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a b s t r a c t

An exact, closed-form solution is obtained for the nonlinear static responses of beams made of func-
tionally graded materials (FGM) subjected to a uniform in-plane thermal loading. The equations gov-
erning the axial and transverse deformations of FGM beams are derived based on the nonlinear first-
order shear deformation beam theory and the physical neutral surface concept. The three equations
are reduced to a single nonlinear fourth-order integraledifferential equation governing the transverse
deformations. For a fixedefixed FGM beam, the equation and the corresponding boundary conditions
lead to a differential eigenvalue problem, while for a hingedehinged FGM beam, an eigenvalue problem
does not arise due to the inhomogeneous boundary conditions, which result in quite different behavior
between clamped and simply supported FGM beams. The nonlinear equation is directly solved without
any use of approximation and a closed-form solution for thermal post-buckling or bending deformation
is obtained as a function of the applied thermal load. The exact solutions explicitly describe the nonlinear
equilibrium paths of the deformed beam and thus are able to provide insight into deformation problems.
To show the influence of the material gradients, transverse shear deformation, in-plane loading, and
boundary conditions, numerical examples are given based on exact solutions, and some properties of the
post-buckling and bending responses of FGM beams are discussed. The exact solutions obtained herein
can serve as benchmarks to verify and improve various approximate theories and numerical methods.

� 2011 Elsevier Masson SAS. All rights reserved.
1. Introduction

It is difficult to obtain an exact solution of the nonlinear equa-
tions in large deflection problems of a beam-like structure due to
the intractability of the geometric nonlinear control equations of
large deflection beams. Thus far, only a few exact solutions have
been investigated. However, with progress in science and tech-
nology, a need arises in engineering practice to accurately predict
the nonlinear static responses of large deflection beams.

Functionally graded materials (FGM) structures are those in
which the volume fractions of two or more materials are varied
continuously as a function of position along certain dimension(s) of
the structure to achieve a required function. Typically, FGMs are
made from amixture of ceramic andmetal. This paper is concerned
with obtaining exact solutions for the nonlinear static responses of
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beams made of a metal/ceramic functionally graded materials
under an in-plane thermal loading. Based on the exact solutions, an
investigation was conducted on the post-buckling or bending
behavior of FGM beams. The present investigation indicates that
a hingedehinged FGM beam subjected to an in-plane thermal load
does exhibit some characteristics that are quite different from those
of a fixedefixed FGM beam.

Many studies have been conducted on the static behavior of
FGM beams. Librescu et al. (2005) studied the behavior of thin-
walled beams made of FGMs that operated at high temperatures,
which included vibration and instability analysis with the effects of
the volume fraction, temperature gradients, etc. A review of various
investigations on FGM including thermo-mechanical studies is
found in Birman and Byrd (2007). Employing the finite element
method, Bhangale and Ganesan (2006) investigated the thermo-
elastic buckling and vibration behavior of an FGM sandwich
beam. Based on the two-dimensional theory of elasticity and using
the state-space method, Ying et al. (2008) presented solutions for
the bending and free vibration of FG beams resting on a Win-
klerePasternak elastic foundation. Static, free, and wave propaga-
tion analyses were carried out by Chakraborty et al. (2003) to
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examine behavioral differences in FGM beams. Using an efficient,
third-order zigzag theory for estimating the effective modulus of
elasticity, Kapuria et al. (2008) presented a finite element model for
the static and free-vibration responses of layered FGM beams along
with an experimental validation for two different FGM systems
under various boundary conditions. Yang and Chen (2008) studied
the free vibration and elastic buckling of FGM beams with open
edge cracks by using classical beam theory. Li (2008) proposed
a new unified approach to investigate the static and free vibration
behavior of EulereBernoulli and Timoshenko beams. Zhong and Yu
(2007) presented a general two-dimensional solution for a canti-
lever beam in terms of the Airy stress function.

As the aforementioned works show, research on the exact solu-
tion for the nonlinear static responses of FGM beams subjected to
a thermal load is scarce and thepresentwork attempts tofill this gap.
Emama and Nayfeh (2009) obtained a closed-form solution for the
post-buckling configurations of composite beams with various
boundary conditions based on the classical beam theory and
expressed these configurations as functions of the applied axial load.
In this study, we extend theirwork to a shear deformable FGMbeam.

