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Abstract: Four subtypes of breast cancer, luminal A, luminal B, basal-like, human epidermal growth factor receptor-enriched,
have been identified based on gene expression profiles of human tumours. The goal of this study is to find whether the same
groups' genes would exhibit different networks among the four subtypes. Differential expressed genes between each of the four
subtypes and the normal samples were identified. The overlaps between the four groups of differentially expressed genes were
used to construct regulations networks for each of the four subtypes. Univariate and multivariate Cox regressions were
employed to test the genes in the four regulation networks. This study demonstrated that the common genes in four subtypes
showed different regulation. Also, the hsa-miR-182 and decorin pair performs different functions among the four subtypes of
breast cancer. The result indicated that heterogeneity of breast cancer is not only reflected in the different expression patterns
among different genes, but also in the different regulatory networks of the same group of genes.

1 Introduction
Breast cancer (BRCA) is a serious threat to women's health. Owing
to the heterogeneity and complexity of BRCA, how to effectively
treat it becomes very difficult. Therefore, researchers have been
devoting themselves to studying its complex molecular mechanism
in order to improve the prognosis of patients. Histologically similar
tumours may have different prognosis and may respond differently
to therapy. It is commonly believed that these differences among
histologically similar tumours are due to molecular differences.
Five molecular subtypes of BRCA, luminal A (LumA), luminal B
(LumB), human epidermal growth factor receptor 2 (HER2)-
enriched, basal-like (Basal), and normal-like (Normal), have been
identified [1]. LumA and LumB are characterised by the gene
expression related to oestrogen receptor (ER) and/or progesterone
receptor (PR) [2]. HER2 is characterised by frequent HER2/
ERBB2 amplification (80%) [3]. The Basal subtype or as an alias,
the triple negative BRCA, was reported to be the most invasive and
have the poorest prognosis in clinical outcome [4]. Competing
endogenous RNAs (ceRNAs) are messenger RNAs (mRNAs)
which share similar microRNA (miRNA) binding site with each
other. It has been widely acknowledged that ceRNAs can influence
each other by competing for the miRNA for which they shared
binding sites [5]. Different subtypes of BRCA require different
treatments [6]. The four subtypes are not only different in specific
markers and hormones, but also in other aspects. For example,
differences between different races, changes in the number of
copies of genes [7, 8]. To identify a gene signature for prognosis,
many previous studies showed various methods for testing [9]. The
research of identifying gene signature through regulating networks
has more advantages at the system level [10–12]. Several research
studies have employed a ceRNA network to analyse the subtypes
of BRCA [13–15]. Additionally, miRNAs play a vital role in the
regulation network. miRNA is a class of single-stranded,
endogenous, small, evolutionarily conserved non-coding RNAs
(ncRNAs). Generally, miRNAs negatively regulated gene
expression by sequence-specific base pairing with their target
mRNAs [16]. However, the study of ceRNAs is still in its infancy
and the hypothesis for ceRNA is still controversial [17]. The
relationship between miRNAs and diseases was a comprehensive
study. Since the regulation between miRNA and mRNA was

comprehensively studied [18–21]. With the in-depth study of
miRNAs, it has been found that miRNAs in the exosomes play an
important role in the pathogenesis of diseases [22, 23]. Therefore,
it is necessary to study miRNAs in different BRCA subtypes.
Therefore, this study is mainly focused on the regulatory network
between miRNAs and mRNAs hoping can provide more reference
for clinical practice.

Studying the differences among the four subtypes of BRCA is
of great significance for the understanding of the differences of
regulatory networks among different subtypes [24–26]. However,
whether the same gene or the same regulatory network shares the
same topological pattern among the four subtypes is rarely
reported. Therefore, we proposed a hypothesis in this work for
which the same gene has different networks among the four
subtypes. In order to verify this, differentially expressed genes
were analysed between each of the four subtypes and the normal
tissue sample. The overlapping genes between the four groups of
differentially expressed genes (DEGs) were then identified to
construct the regulatory network for each of the four subtypes. For
each subtype, different networks resulting from the same group of
genes can reflect not only the heterogeneity of BRCA at the level
of gene expression pattern differences but also the heterogeneity in
regulatory relationships. Therefore, we focused mainly on
revealing the heterogeneity in regulatory networks of miRNA–
mRNA pairs.

