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Nitrogen–phosphorus co-doped porous carbon using ionic liquids
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Abstract
A new kind of nitrogen–phosphorus co-doped porous carbon (NPPC) material was prepared by using ionic liquids as a dual
functional agent and KCl and ZnCl2 as a salt template. Scanning electron microscopy and transmission electron microscopy
images demonstrated that the NPPC material has a uniform porous structure with a high specific surface area of 589.97 m2 g−1.
When the NPPC material used as anode materials for lithium-ion batteries, thanks to its good pore structure (contain rich
mesoporous and macroporous) and successful doping of nitrogen and phosphorus (9.12 and 0.28 at.%, respectively), its initial
discharge capacity is up to 685 mAh g−1 at a current density of 0.1 A g−1. After 50 cycles, reversible capacity of NPPC stays
around 715 mAh g-1 and the coulomb efficiency remained above 97%. After 400 cycles at the current density of 2 A g−1, the
capacity can still maintain at 394.1 mAh g−1. All results show that the NPPC material has excellent electrochemical properties
that can be viewed as a promising candidate for anode materials in lithium-ion batteries.
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Introduction

As an energy storage system, rechargeable lithium ion batte-
ries (LIBs) have been widely used in portable electronic de-
vices due to their high energy density, long cycle life, and high
safety performance compared with other batteries, for in-
stance, nickel–cadmium batteries and nickel–metal hydride
batteries. In recent years, the application of LIBs has been
extended to large electronic vehicles, whereas the common
anode materials cannot meet the needs of LIBs [1–4].
Graphite is the most commonly used industrial anode materi-
al; however, its theoretical capacity is only 372 mAh g−1,
limiting its cycling properties and rate performance [5, 6].
Therefore, efforts have been made to find new carbon-based

anode materials to improve the storage capacity of lithium
ions.

The structure of materials has become a chief research ob-
ject. After studying the carbon anode materials with different
microstructures, such as carbon nanotubes [7], nanofibers [8],
nanorods [9], hollow nanospheres [10], graphene [11], and
porous carbon [12], porous carbon is considered to be the
most promising anode material for LIBs. This can be attribut-
ed to the fact that porous carbon materials have micropores
and mesoporous pores, which can shorten the transport dis-
tance of lithium ions and provide the interface of electrode
electrolyte to promote the charge reaction, so as to make them
have high lithium capacity and good cycling stability [13–15].
Because of the recognition of porous carbon materials, a va-
riety of methods for preparing them have emerged.

Among those methods, the most widely used are soft tem-
plate method, hard template method, and chemical physical
activation method [16, 17]. The soft template method has high
controllability in pore structure and pore size distribution, and
the synthesized porous carbon electrode can show good elec-
trochemical performance. For example, Wang et al. prepared
nitrogen-doped porous carbon microtubes by soft template
method, which showed high reversible capacity (877.3 mAh
g−1 at 0.05 A g−1) and good rate performance (251.1 mAh g−1
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at 5 A g−1) [6]. However, only a few carbon precursors were
suitable for this standard, such as phloroglucinol, resorcinol,
and formaldehyde. Chemical activation and hard formwork
methods can avoid shortages of raw materials. Jia et al. pre-
pared graded porous carbon with continuous nonwoven glass
fiber as template, glucose as precursor, and KOH as activator,
which has high specific capacitance and good cyclic stability
[18]. However, many researchers use activators and corrosion
solutions such as sodium hydroxide, potassium hydroxide, or
hydrofluoric acid in the preparation of final products. These
are usually toxic and polluting chemicals, which are major
drawbacks that have seriously hindered the commercialization
of chemical activation methods. In recent years, the nano-
casting method with silica as the skeleton has been widely
used in the preparation of porous carbon materials. But this
method is very complicated and the carbonization conditions
are harsh, which is difficult to adapt to the preparation of
large-scale ordered nano-porous carbon films or monolithic
stones [19, 20]. Therefore, it is worthwhile to study how to
synthesize porous carbon easily, cheaply, and environmental-
ly. Potassium chloride (KCl) and zinc chloride (ZnCl2) are
environmentally friendly and low-cost compounds that can
be used as hard templates. After carbonization, they are easy
to be erased by water and the residue is kept at a low level.
Most notably, both compounds are freely soluble in water,
which means they can be uniformly dispersed in carbon pre-
cursor solutions [21].