In static analysis, the variation in material properties along the
thickness of FGM plates or beams results in quite a different
behavior compared to that of plates or beams made of pure mate-
rials. For example, bifurcation buckling generally cannot occur for
FGM plates or beams with simply supported edges due to in-plane
loadings, that is, a transverse deflection is initiated, regardless of
the magnitude of the loading, as is often the case with laminated
composite materials (Leissa, 1986; Leissa, 1987; Qatu and Leissa,
1993). The phenomenon was taken note of by Shen (2004) and
Aydogdu (2008). Shen (2004) stated that bifurcation buckling does
not take place for FGM rectangular plates with simply supported
edges due to the bending-stretching coupling. In the past, several
analyses have been published regarding the buckling of FGM plates
where such buckling cannot physically exist, as pointed out by Qatu
and Leissa (1993). Theflatness conditions of an FGMplate during the
pre-buckling stage were presented by Aydogdu (2008). However,
a few investigators have further examined these special behavior of
FGMplates or beams in detail. Shen (2002) analyzed the influence of
various factors such as the thermal loading and in-plane boundary
conditions on the nonlinear bending of FGM plates. The nonlinear
bending and post-buckling of an FGM circular plate under a thermal
loading and uniform radial pressure, respectively, was investigated
by Ma andWang (2003a, b). They found that transverse deflections
occur immediately when an in-plane compressive load is applied to
a simply supported FGM circular plate.

To the authors’ knowledge, only a few researchers have given
considerable attention to the static behavior of FGM beams with
simply supported edges due to an in-plane loading, which is one of
the primary objectives of the present investigation.

The stretchingebending coupling in the constitutive equations
of an FGM plate does not exist when the coordinate system is
located at the physical neutral surface of the plate (Morimoto et al.,
2006; Zhang and Zhou, 2008). Therefore, the governing equations
and boundary conditions for the FGM plate can be simplified. In the
present investigation, based on the nonlinear classical beam theory
and the physical neutral surface concept, the governing equations
for the static behavior of FGM beams subjected to a uniform in-
plane thermal loading are derived. The two equations can be
reduced to a single nonlinear fourth-order integraledifferential
equation that governs the transverse deformations. For a fix-
edefixed FGM beam, the equation and the corresponding boundary
conditions lead to a differential eigenvalue problem, but for a hin-
gedehinged FGM beam, an eigenvalue problem does not arise due
to the inhomogeneous boundary conditions, which result in quite
different behavior between clamped and simply supported FGM
beams. The nonlinear equation is directly solved without any use of
approximation and a closed-form solution for the thermal post-
buckling or bending deformation is obtained as a function of the
applied thermal load. The exact solutions explicitly describe the
nonlinear equilibrium paths of the deformed beam and thus, are
able to provide insights into deformation problems. Also, the exact
solution for simply supported beams indicates that the number of
possible solution branches for the beams is infinite. To show the
influence of the material gradients, transverse shear deformation,
in-plane loading, and boundary conditions, numerical examples
based on the exact solutions are given, and some properties of the
post-buckling and bending responses of FGM beams are discussed.
The exact solutions obtained herein are in good agreement with
those obtained by numerical methods.

2. Basic equations

A beam made of functionally graded materials with a uniform
cross-section of area A, height h, and length l is considered here. The
Cartesian coordinate system, (x, y, z), with the origin at the left end
of the beam is used in this analysis. The xoy plane is taken to be the
undeformed mid-plane of the beam, the x axis coincides with the
centroidal axis of the beam, and the z axis is perpendicular to the
xey plane, its positive direction being toward the height of the
cross-section.

It is assumed that the material properties of the form, P (such as
the Young’s modulus, E, and the thermal expansion coefficient, a),
of the beam vary along the height of the beam, and can be
expressed as follows (Ma and Wang, 2003a).

PðzÞ ¼ ðPm � PcÞ
�
h� 2z
2h

�n

þPc: (1)

Here, the subscripts, m and c, denote the metallic and ceramic
constituents, respectively, and n is the gradient index. In this paper,
Poisson’s ratio, n, is assumed to be a constant.

Based on the physical neutral surface concept put forward by
Zhang and Zhou (2008), the physical neutral surface of an FGM
beam is given by z ¼ z0.

z0 ¼

Zh=2
�h=2

zEðzÞdz

Zh=2
�h=2

EðzÞdz

: (2)

It can be seen that the physical neutral surface and the geometric
middle surface are the same in a homogeneous isotropic beam.