2 Methods
2.1 Data collection

All BRCA data were collected from the UCSC cancer browser
(https://xenabrowser.net/datapages/) database. The cohort of BRCA
patients was obtained from the Phenotype dataset from the GDC
TCGA BRCA within the database. The dataset Phenotype contains
1283 samples alongside with 187 identifiers.

2.2 Data preprocessing

Only the samples which include mRNAs, miRNAs, and clinical
data were retained. Basal, HER2, LumA, and LumB were filtered
according to the gene expression and clinical information, besides,
normal samples were also collected from the dataset. Samples with
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survival time <30 days were excluded. Therefore, the sample size
after the screening is different from the original GDC BRCA data.
This resulted in 142 Basal, 62 HER2, 437 LumA, 194 LumB, and
113 Normal samples. Since we were only interested in gene
expressions of mRNAs and miRNAs, the biomart tool of the
Ensembl database (http://asia.ensembl.org/index.html) was used for
further filtering of the data. 24,491 mRNAs were retained from a
total number of 60,484 RNAs. Next, we only kept those mRNAs
with expression values >1. As a result, 20,058 mRNAs and 538
miRNAs were retained for further study.

2.3 Differential gene expression analysis

For identification of the DEGs, an R package called ‘limma’ and R
software (version 3.5.0) was applied to analyse DEGs in different
groups. Limma is used for the analysis of gene expression
microarray data, especially the use of linear models for analysis
designed experiments and the assessment of differential expression.
RNAs (miRNAs and mRNAs) with |log2 FC| ≥ 1 and adjust P-
value (false discover rate) <0.05 were considered to be
significantly differentially expressed. We analysed DEGs between
each subtype and the Normal samples. In addition, we also
analysed DEGs among the four subtypes.

2.4 Identification of miRNA–mRNA networks in four subtypes

Different subtypes would exhibit different regulation networks. It
is important to find driver genes and core genes in four subtypes.
The overlap of DEGs in miRNAs and mRNAs was identified by
the Venn method which is implemented as R package named
‘VennDiagram’. The miRWalk2.0 (http://
zmf.umm.uniheidelberg.de/apps/zmf/mirwalk2/) database, which is
so far the only freely accessible database, which is supplying the
biggest available collection of predicted and experimentally
verified miRNA–target interactions, was used in the current study
for identification of the targets of the differentially expressed
miRNAs.

The overlapped miRNAs and mRNAs between the four
subtypes were used to construct a regulation network. From the
previously mentioned miRNA–target database, all miRNA–target
interactions between the miRNAs and the mRNAs were identified.
The correlations between miRNAs and mRNAs in different
subtypes may differ. Therefore, Pearson correlation coefficients
were calculated, and miRNA–mRNA pair with a correlation
coefficient >0.5 and <−0.5 was considered to be significant. The
resulted sub-networks would be different among the four subtypes.

2.5 Independent dataset validation

The Gene Expression Omnibus (GEO) database (https://
www.ncbi.nlm.nih.gov/pubmed/geo) was employed to be the
validation dataset. An online web system called KM-plotter was
used to assess the effect of miRNAs or mRNAs on survival. The
system provides a total number of 5143 BRCA samples and the
ability to select all kinds of subtypes of BRCA and therapy types.
In the current study, Basal and LumB subtypes were chosen to
verify our result.

An online web tool called KM-plotter, which can be used to
assess the relevance of the expression levels of various genes on
the clinical outcome both in untreated and treated BRCA patients,
was used to assess the effect of the genes on survival [27].