Apart from the structure, a number of studies were demon-
strated that the electrochemical properties of the carbon-based
anode could be further improved by doping with heteroatoms
[22–24]. When it comes to single atom doping, nitrogen as a
“neighbor” of carbon is the most abundantly investigated het-
eroatom up to now. The incorporation of nitrogen atoms leads
to more defects in the external structure as the available active
site, enhancing the electrochemical reactivity and conductivi-
ty, thus making a significant contribution to the superior re-
versible capacity, rate performance, and cycling stability per-
formance of the LIBs [25–27]. Nevertheless, in recent years,
researchers pay an increasing number of attentions to the
study of binary doping and ternary doping. Cai and his team
proposed a method for synthesizing nitrogen (N) and sulfur
(S) co-doped graphene sheets, which had a reversible capacity
of 250 mAh g−1 when the current density was 20 A g−1 [28].
Choi and his co-worker reported that the ternary doping of B
and P with N into the carbon structure, the results showed that
the co-doping of N, B, and P produced a structure with more
edge sites so that its catalyst activity was 2.3 times higher than
the material doped only with nitrogen [29]. Many researchers
have found that carbon materials with nitrogen and phospho-
rus co-doping have great potential. The nitrogen–phosphorus
co-doped porous carbon material prepared by Wang et al. has
an adjustable surface base with uniform pores, so it has good
electrochemical performance in supercapacitors [30]. Jiang

et al. developed a nitrogen–phosphorus co-doped fractionated
porous carbon foammaterial as an efficient metal-free catalyst
for ORR. The sample obtained has excellent catalytic activity
in alkaline, neutral, and acidic media. In addition, compared
with the most advanced Pt/C catalyst in the commercial mar-
ket, it has better methanol oxidation resistance and higher
stability [31]. It has been proved that the good properties of
nitrogen and phosphorus co-doped materials can be attributed
to the following two points. On the one hand, the effect of
phosphorus can promote charge separation and enhance con-
ductivity [32]. On the other hand, the synergistic effect of N
and P atoms can help to improve the capacitance of material.
The reason is that the electronegativity of C, N, and P element
are about 2.55, 3.04, and 2.19, respectively, so the charge in
the carbon skeleton is redistributed, and more charge is trans-
ferred from the carbon atoms to the nearby nitrogen and phos-
phorus atoms [29, 33]. At present, there are a few researches
on the application of nitrogen and phosphorus co-doping in
lithium ion batteries.

In this work, we demonstrate a simple and effective method
for the preparation of nitrogen-phosphorus co-doped porous
carbon materials using KCl and ZnCl2 as salt template for
lithium ion batteries. NPPC is prepared by salt template meth-
od using ionic liquid 1-ethyl-3-methylimidazolium
dicyanamide and 1-bu ty l -3 -me thy l imidazo l ium
hexafluorophosphate as the carbon source and doping agent.
It is worth noting that the unique solvation environment of-
fered by ionic liquids can make heteroatoms evenly doped in
the sample. The electrochemical properties of NPPC show
that this material is not only beneficial to the rapid transport
of ions and electrons but also improves the capacitive contri-
bution. So that it has fantastic reversibility, rate performance,
and cyclic stability.

Experimental section

Materials

Potassium chloride (99 wt%) and zinc chloride (99 wt%) were
purchased from Aladdin Reagent Co. Ltd. (Shanghai, China).
1-Ethyl-3-methylimidazolium dicyanamide and 1-butyl-3-
methylimidazolium hexafluorophosphate were obtained from
Lanzhou Institute of Chemical Physics. All the other
chemicals and reagents were analytical grade and used with-
out further refinement.

Synthesis of nitrogen and phosphorus co-doped po-
rous carbon

The sample is directly carbonized by a mixture of ionic liquid
and sal t template . The mass rat io of 1-Ethyl-3-
me thy l imidazo l ium dicyanamide to 1 -bu ty l -3 -
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methylimidazolium hexafluorophosphate is 1:4.5, and the mass
ratio of KCl and ZnCl2 is 1:1. The mixture is well mixed by full
grinding; then, the mixture was put into a tube furnace filling
with argon gas and carbonized at 800 °C for 1 h with a heating
rate of 5 °C min−1. Finally, the sample was washed in deionized
water and hydrochloric acid and dried in a vacuum. Finally,
nitrogen–phosphorus co-doped porous carbon was obtained.