Using the physical neutral surface concept and the first-order
shear deformation beam theory (FBT), the displacements take the
following form.

Uxðx; zÞ ¼ uðxÞ þ ðz� z0ÞfðxÞ
Uzðx; zÞ ¼ wðxÞ: (3)

Here, u and w are the displacements in the physical neutral surface
along the coordinates, x and z, respectively. 4 denotes the slope at
z ¼ z0 of the deformed line that was straight in the undeformed
beam. The strains are as follows.

3x ¼ 30x þ ðz� z0Þ 31x ¼
(
du
dx

þ 1
2

�
dw
dx

�2
)

þ ðz� z0Þ
df
dx

gxz ¼ g0xz ¼ fþ dw
dx

:

(4)



L.S. Ma, D.W. Lee / European Journal of Mechanics A/Solids 31 (2011) 13e20 15
In the above, 3x
0 and 3x

1 are the strain and curvature in the physical
neutral surface, respectively. The constitutive equations can be
deduced by proper integration.

Nx ¼ Ax

(
du
dx

þ 1
2

�
dw
dx

�2
)

� NT : (5a)

Mx ¼ Dx
df
dx

�MT : (5b)

Qx ¼ Axz

�
fþ dw

dx

�
: (5c)

Here, Ax ¼ R
A
EðzÞdA, Axz ¼ ks

R
A
EðzÞ=2ð1þ nÞdA, Dx ¼ R

A
ðz� z0Þ2

EðzÞdA, ðNT ;MT Þ ¼ R
A
EaDTf1; ðz� z0ÞgdA, ks denotes the shear

correction factor and DT is the uniform temperature rise.
It can be seen that there is no stretching-bending coupling in the

constitutive equations of the physical neutral surface theory.
Using the energy principle, one can derive the following equi-

librium equations and boundary conditions based on FBT.

d
dx

(
Ax

(
du
dx

þ 1
2

�
dw
dx

�2
)

� NT

)
¼ 0: (6)

Dx
d2f
dx2

� Axz

�
fþ dw

dx

�
¼ 0: (7)

Axz

 
df
dx

þ d2w
dx2

!
þ
"
Ax

(
du
dx

þ 1
2

�
dw
dx

�2
)
�NT

#
d2w
dx2

¼ 0: (8)

u ¼ 0; w ¼ 0; f ¼ 0 for a fixed end: (9a)

u ¼ 0; w ¼ 0; Dx
df
dx

�MT ¼ 0 for a hinged end: (9b)

3. Solution

Integrating Eq. (6), one obtains:

Ax

(
du
dx

þ 1
2

�
dw
dx

�2
)

� NT ¼ A1: (10)

The substitution of Eq. (10) into Eq. (8) leads to:

Axz

 
df
dx

þ d2w
dx2

!
þ A1

d2w
dx2

¼ 0: (11)

Differentiating Eq. (7) with respect to x, one obtains:

Axz

 
df
dx

þ d2w
dx2

!
¼ Dx

d3f
dx3

: (12)

The substitution of Eq. (12) into Eq. (11) leads to:

Dx
d3f
dx3

þ A1
d2w
dx2

¼ 0: (13)

Calculating the second-order derivative of Eq. (11), one obtains:
d3f
dx3

¼ �
�
1þ A1

Axz

�
d4w
dx4

: (14)

Substituting Eq. (14) into Eq. (13), we obtain:

Dx

�
1þ A1

Axz

�
d4w
dx4

� A1
d2w
dx2

¼ 0: (15)

Eq. (10) can be rewritten as:

du
dx

¼ �1
2

�
dw
dx

�2

þNT

Ax
þ A1

Ax
: (16)

The integration of Eq. (16) yields:

u ¼ �1
2

Zx
0

�
dw
dh

�2

dh þ NT

Ax
xþ A1

Ax
xþ A2: (17)

Through the application of the boundary conditions given by Eq.
(9a) and (9b), Eq. (17) leads to:

A1 ¼ Ax

2l

Z l
0

�
dw
dx

�2

dx� NT : (18)

A2 ¼ 0: (19)

Substituting Eq. (18) into Eq. (15), we obtain:

