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Abstract Dynamics in fractional order systems has

been discussed extensively for presenting a possible

guidance in the field of applied mathematics and

interdisciplinary science. Within hundreds and thou-

sands of reviews, regular papers and drafts, many

fractional differential equations are presented for

enjoying mathematical proof without clarifying the

scientific background and physical principles. It seems

that all nonlinear problems on integer order systems

even networks can be confirmed as fractional order

systems. This mini-review gives an appropriate clar-

ification on fractional dynamical systems from the

physical viewpoint, thereby presenting sufficient evi-

dences for further study on fractional calculus. We

argued that non-uniform diffusion, boundary effect

and elastic deformation account for the calculation and

estimation with fractional order on some physical

variables, which can be mapped into dimensionless

variables in the dynamical systems. In addition, some

similar definitions for energy, wave propagation and

diffusion are suggested to find reliable confirmation in

the application of fractional calculus.

Keywords Non-uniform diffusion �Damping force �
Fractional order � Boundary effect � Memory effect

1 Introduction

Nonlinear oscillators provide feasible bridge for

theoretical analysis and prediction in nonlinear sys-

tems, which estimate the correlation between change-

able and detectable variables. Furthermore, stochastic

disturbance and noise can be applied on deterministic

systems for possible estimation on stochastic dynam-

ics. The occurrence and synchronization control of

chaos were ever regarded as the most interesting topic

in nonlinear systems, which can be described by a

variety of ordinary differential equations (ODEs) with

integer order. As is well known, chaotic systems can

have potential applications in secure communication

and image encryption [1–5], and the occurrence of

chaos is an intrinsic property of biological systems

[6–8]. For example, the neural activities can show

quiescent, spiking, bursting and chaotic oscillation by

changing the bifurcation parameters or external stim-

ulus [9–12]. Indeed, many nonlinear electric compo-

nents such as negative resistor, channel diode,

Josephson junction and [13, 14], memristor [15–19]

P. Zhou � J. Ma

School of Science, Chongqing University of Posts and

Telecommunications, Chongqing 430065, China

J. Ma (&)

Department of Physics, Lanzhou University of

Technology, Lanzhou 730050, China

e-mail: hyperchaos@163.com; hyperchaos@lut.edu.cn

J. Tang

School of Physics, China University of Mining and

Technology, Xuzhou 221116, China

123

Nonlinear Dyn (2020) 100:2353–2364

https://doi.org/10.1007/s11071-020-05637-z(0123456789().,-volV)(0123456789().,-volV)

http://crossmark.crossref.org/dialog/?doi=10.1007/s11071-020-05637-z&amp;domain=pdf
https://doi.org/10.1007/s11071-020-05637-z


can be used to build a variety of nonlinear circuits,

which can trigger distinct chaos by taming the intrinsic

parameters. Furthermore, the circuit equations can be

obtained according to the Kirchhoff’s law, and then,

an equivalent dynamical system can be approached by

applying appropriate scale transformation [20] on the

intrinsic parameters and variables. In fact, these circuit

equations and the dimensionless dynamical system are

often described by ordinary differential equations.

Some of these nonlinear oscillators are used to

discovery the collective behaviors in spatiotemporal

systems. For example, some nonlinear oscillators and

neuron models [21–25] are used to connect complex

networks and neural networks [26–28] with different

connection topologies and settings on boundary con-

ditions. Also, the local kinetics of continuous media

can also be described by some nonlinear oscillators,

and thus, the wave propagation in the reaction–

diffusion systems (RDs) [29–32] can be estimated.

Indeed, many integer order ODEs and even RDs can

model and calculate the mode transition in oscillation,

dynamical bifurcation, synchronization stability, wave

propagation and even pattern formation in spatiotem-

poral systems. Some researchers claimed that fractional

order dynamical systems [33–37] and fractional order

network [38–40] can be more suitable for investigating

nonlinear dynamics and stability of traveling waves. In

particular, Wu and Baleanu [41, 42] clarified the

occurrence of discrete chaos when the delayed logistic

equation is discretized by utilizing the (discrete frac-

tional calculus)DFCapproach, and the discretememory

was confirmed in the discrete fractional logistic map

proposed in the left Caputo discrete delta’s sense. We

agree that reliable theoretical models are helpful for

further nonlinear analyses, but the knowledge of the

underlying physical mechanism is more important and

critical. For example, the authors of this review

presented clear clues to recognize the physical mech-

anism of neurodynamics [43]. In fact, reliable physical

evidences and scientific clarification are very important

for understanding the application of fractional order

operation. In thisway,more researchers can be involved

to investigate the significance of fractional order

calculation on dynamical systems and diffusion in

spatiotemporal systems. Dalir et al. [44] summarized

the applications of the theory of fractional calculus and

different definitions of fractional calculuswere supplied

for contrast. The Riemann–Liouville derivative (RLd)