2.6 Prognostic driver gene analysis

The ‘survival’ and ‘survminer’ packages in R software were used
for the analysis of the prognosis in the four subtypes. All driver
genes were analyzed by the univariate Cox regression. Prognostic
genes with P-value < 0.05 were considered to be significantly
associated with survival. Multiple Cox regression analysis (MCA)
was used to test the independent factor which was significantly
factor in univariate Cox regression. Prognostic index (PI) of driver
genes was calculated by a linear combination of the gene
expressions and the coefficients of Cox regression. PI is a
prognostic index vector and the jth element of PI is the prognostic
index of the jth patient, i.e.

PI j = ∑
i

βi × Gi j,

where βi is the regression coefficient of the ith variable (in this
context, the ith gene/miRNA) estimated by the MCA; Gi j is the
observed value of the ith variable in the jth sample (in this context,
the expression value of the ith gene/miRNA in the jth sample).

The hazard ratio (HR) was calculated from exp(β), and β was
the coefficient from Cox regression. In this study, P-value ≤ 0.05
was considered to be significant for the log-rank test. The value of
the concordance index (C-index) >0.6 was considered as the good
performance of a model. HR and 95% confidence interval (CI)
were calculated to identify low-risk (HR <1) or high-risk gene
signature model (HR > 1). Kaplan–Meier curve was employed to
estimate the differences between the high- and low-risk patients.

3 Result
3.1 Subtypes of BRCA

Four subtypes of BRCA were correlated with the overall survival
(OS) of BRCA patients by Kaplan–Meier survival analysis
(Supplementary Fig. S1). Each of the four subtypes of Cox
regression analysis is listed in Table 1. 

3.2 Gene expression analysis

The DEGs between each of the four subtypes and the normal one
was analysed. The overlapping genes between these four groups of
DEGs were then identified. There resulted in 102 mRNAs and 31
miRNAs, the detailed information of these RNAs is listed in
Supplementary Figs. S2 and S3.

3.3 Gene ontology (GO) enrichment analysis

GO enrichment was employed in R package ‘ClusterProfiler’ [28]
for displaying biological process, molecular function and cellular
component of DEGs. The results are shown in Supplementary Fig.
S4.

The four groups of DEGs resulted from a comparison between
each of the four subtype samples and the normal sample (as
mentioned above) was analysed by a web tool named Metascape
(http://metascape.org). The result is shown in Fig. 1 with biological
processes and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathways correspond with miRNAs and mRNAs,
respectively. 

The result of GO enrichment shows that (i) the four subtypes
shared three common pathways and biological processes (gene
silencing by miRNA in cancer and negative regulation of
angiogenesis); (ii) the differentially expressed miRNAs for the
Basal sample included more biological processes; and (iii) four
subtypes share similar gene functions.

3.4 Overlapping RNAs between the four subtypes

For analysis of the intrinsic properties of the four subtypes, the
overlapped genes among the four groups of DEGs were identified,
and the process is visualised by the Venn method as shown in
Fig. 2. 

Table 1 Four subtypes of BRCA in the TCGA database
Subtypes HR P value C-index
basal-like 3.767 (1.353–10.49) 0.011 0.645
HER2 3.671(1.011–13.35) 0.045 0.646
LumA 2.719(1.555–4.758) <0.001 0.639
LumB 1.645(0.771–3.51) 0.198 0.611
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For further analysis of the difference between the four subtypes,
the DEGs were analysed between the four subtypes
(Supplementary Fig. S5). The result shows that the greatest
difference was found to be between the Basal and LumA samples.
Generally, miRNAs negatively regulate the expression of RNAs, so
the expression of both of them shows the opposite trend. Moreover,
the results show that the proportion of high expression of miRNAs
was higher and that of low expression of mRNA was higher.

3.5 Network construction and analysis

Four networks were constructed from the overlapped DEGs (102
mRNAs and 31 miRNAs) for each of the four subtypes. The
miRNA–mRNA relationships were collected from the same
database, and the correlation between miRNA and mRNA is quite
different between the four subtypes. The networks of the four
subtypes are shown in Fig. 3. 