Dx

8<
:1� 1

Axz

2
64NT � Ax

2l

Z l
0

�
dw
dx

�2

dx

3
75
9=
; d4w

dx4

þ

2
64NT � Ax

2l

Z l
0

�
dw
dx

�2

dx

3
75 d2w

dx2
¼ 0: ð20Þ

Eq. (20) governs the transverse response of a geometrically
nonlinear FGM beam. Eq. (11) can be rewritten as follows

Axz
df
dx

þ ðAxz þ A1Þ
d2w
dx2

¼ 0: (21)

Integrating Eq. (21) yields

Axzf ¼ �ðAxz þ A1Þ
dw
dx

þ B1: (22)

Through the application of the symmetric conditions given by
fðl=2Þ ¼ 0 and dw=dxðl=2Þ ¼ 0 leads to B1 ¼ 0 in Eq. (22). So, the
boundary condition, f ¼ 0, for a fixed end can be converted into
dw=dx ¼ 0, while Dxðdf=dxÞ �MT ¼ 0 for a hinged end can be

converted into d2w=dx2 þ Axz=DxðAxz þ A1ÞMT ¼ 0.
For generalizing the subsequent results, we use the following

non-dimensional variables:

X ¼ x
l
; W ¼ w

r
; N ¼ NTl2

Dx
; M ¼ MTl2

Dxr
; b ¼ Axr2

Dx
; F1

¼ Dx

Axzl2
and l ¼ 12

�
l
h

�2

amDT;

where r ¼ ffiffiffiffiffiffiffi
I=A

p
is the radius of gyration of the cross-section. As

a result, we write Eq. (20) as follows:
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Fig. 1. Variation of the dimensionless critical thermal buckling load, lFcr , of a fix-
edefixed FGM beam with the slenderness ratio, l/h.
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d4W
dX4 þ a2

d2W
dX2 ¼ 0: (23)

Here, a2 represents an eigenvalue of Eq. (23) that is defined by:

a2 ¼ k2

1� F1k2
: (24)

and

k2 ¼ N � b

2

Z1
0

�
dW
dX

�2

dX: (25)

The boundary conditions are given by the following.

W ¼ 0 and
dW
dX

¼ 0 for a fixed end : (26)

W ¼ 0 and
d2W
dX2 þ

�
1þ F1a

2
�
M ¼ 0 for a hinged end : (27)

We should note that for a fixedefixed FGM beam, Eq. (23) and the
corresponding boundary conditions, viz., Eq. (26), lead to a differ-
ential eigenvalue problem, but for a hingedehinged FGM beam, an
eigenvalue problem does not arise due to the inhomogeneous
boundary conditions. The discrepancy between the two beams
results in quite different behavior between an FGM beam with
clamped boundary conditions and one with simply supported
boundary conditions, as will be presented in Sections 3.1 and 3.2.

When the transverse shear stiffness Axz / N, Eq. (23) and the
boundary conditions, Eqs. (26) and (27), can reduce to those based
on the classical beam theory, which indicates that the effect of
transverse shear deformation is ignored.
Table 1
Material properties of Si3N4 and SUS304.

Materials Properties (T ¼ 300 K)

E [Pa] a [1/K]

Si3N4 322.27eþ9 7.4746e-6
SUS304 207.79eþ9 15.3210e-6
3.1. Postbuckling of a fixedefixed FGM beam

The solution of Eq. (23) can be written as follows:

WðXÞ ¼ C1sinðaXÞ þ C2cosðaXÞ þ C3X þ C4: (28)

whereC1, C2, C3 and C4 are constants of integration.
For a fixedefixed beam, its boundary conditions, viz., Eq. (26),

can be used to give the following equations:

Wð0Þ ¼ C2 þ C4 ¼ 0: (29a)
Wð1Þ ¼ C1sin aþ C2cos aþ C3 þ C4 ¼ 0: (29b)

W 0ð0Þ ¼ C1aþ C3 ¼ 0: (29c)

W 0ð1Þ ¼ C1acos a� C2asin aþ C3 ¼ 0: (29d)

Using Eqs.(29a), (29b) and (29c), we arrive at

C1 ¼ cos a�1
sin a� a

c; C2 ¼ �c; C3 ¼ �a
cos a� 1
sin a� a

c; C4 ¼ c : (30)

