 crosses unity: (a) Forward bifurcation and (b) back-
ward bifurcation.
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(a)

(b)

(c)

Fig. 4. The endemic equilibrium E∗
1 of system (2) is globally

asymptotically stable when R0 > 1 and β < β∗: (a) Dynamic
response curve, (b) phase diagram of P1(t), P2(t) and
(c) phase diagram of P1(t), P2(t) and Q1(t).

(a)

(b)

(c)

Fig. 5. The endemic equilibrium E∗
1 of system (2) is unsta-

ble when R0 > 1 and β > β∗: (a) Dynamic response curve,
(b) phase diagram of P1(t), P2(t) and (c) phase diagram of
P1(t), P2(t) and Q1(t).
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(a) (b)

Fig. 6. Variations of population of system (2) with the different values of u1, u2 when the weight factors in objective function
are c1 = 10, c2 = 1: (a) the susceptible predator and (b) the infected predator.

(a) (b)

Fig. 7. Variations of population of system (2) with the different values of u1, u2 when the weight factors in objective function
are c1 = 1, c2 = 10: (a) the susceptible predator and (b) the infected predator.
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(a) (b)

Fig. 8. The impact of different weight coefficients on optimal control u1, u2: (a) c1 = 10, c2 = 1 and (b) c1 = 1, c2 = 10.

of u1 and u2 increasing. If we change weight coef-
ficients into c1 = 1, c2 = 10, then we know that
there is little difference between Figs. 6 and 7. So
we can draw the same conclusion. Figure 8 shows
the process of control measure with different weight
coefficients. In Fig. 8(a), when c1 = 10, c2 = 1, the
simulation shows that the control strength of u2 is
much longer than that of u1. Inversely, when c1 = 1,
c2 = 10, we can get that the control strength of u1

is longer than that of u2 [see Fig. 8(b)].

7. Conclusions and Discussions

In this paper, an eco-epidemiology model is estab-
lished under the assumption that the disease spreads
among the predator and super-predator in the
ecological system. Because the susceptible super-
predator can distinguish the infected predator and
the susceptible predator, and catches not only the
infected predator but also susceptible predator in
our model. When R0 < 1, there exists the disease-
free equilibrium which is locally asymptotically sta-
ble. When R0 > 1 and some other conditions are
satisfied, the existence of the endemic equilibrium
is discussed. In addition, the endemic equilibrium is
also globally asymptotically stable when R0 > 1.
Theorem 6 shows that system (2) occurs as a back-
ward bifurcation when R0 = 1 and R∗

1 > 1 and
a forward bifurcation when R0 = 1 and R∗

1 < 1.
We also prove that Hopf bifurcation takes place
around the endemic equilibrium by considering
the disease transmission coefficient of predator as
bifurcation parameter. Furthermore, we establish
the optimality system and obtain the necessary

conditions of optimality by the Pontryagin’s max-
imum principle. To observe the rich dynamical
behavior, we also give some numerical simulations.

The world is full of uncertainty and random
phenomena [Zhang et al., 2019; Zhao et al., 2020],
so the species in the ecosystem may be subject to
different forms of random interference. Therefore,
we take the effect of fluctuations into account by
stochastically perturbing the force of infection rate
β of the disease, that is,

β → β + σḂ(t),

where B(t) is a standard Brownian motion, σ2 > 0
is the intensity of environmental white noise. Thus
system (1) can be written as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dX

dt
= X(r − aX) − a1XP1,

dP1

dt
= e1a1XP1 − a2P1Q1 − βP1P2 − d1P1

− σP1(t)P2(t)dB(t),

dP2

dt
= βP1P2 − a3P2Q1

1 + bP2
− (d2 + c1)P2

+ σP1(t)P2(t)dB(t),

dQ1

dt
= e2a2P1Q1 +

e3a3P2Q1

1+ bP2
− ma3P2Q1

1+ bP2
−d3Q1,

dQ2

dt
=

ma3P2Q1

1 + bP2
− (d4 + c2)Q2.

(31)

We leave these works for the future.
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