[45, 46] and Caputo derivative (C type) [47] are two

most popular definitions. TheRL type of fractal calculus

is defined by

RL
a Da

t f ðtÞ ¼
1

Cðn� aÞ
d

dt

� �nZ t

a

f ðsÞds
ðt � sÞa�nþ1

; n� 1� a\n;

CðzÞ ¼
Z 1

0

e�ttz�1dt; Gamma function;

8>>><
>>>:

ð1Þ

The C type of fractional calculus is approached by

C
a D

a
t f ðtÞ¼

1

Cðn�aÞ

Z t

a

f ðnÞðsÞds
ðt� sÞaþ1�n

; n�1\a\n;

d

dt

� �n

f ðtÞ; a¼ n;

8>>><
>>>:

ð2Þ

It is found that a order fractional derivative at time

t is not defined locally, and it depends on the total

effects of the commonly used n-order integer deriva-

tive on the interval [a, t]. Therefore, it can describe the

variation of a system in which the instantaneous

change rate depends on the past state, which is called

the memory effect in a visualized manner.

Among the known three kinds of fractional calculus

[48], the Grünwald–Letnikov (GL) type [44, 48, 49] is

a kind of joined definition; it calculates as follows

GL
a Da

t f ðtÞ ¼ lim
h!0

h�a
X½t�a

h �

j¼0

ð�1Þ j
a

j

 !
f ðt � jhÞ; ð3Þ

This kind of limit calculus was ever enjoyed in

discretization operation. Indeed, Ortigueira et al. [48]

suggested that Liouville, Riemann–Liouville and

Caputo derivatives are extended to the complex

functions space, and they established a bridge with

existing integral formulations and obtained regular-

ized integrals for the three types of fractional calculus

when it was started from a complex formulation of the

Grünwald–Letnikov derivative. Garrappa [49] pro-

vided an explicit representation in terms of fractional

differences of Grunwald–Letnikov type, and operators

for the representation in the time-domain of systems

with relaxation of Havriliak–Negami type were stud-

ied. Tarasov [50] confirmed that linear and nonlinear

equations with the Caputo–Fabrizio operators can be

represented as systems of differential equations with

derivatives of integer orders, but the Caputo–Fabrizio

operators with exponential kernel cannot describe

non-locality and memory (temporal non-locality) in
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processes and systems. Compared with the classical

fractional derivatives, Ortigueira et al. [51] concluded

thatCaputo–Fabrizio (CF) andAtangana–Baleanu (AB)

operators (definition) perform poorly when two alter-

native models based on the CF and AB operators are

assessed to match with datasets obtained from electro-

chemical capacitors and the human body electrical

impedance. Ortigueira and Machado [52] described a

framework for compatible integer and fractional deriva-

tives/integrals in signals and systems context, and it is

confirmed that suitable fractional formulations are

really extensions of the integer order definitions

currently used in signal processing. In particular, it

gives guidance to tickle the initial conditions. Indeed,

Tarasov [53] proposed a principle of non-locality for

fractional derivatives and confirmed that if the differ-

ential equation with fractional derivative can be

presented as a differential equation with a finite number

of integer order derivatives, then this fractional deriva-

tive cannot be considered as a derivative of non-integer

order. As a result, the M-fractional derivative, the

alternative fractional derivative, the local fractional

derivative and the Caputo–Fabrizio fractional deriva-

tives with exponential kernels are not suitable to handle

with fractional derivatives of non-integer orders [53].

Gu et al. [54] proposed a new class of fractional

differential equationswith the Riesz–Caputo derivative,

and the boundary value problem is investigated under

some conditions with clear physical meaning. Wu et al.

[55] investigated the finite-time stability ofCaputo delta

fractional difference equations, and a finite-time stabil-

ity criterion was proposed for fractional differential

equations and discrete fractional case.