Thus, a closed-form solution for the buckled configuration of beams
with fixedefixed boundary conditions is given by:

WðXÞ ¼ c
�
cosa�1
sina�a

sinðaXÞ�cosðaXÞ�aðcosa�1Þ
sina�a

Xþ1
�
: (31)

Here, c is a constant related to the applied thermal load, N, and is
given by:

c ¼ � 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b
	
1þ F1a2


q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N
a2

�
1þ F1a

2
�
� 1

r
: (32)

Substituting the expressions in Eq. (30) into Eq. (29d), we obtain:

2� 2cos a� asin a ¼ 0: (33)

Eq. (33) is the characteristic equation for a of a beam with fix-
edefixed boundary conditions.

From Eq. (33), one can easily obtain the eigenvalues; the lowest
eigenvalue is a1 ¼ 2p. At the beginning stage of buckling, the
configuration of a buckled beam is sufficiently close to the beam’s
initial straight configuration. In this case, the thermal load, N, at
that instant of time is the critical buckling thermal load,NF

cr . One can
obtain the critical buckling load, NF

cr , from Eq. (32) by letting c ¼ 0,
that is,NF

cr ¼ a21=1þ F1a21. Thus, the analytical relation between the
dimensionless critical buckling thermal load, lFcr , of a fixedefixed
FGM beam and the gradient index, n, is given by:

lFcr ¼ a21
Cn

1þ F1a21
: (34)

where Cn is a constant related to the gradient index, n. Eq. (34)
becomes the classical dimensionless critical buckling thermal
load, lCcr , by letting F1 ¼ 0 (i.e., the transverse shear stiffness
Axz/N), which gives,lCcr ¼ a21Cn. Thus, Eq. (34) also represents the
analytical relationship between the dimensionless critical buckling
thermal loads based on FBT and CBT, that is,

lFcr ¼ lCcr
1

1þ F1a21
: (35)

Letting n ¼ 0, the FGM beam becomes homogeneous one. For
the first-order buckling mode, a ¼ 2p, using Eqs.(31), (32) and
(35), one can easily obtain the solution provided by the Timo-
shenko beam theory for a fixedefixed homogeneous beam:
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WðXÞ ¼ c½1� cosð2pXÞ�: (36)

where

c ¼ 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4p2F1

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l

4p2

�
1þ 4p2F1

�
� 1

s
;

and

lFcr ¼ 4p2

1þ 4p2F1
: (37)

Eq. (37) is identical to the solution obtained by Ma et al. (2006).
Fig. 1 demonstrates the variation of the dimensionless critical

thermal buckling load, lFcr , with the slenderness ratio, l/h, based on
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FBT for various values of the gradient index, n. Also shown in Fig. 1
through dashed lines are the classical results. The material prop-
erties used in Fig. 1 are given in Table 1. It is seen from Fig. 1 that as
the slenderness ratio, l/h, increases, the critical buckling tempera-
ture increases up to the classical results. Such a trend is observed
because the effect of the transverse shear deformation is ignored in
the classical beam theory.

Now, we analyze the load-deflection response of a fixedefixed
FGM beam based on the exact solution. The midspan deflection of
the beam, which corresponds to the lowest eigenvalue, is given by:

W
�
1
2

�
¼ � 4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b
	
1þ F1a2


q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N
a2

�
1þ F1a

2
�
� 1

r
: (38)
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This can be rewritten as:

W2 � 16
a21

DN ¼ 0: (39)

where DN ¼ N � NF
cr . Since N � NF

cr or DN � 0, only the post-
buckling response of the FGM beam can be described by using Eq.
(38) or Eq. (39). To describe the global responses including those of
pre-buckling for the FGM beam, we can amalgamate Eq. (39) and
a trivial solution, W ¼ 0, into a single solution given by:

W

 
W2 � 16

a21
DN

!
¼ 0: (40)

Note that Eq. (40) is identical to the expressions given by Popov
(2003) and Looss and Joseph (1990); these authors used the
methods of bifurcation theory to obtain a simple algebraic equation
that can describe the bifurcation buckling behavior of an Euler
beam. When DN < 0, i.e., N < NF

cr , a real solution does not exist in
either Eq. (38) or Eq. (39). Therefore, from Eq. (40), only a trivial
solution, W ¼ 0, is obtained, which represents the straight equi-
librium configuration of an FGM beam. WhenDN > 0, i.e., N > NF

cr ,
both trivial and nontrivial solution branches simultaneously exist
in Eq. (40), and the trivial solution is unstable, as pointed out by
a number of researchers. The nontrivial solution in either Eq. (38) or
Eq. (39) can accurately describe the post-buckling behavior of the
beam, that is, the deflection of the FGM beam is nonlinear with the
applied thermal load.