3.6 Special sub-network analysis

We extracted special networks based on retaining those gene pairs
with correlation coefficients >0.5 and <−0.5 (as mentioned in the

method section) from each of the four networks. The resulting sub-
networks are shown in Fig. 4. 

3.7 Prognostic miRNA–mRNA network analysis

For testing of the prognostic genes in the four sub-networks, step
multivariate Cox regression was applied to analyse HR for each
RNA. Cox regression with Akaike information criterion for model
selection was applied on genes in each of the four subtypes. The
result is shown in Table 2. 

The survival analysis result of special genes in Basal and HER2
showed that PI consisting of these special genes that can effectively
predict high-risk and low-risk patients (P-value < 0.001) (Figs. 5a
and d). The distribution of PI value shown in Figs. 5b and e.
Receiver operating characteristic curve (ROC) curve shows that
special miRNAs and mRNAs can effectively predict 10 years of
survival area under curve ((AUC) > 0.8) (Figs. 5c and f).

The results of the survival analysis in LumA and LumB are
shown in Fig. 6. The special regulation pairs of miRNAs and
mRNA in LumA showed a significant difference between high-
and low-risk patients (Fig. 6a). The distribution of PI in LumA and
LumB is shown in Figs. 6b and e. The ROC curve of special genes
in LumA showed good performance in predicting 10 years. In

Fig. 1  GO enrichment of miRNAs and mRNAs
(a) Overlap of functions in the differentially expressed miRNAs for the four subtypes,
(b) Overlap of functions in the differentially expressed mRNAs for the four subtypes,
(c) GO and KEGG enrichment of the differentially expressed miRNAs for each of the
four subtypes, (d) GO and KEGG enrichment of the differentially expressed mRNAs
for each of the four subtypes

 

Fig. 2  Venn diagrams of the four groups of DEGs
(a) Overlapping mRNAs among the four groups of DEGs, (b) Overlapping miRNAs
among the four groups of DEGs

 

Fig. 3  Regulation networks for each of the four subtypes
(a) Regulation network for Basal subtype, (b) Regulation network for HER2 subtype,
(c) Regulation network for LumA subtype, (d) Regulation network for LumB subtype

 

Fig. 4  Sub-networks constructed by filtering based on correlation
coefficients
(a) Sub-network of Basal subtype, (b) Sub-network of HER2 subtype, (c) Sub-network
of LumA subtype, (d) Sub-network of LumB subtype
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LumB, the special genes could not classify patients significantly.
However, the ROC curve showed that the PI of biomarkers in
LumB can predict 5 years of survival (Fig. 6f).

3.8 Validating biomarkers in the external dataset and cell
lines

For validation of the result of the TCGA datasets, a pair of
representative regulation relationships (hsa-miR-182–5p and
decorin (DCN)), which appeared in Basal and LumB was selected
for analysis. As shown in Fig. 7, the regulation of hsa-miR-182–5p
and DCN is significantly associated with overall survival in Basal
subtype, but not in the LumB subtype. The result also shows that
hsa-miR-182–5p and DCN were closely associated with the overall
survival of Basal (log-rank P-value < 0.1). However, hsa-miR-182–
5p and DCN were not associated with the overall survival of
LumB.

The verification of independent datasets (GEO database in KM-
plotter) basically coincides with the results of training data sets
(TCGA database). The validation results showed that the same
RNAs might play different roles in different subtypes.

In order to further verify that heterogeneity of the gene
signatures in the four subtypes, we compared their expression
among all subtypes (Fig. 8). Although all of the expression values
of the miRNAs and mRNAs are up-regulated compared with the
normal samples, these RNAs exhibit different expression in each
subtype.