Materials characterization

X-ray diffraction (XRD) patterns were recorded on a Bruker
D8 Advance diffractometer using Cu Ka radiation. X-ray pho-
toelectron spectroscopy (XPS) studies were carried out on an
Escalab 250Xi. The surface morphology and microstructure
of the sample were observed from scanning electron micros-
copy (SEM, JSM-6701F) and transmission electron micros-
copy (TEM, JEM-2010F, JEOL, Japan). Raman spectra of the
composite were collected on a Lab RAM HR UV/vis/NIR
(Honba Jobin Yvon, France). The nitrogen adsorption–
desorption curves were registered on an ASAP-2020
(Micromeritics Instrument Crop, America) analyzer isother-
mally at 77 K. The specific surface area of NPPC was calcu-
lated by applying Brumaire-Emmett-Teller (BET) method,
and the pore size distributions were determined by the adsorp-
tion branch using Barrett–Joyner–Halenda (BJH) method.

Electrochemical measurements

CR2032 coin-type cell with a charge–discharge system was
used to test the electrochemical performance. The anode elec-
trodes were prepared by mixing the active material, acetylene

black, and polyvinylidene fluoride (PVDF) in a weight ratio of
8:1:1 in N-methyl pyrrolidinone (NMP) until homogeneous
slurry was obtained in mortar. After that coating the synthetic
slurry on the copper foil uniformly and dried in a vacuum
drying oven for 12 h at 80 °C subsequently. Lithium foil
and a polypropylene micro-porous film were used as the op-
posite electrode and the separator respectively. The electrolyte
used 1M LiPF6 in a mixture of ethylene carbonate (EC) and
1,2-dimethoxyethane (DEC) with a volume ratio of 1:1. The
coin-type test cells were assembled in an argon-filled glove
box and then stood for 24 h. Within the potential confines of
0.01 to 3.0 V, the coin-type test cells were galvanostatically
charged and discharged at 0.1 A g−1. The rate performance test
was tested at different current densities of 0.1 A g−1, 0.2 A g−1,
0.5 A g−1, 1 A g−1, and 5 A g−1, respectively, and decreased to
0.1 A g−1 once again. The cyclic voltammetry (CV) and the
electrochemical impedance spectroscopy (EIS) were carried
out using a CHI 660E electrochemical workstation.

Result and discussion

The morphology of the prepared materials was observed by
SEM and TEM; as shown in Fig. 1a, the SEM images clearly
show the resulting nitrogen–phosphorus co-doped carbon ma-
terial is composed of spherical nanoparticles, leading to gen-
erate a rough and irregular surface. After zooming in on Fig.
1a, we can precisely observe from Fig. 1b that these particles
are about 20–50 nm in diameter. The spherical nanoparticles
are conductive to enhance the rate performance. As can be
seen from Fig. 1c, the carbon distribution of the prepared

Fig. 1 The SEM (a,b) and TEM
(c,d) images of NPPC
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samples is uniform, which also indicates that the water solu-
bility of KCl and ZnCl2 has a great contribution. Local mag-
nification of Fig. 1c is showed by Fig. 1d; we can clearly see
that the pores in the material are evenly distributed with a large
number, which proves that the material we prepared is indeed
a porous carbon structure. The porous structures can lessen the
transport distance of lithium ions to facilitate the rapid diffu-
sion of lithium ions and provide a great electrode/electrolyte
interface for charge transfer reactions [34–36].

Raman spectroscopy measurements, which presented in
Fig. 2a, were conducted to further study the structure of the
carbon samples. The results exhibit two well-defined peaks
centered at about 1348 cm−1 and 1595 cm−1, which corre-
spond to the D (defect) band that in connection with the dis-
ordered arrangement of carbon materials and the G (graphite)
band that is relevant to the well-organized graphitic structure
of carbon, respectively [37, 38]. The intensity ratio of D band
to G band (ID/IG) can generally be of help to evaluate the
disordered degree of carbon [39]. The ID/IG value of NPPC
material is 0.845, suggesting that the composite samples have
many defects and vacancies, which is thanks to the doped
nitrogen and phosphorus [40, 41]. A mass of defects or disor-
ders introduced in NPPC is in favor of the storage and diffu-
sion of lithium. Therefore, the electrochemical properties can
also be improved [42].

The XRD patterns of NPPC are shown in Fig. 2b. The
typical diffraction humps at 25°, corresponding to the (002)
plane of graphitic carbon [43]. The diffraction peak of the salt
template cannot be observed from XRD, indicating that there
is no residuary salt template in NPPC [34].

To further determine the pore structure and porosity of
NPPC materials, the N2 adsorption–desorption experiment
was performed and the curves are exhibited in Fig. 2c.

According to IUPAC classification [44], it can be seen that
the NPPC accordance with a typical type II curve, implying
the existence of some mesopores and macropores in carbon
material. This consequence is coincided with the observation
from SEM. Figure 2 d is corresponding pore size distribution.
As the figure shown, the pore sizes are centered at 2 and 150
nm, including micropores, mesopores, and macropores. To a
certain extent, the increase of the fast transport channels of
electron and ion and rapid diffusion of electrolyte are attribut-
ed to the abundance of mesoporous [45].