In Ref [56]., it is confirmed that the fractional

model perfectly fits the test data of memory phenom-

ena in different disciplines by using numerical least

square method. That is, a physical meaning of the

fractional order is an index of memory. Without

considering the memory effect, Karci [57] interpreted

the geometrical meaning of the fractional order

operators of any function in the case of very small

value of h, in which distance, velocity and acceleration

were used to depict interpretations. The specific

calculation term without memory is defined by

f ðaÞðxÞ ¼ lim
h!0

f aðxþ hÞ � f aðxÞ
ðxþ hÞa � xa

¼ f ðxÞ
x

� �a�1
df ðxÞ
dx

;

ð4Þ

As a consequence, the result of derivative process is

different from classical derivative and applied oper-

ator is nonlinear when the order of fractional order

derivative is not equal to 1. Only when the fractional

order a = 1, the result of derivative process

approaches to classical derivative and operator is

linear. For example, the equation of distance for

moving object X(t) = V0t ? 2t2, and the velocity is

accelerated from V0 with a constant acceleration 4;

according to Eq. (2), the velocity can be obtained by

V ðaÞðtÞ ¼ ½V0 þ 2t�a�1ðV0 þ 4tÞ. When the accelera-

tion is time-varying as 3t and the distance for moving

object isX(t) = V0t ? 0.5t3, then the velocity involved

in fractional order definition can be obtained by

V ðaÞðtÞ ¼ ½V0 þ 0:5t2�a�1ðV0 þ 1:5t2Þ. In fact, the cal-
culation is approached with integer order when the

derivative is equal to 1 while the history information

could be missed within this definition. One interesting

question is when factional order derivative can be used

to model and calculate the dynamics in complex

systems [58]. The most favorite definition for frac-

tional order derivative can consider the correlation of

variables in time, and thus, most of the initial-

dependent dynamical problems [59–61] can be esti-

mated by using fractional order calculation. On the

other hand, some researchers suggested some physical

and geometrical interpretation of fractional operators

and approach with fractional order derivative [62–66]

by supplying specific examples. Furthermore, the

reliability of algorithm for fractional order calculation

was discussed [67–69] for ensuring higher accuracy

and shorter calculating period. Indeed, it is important

to clarify when fractional order derivative should be

applied for estimating the nonlinear correlation in

variable and dependence on variables. In our opinion,

in case of distinct memory effect, stochastic diffusion,

energy leakage, irregular boundary effect, spatial

heterogeneity, fractional order derivative can be

applied to discern the nonlinearity between variables.

In the following section, several examples are pro-

vided to explain the fractional order calculation on

physics relevant problems.

2 Non-uniform damping force on moving particles

Viscous and frictional resistance play an important

role in changing the gait of moving microscopic
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particles and macroscopic objects. As an example, a

simple oscillator in a viscous liquid, the diagram is

shown in Fig. 1.

As is well known, for a smooth spherical matter

particle m with radius a moving into a viscous fluid

[70, 71], the viscous force is estimated as follows

f ¼ 6pgua ¼ �k0u; ð5Þ

where g and u represent the viscosity coefficient of the
liquid and moving velocity of particle (oscillator),

respectively. The symbol ‘‘-’’ indicates the direction

of this drag force. According to Bernoulli principle

[72, 73], it obtains

P0 þ
1

2
qu2 þ qgh ¼ Cconstant; ð6Þ

where P0 is the intensity of pressure in the of liquid

(stayed with the particlem), q is the liquid density, g is

the acceleration of gravity, h denotes the height of the

particle position and Cconstant is a constant. It confirms

that the sum of kinetic energy, gravitational potential

energy and pressure potential energy are kept as

constants. Therefore, it is helpful to estimate the stress

distribution of moving particle in the liquid under the

law of conservation of mechanical energy. As a result,

the time-varying pressure (drag force) f for the particle

can be estimated by multiplying intensity of pressure

P0 and the superficial area S of this particle on the

Eq. (6); it gets as follows

f ¼ P0S � 4pa2P0 ¼ 4pa2 C � qgh� 1

2
qu2

� �

¼ �k1ðqÞu2 þ DCconstant;
k1ðqÞ ¼ 2pa2; DCconstant ¼ 4pa2ðC � qghÞ;

8>><
>>:

ð7Þ

That is, the dependence of pressure on the moving

particle on the velocity is nonlinear and the nonlinearity

is enhanced when the liquid is anisotropic, which the

liquid density q within spatiotemporal distribution. To

be consistent with Eq. (5), Eq. (7) can be approached

with Eq. (5) when the particle is moving in slight, but

tiny velocity and the term u2 are approached by using

Taylor series expansion as follows

f ðuÞ ¼ f ðu0Þ þ f 0ðu0Þðu� u0Þ þ OðuÞ þ DCconstant

� �k0uþ nðtÞ;
ð8Þ

where n(t) can be thought as stochastic disturbance.