From Fig. 8, the results showed that these special prognostic
genes of each subtype exhibit different expression in different

Table 2 List of prognostic genes in each subtype
RNAs Gene symbol Description HR 95% CI P-value
Basal-like hsa-miR-182–5p 1.79 1.10–2.92 0.02

DCN decorin 1.73 1.07–2.82 0.03
ARRDC3 arrestin domain-containing protein 3 0.47 0.22–1.04 0.06

HER2 EGR1 early growth response protein 1 0.55 0.31–0.97 0.04
ESRP1 epithelial splicing regulatory protein 1 2.17 0.87–5.45 0.08

FN1 fibronectin 0.58 0.36–0.94 0.03
LumA hsa-miR-210–5p 0.70 0.50–0.98 0.04

DPT dermatopontin 1.37 1.03–1.82 0.03
ESRP1 epithelial splicing regulatory protein 1 1.58 0.97–2.57 0.06
EHD2 EH domain-containing protein 2 0.50 0.29–0.86 0.01

LumB hsa-miR-355–5p 0.87 0.65–1.16 0.09
hsa-miR-182–5p 1.08 0.74–1.57 0.70

CRIM1 cysteine-rich motor neuron 1 protein 1.02 0.66–1.57 0.91
DCN decorin 1.25 090–1.75 0.20

 

Fig. 5  Kaplan–Meier curve for the validation of genes in each of the two
sub-networks of Basal and HER2 subtypes
(a) Kaplan–Meier survival curve of high-risk and low-risk groups classified by genes
in special sub-network of Basal-like, (b) PI distribution in patients with Basal-like, (c)
AUC of ROC for predicting PI of OS in Basal-like subtype in 10 years, (d) Kaplan–
Meier survival curve of high-risk and low-risk groups classified by genes in special
sub-network of HER2 in 10 years, (e) PI distribution in patients with HER2, (f) AUC
of ROC for predicting PI of OS in HER2 subtype

 

Fig. 6  Kaplan–Meier curve for validation genes in sub-network of LumA
and LumB subtypes
(a) Kaplan–Meier survival curve of high-risk and low-risk groups classified by genes
in special sub-network of LumA, (b) PI distribution in patients with LumA, (c) AUC
of ROC for predicting PI of OS in LumA subtype in 10 years, (d) Kaplan–Meier
survival curve of high-risk and low-risk groups classified by genes in special sub-
network of LumB, (e) PI distribution in patients with LumB, (f) AUC of ROC for
predicting PI of OS in LumB subtype in 5 years
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subtypes. Some of them show different expression among different
subtypes, and some of them show no significant difference among
different subtypes. For example, hsa-miR-182–5p exhibits high
expression in Basal subtype and low expression in LumA, the
prognostic genes (EGE1, ESRP1, and FN1) of HER2 exhibit
similar expression in all of the four subtypes.

Additionally, hsa-miR-182–5p and DCN can significantly
classify Basal-like and LumB subtypes. Thus, logistics regression
[29] applied to test the performance of these two biomarkers. The
results showed that the AUC of the ROC curve was 0.62, which
represents good performance (Fig. 9). 

ATCC cell lines database (https://www.atcc.org/en/Products/
Cells_and_Microorganisms/Cell_Lines.aspx) was employed to
classify BRCA cell lines into four subtypes. Secondly, we used
GSE40057 dataset to analyse biomarker that was analysed from
our results. External BRCA cell lines are very complicated. Each
subtype of BRCA included many cell lines. The cell lines
corresponding to each subtype have different characteristics. For
example, LumB ER+, PR+/–, HER2 + Ki67 high, usually
endocrine responsive, variable to chemotherapy. HER2+ in LumB
are BT474, ZR-75 trastusumab responsive. In this study, we used a
biomarker of DCN expression to validate in LumB and Basal-like
subtypes. The results are shown in Fig. 10. Also, the result shows
that DCN expression is significantly different between LumB
(BT474 and ZR-75–1) and one of the types of Basal-like (Hs578 
T). However, the expression of miRNAs was not sufficient to
perform analysis. Thus, this study used an expression of mRNA as
external data to validate.