In order to investigate the doping state of nitrogen and
phosphorus, the existential form of elements, and functional
groups on the surface of the carbon sample, XPS analysis was
carried out in detail. Figure 3 a shows there are C, N, O, and P
elements existed in NPPC. Simultaneously, it demonstrates
the prominent peak of C 1s, O 1s, and N 1s and the relatively
weak peak of P 2p at 284.43 eV, 531.39 eV, 399.05 eV, and
139.47 eV, respectively. In the high-resolution XPS spectra of
C 1s (Fig. 3b), the peaks at 284.82, 285.7, 287.08, and
290.37 eV severally belong to C–O, C–N/C–O–P, C–O, and
C=O bond [46, 47]; testifying N and P heteroatoms were
successfully incorporated into the sample. For the N 1s region,
the spectra can be separated out three peaks (Fig. 3c), the peak
at 398.47 eV represents pyridinic N, the peak at 399.1 eV
corresponds to pyrrolic N, and the peak at 400.82 eV is
assigned to graphitic N [33, 48]. As a rule, pyrrolic N and
pyridinic N are taken shape at the edges or defects of carbon
materials, which introduces more synthetic defects to carbon
materials as the active sites of electrochemistry; there is no
denying that they play an essential role in enhancing the per-
formance of capacity [49]. In addition, the graphite nitrogen
can reduce the electronic transport resistance to improve the
conductivity; hence, the battery dynamics could be

Fig. 2 a Raman spectrum, b
XRD pattern, c N2 adsorption-
desorption isotherm curves, and d
the corresponding pore size dis-
tributions plots of NPPC
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strengthened [50, 51]. Concerning to P 2p, the spectrum con-
tains two fitted peaks at 130.82 eV and 140.11 eV (Fig. 3d),
the low binding energy peak corresponds to P–C bond that
verifying Phosphorus atoms are present in the carbon lattice
[52], and the high binding energy peak corresponds to bond.
The successful P doping is deemed to the benefit of improving
capacitance, which can be attributed to phosphorus atoms
have lower electronegativity and larger radii than carbon to
in favor of generating more structural defects; therefore, more
active sites are provided [24, 53].

In order to further get a clear understanding of the potential
application value of the preparedmaterials in lithium batteries,
electrochemical performance testing was carried out as shown
in Fig. 4. Figure 4 a exhibits the rate capabilities of the pre-
pared sample, which is evaluated at current densities in the
range from 0.1 to 5 A g−1. Reversible capacities of 685 mAh
g−1, 610 mAh g−1, 518 mAh g−1, 372 mAh g−1, and 155 mAh
g−1 are obtained at 0.1A g−1, 0.2 A g−1, 0.5 A g−1, 1 A g−1, and
5 A g−1, respectively. When the current density restores to 0.1
A g−1, the reversible capacity of NPPC maintains at 695 mAh
g−1; this relatively high data attests NPPC has benign rate and
reversibility properties. Figure 4 b shows the cycling perfor-
mance of NPPC electrode tested under a long-term cycling up
to 50 cycles at 0.1 A g-1. After 50 cycles, the reversible ca-
pacity of NPPC stays around 715 mAh g−1 and the coulomb
efficiency remained above 97%. The reason for this satisfac-
tory outcome is that the porous carbon structure is conductive
to shorten the transport distance of lithium ions [39]. Figure 4
c is the charge and discharge curves of NPPC at the initial
three times, which is used to evaluate the electrochemical
lithium storage performance of the electrode. During the first
cycle, it is observed that NPPC delivers a high initial discharge