To understand the nonlinear static behavior of a metal/ceramic
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Fig. 7. Load-deflection curves of a simply supported FGM beam corresponding to
parameter a˛ðp; 3pÞ and a˛ð3p; 5pÞ.
FGM beam subjected to an in-plane thermal loading, studies have
been carried out on stainless steel (SUS304)-silicon nitride (Si3N4)
FGM, which are the commonly used materials for FGMs in the
existing studies. The material properties corresponding to Si3N4
and SUS304 are listed in Table 1. The result for the dimensionless
critical thermal buckling load based on the exact solution obtained
herein is compared with the corresponding result obtained by
a shooting method (Ma and Lee, 2011) in Fig. 2. It can be observed
from Fig. 2 that both of these agree extremely well with each other.

The typical thermal post-buckling paths of clamped FGM beams
are shown in Fig. 3. Fig. 3a represents the results of these beams for
various values of the gradient index, n, and Fig. 3b is for various
values of the slenderness ratio, l/h. Also shown in Fig. 3a is the
variation of the dimensionless midspan deflection with the
dimensionless thermal loading, l, for pure metal and ceramic
beams. As expected, in Fig. 3a, it can be seen that the shape of the
post-buckling load-deflection curves for FGM beams appears to be
quite similar to that for pure material beams and the dimensionless
midspan deflection of FGM beams with material properties
between those of ceramic and metal is in between the deflections
of the ceramic and metal beams. This can be attributed to the fact
that the Young’smodulus of ceramic is the highest and that of metal
the lowest. It can be seen from Fig. 3b that the post-buckling
deflection decreases with an increase in the slenderness ratio
because this means a reduction in the influence of the transverse
shear deformation. Fig. 4 gives the post-buckling configurations of
clamped FGM beams.
3.2. Bending of a hingedehinged FGM beam

For a hingedehinged beam, the substitution of Eq. (28) into its
boundary conditions, viz., Eq. (27), leads to:
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Fig. 8. Bending configurations of FGM beams simply supported at both ends.
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Wð0Þ ¼ C2 þ C4 ¼ 0: (41a)

W 00ð0Þ þ F2M ¼ �C2a
2 þ

�
1þ F1a

2
�
M ¼ 0: (41b)

Wð1Þ ¼ C1sin aþ C2cos aþ C3 þ C4 ¼ 0: (41c)

W 00ð1Þ þM ¼ �C1a
2sin a� C2a

2cos aþ
�
1þ F1a

2
�
M ¼ 0:

(41d)

These conditions yield:

C1 ¼ ctan
a
2
; C2 ¼ c; C3 ¼ 0; C4 ¼ �c;

c ¼
�
1þ F1a

2
� M
a2

: (42)

Thus, the exact solution of the bended configuration for a beam
with hingedehinged boundary conditions can be expressed as:

WðXÞ ¼ c
n
tan

a
2
sinðaXÞ þ cosðaXÞ � 1

o
: (43)

Substituting Eq. (43) into Eq. (25) and using Eq. (24), one obtains:

c ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
b
	
1þ F1a2



f ðaÞ

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N
a2

�
1þ F1a

2
�
� 1

r
: (44)

where f ðaÞ ¼ 1=1þ cos að1� sin a=aÞ. Note that the parameter, a,
in Eq. (43) is not a constant and varies with the applied thermal
load N and M, as will be shown shortly.

The substitution of Eq. (43) into
R 1
0 ðdW=dXÞ

2dX leads to:

Z1
0

�
dW
dX

�2

dX ¼ c2a2f ðaÞ: (45)

Substituting Eq. (45) into Eq. (25) and using Eq. (24) and the
expression c ¼ ð1þ F1a2Þ M

a2, one obtains:

a5ð1þ cos aÞ þ b

2
M2ða� sin aÞ

�
1þ F1a

2
�3�Na3

�
�
1þ F1a

2
�
ð1þ cos aÞ ¼ 0:

(46)

where as0; ð2m� 1Þp m ¼ 1;2;/ . Fig. 5 shows the variation
of a with the dimensionless thermal load, l. It is seen that
depending on the load level, a may take on multiple values for
a given load.