4 Discussion
The heterogeneity of BRCA in molecular and cellular levels and
the large number of genes potentially involved in cell growth,
death and differentiation suggest the importance of studying
multiple genetic alterations in concert [30]. Several research
studies have suggested that gene expression-based signature can be
used to predict prognosis and it outperformed the risk assessment
based solely on clinicopathologic factors [31, 32]. Also, many
previous publications have focused on the expression pattern of
coding or non-coding genes in order to obtain some biomarkers for
each subtype [33, 34]. In fact, the complexity of BRCA is not only
reflected in the gene expression of the four subtypes, but also in the
complication of regulation within coding genes, non-coding genes,
and proteins. Generally, previous works have mainly focused on
the differences in gene expressions and regulatory networks
between different subtypes [23, 24, 35, 36].

In the present study, we focused on common genes that are
differentially expressed between the four subtypes and normal
tissues. The expression of the selected genes in every tumour
subtype is significantly higher (P-value < 0.01) than that of the
normal breast tissues. We analysed the regulation network of these
genes, the result shows that the same genes have completely
different regulatory networks in different subtypes (Fig. 3). The
complexity of BRCA is not only reflected in the differential
expression of individual genes, but also in the different regulation
modes among the same genes. Based on the miRNA–target
interaction database and the negative correlation expression level
between miRNAs and mRNAs, the special network was
constructed for each subtype (Table 3). 

Fig. 7  Validation of hsa-miR182 and DCN in KM-plotter dataset
(a) Kaplan–Meier curve of hsa-miR-182 expression in Basal subtype, (b) Kaplan–
Meier curve of DCN expression in Basal subtype, (c) Kaplan–Meier curve of hsa-
miR-182 expression in LumB subtype, (d) Kaplan–Meier curve of DCN expression in
LumB subtype

 

Fig. 8  Cross-validation of special prognostic genes in each subtype
(a) Expression of Basal prognostic genes in four subtypes, (b) Expression of HER2
prognostic genes in four subtypes, (c) Expression of LumA prognostic genes in four
subtypes, (d) Expression of LumB prognostic genes in four subtypes

 

Fig. 9  ROC curve validated the performance of biomarkers in Basal-like
and LumB subtype

 

124 IET Syst. Biol., 2020, Vol. 14 Iss. 3, pp. 120-126
© The Institution of Engineering and Technology 2020



We extracted genes that contain regulatory networks in four
subtypes and calculated their HRs in each subtype. The genes in
the Basal, HER2 and LumA subtypes are significantly associated
with survival. The gene signature of a special regulation in LumB
was not associated with survival. Although these genes in LumB
do not predict overall survival, they can be found to effectively
predict the survival of patients with this subtype in 5 years
(Figs. 6d and f).

Obtaining special miRNA–mRNA networks from common
genes is useful for the understanding of the BRCA subtypes. In the
present study, we mainly study the relationship in each subtype.
Although hsa-miR-182–5p and DCN have been reported many
times as noted biomarkers in BRCA [37–39], the regulation pair
between the two of them were few reported in the Basal subtype of
BRCA. In the present study, regulation of hsa-miR-182–5P and
DCN shows that they can predict overall survival in the Basal
subtype, but not in LumB. The same trend is reflected in the result
of validation data (Fig. 7). The results also showed that the hsa-
miR-200 family (including hsa-miR-200a/200b/200c/141/429)
plays a vital role in BRCA (Fig. 4). Also, the results showed that
the miR-200 family plays a different role in different subtypes.

Hsa-miR-141–3p is one of the members of the hsa-miR-200
family. Hsa-miR-141–3p and ARRDC3 regulatory pair only in the
Basal subtype. Also, ARRDC3 has been reported to contribute to
the aggressiveness of the basal-like subtype [40], and this gene was
also identified in this study. We expect to find specific regulatory
networks and genes in each subtype from the same gene set. The
results make it clearer that the same genes play different roles in
different subtypes.
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