specific capacity of 1189.2 mAh g−1 and a high reversible
capacity of 720.4 mAh g−1 is achieved, which is about twice
times as much as commercial graphite [54]. In the second
cycle, the discharge specific capacity and reversible capacity
decreased to 750.5 mAh g−1 and 693.3 mAh g−1, respectively.
The large capacity loss is mainly due to the formation of solid
electrolyte interface (SEI) and secondary reactions [55]. In the
subsequent cycles, both discharge-specific capacities and re-
versible capacities of NPPC tend to stable, certifying a supe-
rior Li+ storage performance. In order to study the electro-
chemical process and understand the possible way of charge
storage to account for the high rate property of NPPC, we used
cyclic voltammetry to test the sample in the potential range
from 0.05 to 3 V at the scanning rate of 0.1 mV s−1. The first
three CV curves obtained are shown in the Fig. 4d. It can be
seen that the CV curve is not rectangular at high potential,
indicating that there is no storage behavior of capacitive lith-
ium, which means it is more suitable for practical application
[6]. In the first scan, the obvious reduction peaks are moni-
tored between 0.55 and 0.85 V, which on account of the de-
composition of the electrolyte and the formation of SEI films
[7]. The reason why there is a peak close to 0 V in the CV
curves is that the insertion of lithium ions into the carbon
layer. In the anode scan, there is a broad oxidation peak at
0.2 V, which is ascribed to the extraction of lithium from the
carbon layer. The result is in accord with previous observa-
tions about lithium storage in nitrogen-doped porous carbon
materials [56]. Meanwhile, the peak at 1.1 V is also regarded
as an oxidation peak, which results from the lithium extraction
from defects, for instance, pores, edges, and corners of the
carbon layers [6]. From the second cycle, it is not hard to
see that the CV curves nearly overlap, which on the one hand

Fig. 3 a XPS survey spectrum of
NPPC. High-resolution XPS
spectra of C 1s (b), N 1s (c), and P
2p (d)
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means that the oxidation of some SEI components is revers-
ible and the capability decay mainly occurs in the first cycle.
On the other hand, it also confirms that the electrode has good
cycling stability and excellent reversibility [57]. Figure 4 e is a
long cycle stability test for the material that shows the capacity
of NPPC remains at 394.1 mAh g−1 after 400 cycles when the
current density is 2 A g−1, reaching 50.16% of the initial
capacity. With the exception of a few cycles, the coulomb
efficiency of NPPC remains above 99.5%. This further indi-
cates that NPPC has good long period stability and structural
stability.

EIS test is carried out to further research the dynamic
information of NPPC materials in the frequency range
from 10−3 to 105 Hz at 0.005 V, and the Nyquist plot of
the prepared sample is shown in Fig. 5. It shows that the

impedance spectra curve consists of a semicircle and an
inclined line. This was demonstrated in a number of stud-
ies that a semicircle at the high-to-medium frequencies on
behalf of the double layer capacitance (CPE2) and the
resistance of charge transfer (Rct), whereas the oblique
line, which represents the Warburg impedance (Zw), is
associated with the diffusion of lithium ions in the elec-
trode material. Besides, the inherent internal resistance
(Rs) of the battery is derived from the electrode, electro-
lyte, and separator [50, 58, 59]. In Fig. 5, the insertion
part is the simplified equivalent circuit model, and sym-
bols correspond to the experimental data while the con-
secutive line is related to the fitting curves. It can be seen
that the results of simulations are in a good agreement
with measured values.

Fig. 4 a The rate performance of NPPC measured from different current
densities. b The cycling performance and coulombic efficiency. c The
initial-three charge/discharge curves of NPPC at 0.1 °C. d The cyclic

voltammogram curves of NPPC. e The long cycling performance of
NPPC at 2 A g−1 in the voltage range of 0.005–3.0 V
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From the above results, it can be seen that NPPC materials
have excellent electrochemical properties, which can be attrib-
uted to the following points: (1) Porous carbon is not only
conducive to the diffusion of lithium ions and the transfer of
charge but also provides a larger contact area between the
electrode and electrolyte, thus achieving higher specific ca-
pacity and good cycling performance. (2) Nitrogen doping
can effectively be of help to improve the transport kinetics
of lithium, provide more active sites and stable interfaces for
lithium storage, thus improving the reversible capacity, rate
performance, and cycling stability. (3) Additional P doping,
on the one hand, enhances charge delocalization of carbon
atoms, thus promoting charge separation and improving con-
ductivity. On the other hand, carbon structures with many
marginal sites are produced. (4) Nitrogen and phosphorus
co-doping cause the binding energy of carbon-carbon bond
to shift forward. The increase in binding energy means that
more charges are transferred from carbon atoms to nearby N
and P atoms, which can play an important role in improving
the capacitive properties of materials.

Conclusion

To sum up, we successfully prepared the NPPC material with
a simple method and studied its performance as a cathode
material for lithium ion batteries. KCl and ZnCl2 were used
as salt templates to successfully prepare the porous carbon
morphology. Using ionic liquid as carbon source and dopants
that N and P elements were successfully doped.
Electrochemical experiments show that NPPC has excellent
specific capacity, rate, and cyclic stability. Therefore, NPPC is
a promising anode material for lithium batteries. This work
provides a novel method for the preparation of porous carbon

materials mixed with nitrogen and phosphorus simultaneously
and uniformly.
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