When n ¼ 0, the thermal bending moment MT ¼ 0. The
boundary conditions for a hingedehinged beam are homogeneous:
W ¼ 0 and
d2W
dX2 ¼ 0 for a hinged end : (47)

Thus, for a hingedehinged homogeneous beam, Eq. (23) and
the corresponding boundary conditions, viz., Eq. (47), lead to
a differential eigenvalue problem. It can be easily proven that the
solution for a hingedehinged homogeneous beam is:

WðXÞ ¼ csinðaXÞ: (48)

where c ¼ �2
. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ F1a2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N=a2ð1þ F1a
2Þ � 1

q
. The characteristic

equation for a corresponding to the simply supported boundary
conditions is given by

sin a ¼ 0 (49)

Based on FBT, Fig. 6 shows the variation of the dimensionless
midspan deflection with the thermal load for a simply supported
FGM beam. It is seen from Fig. 6 that simply supported FGM beams
under an in-plane thermal load exhibit quite different behavior
compared to the thermal post-buckling of clamped FGM beams, as
shown in Fig. 3. Transverse displacements occur no matter how
small the in-plane loads are; therefore, there is no bifurcation
buckling for this case, which further confirms the conclusionsmade
by several researchers in the existing literature (Leissa,1986; Leissa,
1987; Qatu and Leissa, 1993; Shen, 2004). In Fig. 6, two different
solution branches are seen to exist corresponding to two value
intervals, a˛ð0; pÞ (solid lines) anda˛ðp; 2pÞ (dashed lines),
respectively, which appear quite similar to the behavior corre-
sponding to imperfect beams, as elaborated in Looss and Joseph
(1990). Theoretically, the number of intervals that a may assume
is infinite, i.e., ð0; pÞ; ðp; 3pÞ; ð3p; 5pÞ; /. As a result, the
number of possible solution branches for the beams is infinite.
Fig. 7 gives two solution branches for FGM beams corresponding to
the intervals of a, ðp; 3pÞ; ð3p; 5pÞ, respectively; they are all
closed. Note that Fig. 7 has no practical significance due to the
extremely large value of the deflection or thermal load. Fig. 8 gives
the bending configurations of simply supported FGM beams.
4. Conclusion

An exact, closed-form solution for the nonlinear static responses
of FGM beams subjected to a uniform in-plane thermal loading is
presented. The buckled configuration of beams with fixedefixed
boundary conditions and the bended configuration of beams with
hingedehinged boundary conditions were obtained as a function of
the applied axial load. The exact solutions explicitly describe the
nonlinear equilibrium paths of the deformed beam and thus are
able to provide insights into deformation problems. The exact
solutions obtained herein can serve as benchmarks to verify and
improve various approximate theories and numerical methods.
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Based on the exact solution, a nonlinear static behavior analysis of
FGM beams has been carried out. The effects of various factors such
as material constants, the transverse shear deformation, in-plane
loading, and boundary conditions on the nonlinear mechanical
behavior of FGM beams has been investigated by using the exact
solution obtained herein. The following conclusions are arrived at
from the present study.

1. Under an in-plane thermal loading, FGM beams fixed at both
ends exhibit typical thermal post-buckling behavior. Also, all
the beams with intermediate properties experience corre-
spondingly intermediate values of the midspan deflection. The
transverse deflection of a simply supported FGM beam sub-
jected to an in-plane thermal load is initiated, regardless of the
magnitude of the loading. As a consequence, bifurcation
buckling does not occur for FGM beams that are simply sup-
ported at both ends. The load-deflection curve for simply
supported beams has many different branches corresponding
to different value intervals of the parameter, a.

2. An increase in the gradient index, n, results in an increase in the
dimensionless critical buckling temperature for an FGM beam
fixed at both ends and a decrease in the deflection of the beam.

3. An increase in the slenderness ratio, l/h, results in a reduction
in the influence of transverse shear deformation. As a conse-
quence, the dimensionless critical buckling temperature of
classical beams is higher than that of shear deformable beams.
In contrast, the deflection of classical beams is lower than that
of shear deformable beams.
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