Indeed, the pressure of the moving particle is depen-

dent on the velocity of this particle and the deforma-

tion size of this particle should be considered.

Therefore, scale factor s (or q in some references)

can be involved into the relation between moving

velocity and pressure as follows

f ¼ �k0us; ð9Þ

where the scale factor s is dependent of the deforma-

tion degree of the particle size. From mathematical

viewpoint, Eq. (9) with appropriate scale factor s can

be equivalent to Eqs. (8), (7) and (5) by applying the

same Taylor series expansion.

Therefore, the motion equation of this particle and

spring oscillator in Fig. 1 can be obtained by

dx

dt
¼ u;

m
du

dt
¼ �k0us þ PðtÞ þ nðtÞ;

8><
>: ð10Þ

As a result, fractional order dynamical system can be

proposed for investigating the dynamical problems

when the moving particle is controlled by the viscous

and frictional blocking, which the scale factor s is

selected with fractional number. Similar to the mem-

ristive network [74–76], in which the local kinetics is

described by a memristive oscillator that can be

mapped and developed from a nonlinear circuit

involved with memristor, a variety of fractional order

dynamical systems can also be proposed to investigate

Fig. 1 An oscillator driven by periodical stimulus immersed

into a viscous liquid with a viscosity coefficient g. P(t) denotes
the continuous stimulus acting on the matter particle m and the

elasticity of spring is presented with k. The spring represents a

mechanical spring immersed into the fluid, and it is used to

connect the particle for generating nonlinear oscillation
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the dynamics of more moving particles in the liquid

due to the activation of viscous and frictional driving

and blocking. From the viewpoint control, the viscous

pressure on the particle just introduces a kind of

differential control from Eq. (10), and the similar

control mechanism can be confirmed in the nonlinear

circuits coupled by a capacitor [77, 78] which can

trigger time-varying electric field in the coupling

component for energy pumping.

3 Field coupling and boundary effect

In the last decades, resistor-based voltage coupling has

been used for stabilizing synchronization between

chaotic circuits. Furthermore, this kind of direct

variable coupling is often used to investigate collec-

tive behaviors of networks composed of generic

nonlinear oscillators. As confirmed in the review

[20], a variety of electric components can be used to

build nonlinear circuits and also be effective to

connect the output ends of nonlinear circuits by

activating different kinds of coupling channels. For

example, when a capacitor is used to couple two

nonlinear circuits, the coupling capacitor is charged

and discharged for generating time-varying current in

the coupling channel and energy pumping is activated

to balance the output voltages [78, 79]. On the other

hand, the involvement of induction coil [80, 81] in the

coupling channel can trigger time-varying magnetic

field for energy pumping; thus, the output voltage can

be balanced for reaching possible synchronization.

Both kinds of field coupling can pump energy from the

coupled circuits while no additive Joule heat is

consumed and then synchronization can be realized

completely. In fact, these ideal coupling components

seldom consider the boundary effect which the ports of

electric components can emit electromagnetic wave

and a part of field energy is released. As a result, when

capacitor and induction coil are combined for design-

ing artificial hybrid synapses [82], the effect of energy

radiation and release becomes distinct and important.

The diagram for this kind of field coupling via

capacitor and induction coil is shown in Fig. 2.

For simplicity, the nonlinear circuits A and B in

Fig. 2 are composed of one capacitor, one inductor

and appropriate nonlinear resistors. According to the

physical Kirchhoff’s law, the coupled circuits in the

presence of field coupling can be, respectively,

estimated by

C1

dV1

dt
¼ f ðV1; I1Þ � ic;

L1
dI1
dt

¼ gðV1; I1Þ;

C2

dV2

dt
¼ f ðV2; I2Þ þ ic;

L2
dI2
dt

¼ gðV2; I2Þ;

ic ¼ C
d

dt
ðV1 � V2Þ;

8>>>>>>>>>>>><
>>>>>>>>>>>>:

capacitor coupling;

ð11Þ

C1

dV1

dt
¼ f ðV1; I1Þ � iL;

L1
dI1
dt

¼ gðV1; I1Þ;

C2

dV2

dt
¼ f ðV2; I2Þ þ iL;

L2
dI2
dt

¼ gðV2; I2Þ;

L
diL
dt

¼ V1 � V2;

8>>>>>>>>>>>><
>>>>>>>>>>>>:

inductor coupling; ð12Þ

where L1, C1 and L2, C2 represent the inductance and

capacitance of electronic components of the coupled

circuits, respectively. C (and L) denotes the capaci-

tance (and inductance of coupling coil) of coupling

Fig. 2 Schematic diagram for nonlinear circuits under field

coupling is plotted by connecting the output ends with a

capacitor and/or induction coil for a electric field coupling and

b magnetic field coupling. The red and black direction curve

with arrow indicates the electric fluxline in coupling capacitor

(and magnetic curve in the coupling indicator) embedded in the

coupling channel. V1, and V2 represent the output voltage from

the end of each nonlinear circuit, respectively. iL denotes the

induction current across the coupling coil when the coupling

channel is activated
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capacitor. Due to boundary effect, the distribution of

charges on the polar plates could be non-uniform, and

the authors advise that the energy in the coupling

capacitor can be possibly estimated by

EC ¼ 1

2
CðV1 � V2Þs; ð13Þ

where the parameter s is considered as scale factor

with handling the transition of electric field distribu-

tion because some field energy is released and emitted

from the boundary of the coupling component. On the

other hand, it is also acceptable to estimate the electric

field energy with Ec ¼ 0:5CsðV1 � V2Þ2 and the scale

factor s is associated with the property of the capacitor

as well. In fact, the ideal gas equation estimates the

relation between air pressure P and gas volume V with

PV = constant, while adiabatic process and polytropic

process can be estimated by PVc = constant and

PVn= constant, respectively. The scale factor c
(= Cp/Cv) is estimated by the ratio of isobaric molar

heat capacity Cp and equimolar heat capacity Cv.

Considering the physical units, PVc = constant holds

the same dimension as physical energy. Inspired by

this, we proposed the general energy assumption for

energy in the capacitor as shown in Eq. (13). By the

same way, the authors suggested that the energy

pumping in the coupling induction coil and channel

can be estimated by

EL ¼ 1

2
LisL ¼ 1

2L
½
Z

ðV1 � V2Þdt�s; ð14Þ

That is, the integer differential and integral calcu-

lation are not suitable to approach the exact energy

pumping and mutation and revulsion (sudden change)

in the density of distribution of charges on polar plates

and current density across the coupling induction coil.

In fact, radiation and leakage of magnetic field energy

become inevitable when time-varying current pass

across the induction coil, it is also acceptable to

estimate the field energy as EL ¼ 0:5Lsi2L, and the scale

factor s is dependent on the physical property of the

induction coil. Therefore, similar definition for the

induction current across the coupling capacitor can be

suggested by

ic ¼
dsDq
dts

¼ C
dsðV1 � V2Þ

dts
;

L
dsiL
dts

¼ V1 � V2;

8><
>: ð15Þ

where the scale factor s is a fractional value and the

relation between voltage and charged current (induc-

tion current) can be estimated by Caputo derivative

when reliable algorithm is applied. In fact, the current

and voltage defined in Eq. (15) are often obtained

from one branch of the nonlinear circuits, and thus,

getting exact solutions becomes difficult except turn-

ing to numerical approaches. When these physical

variables and parameters are mapped into dimension-

less variables and bifurcation parameters by applying

standard scale transformation, the effect of boundary

relative sudden change in physical field distribution

can be estimated with gradient current by applying

fractional order calculation on the charge flux.

4 Non-uniform diffusion in spatiotemporal system

In realistic spatiotemporal systems, heat source,

energy source and signal source can emit energy flow

and the media can be activated for possible propaga-

tion of pulse and wave fronts. For example, the

sinoatrial node in the heart can generate and send out

continuous electric signal for generating stable target

wave in the cardiac tissue, and this kind of electric

signal can adjust the release and pumping of calcium

for activating the systolic and diastolic function of

heart. However, the cardiac tissue is anisotropic, and

thus, the diffusion becomes non-uniform in space and

estimation of spatial parameters distribution becomes

difficult when reaction–diffusion equations are pro-

posed with integer order calculation. On the other

hand, the heat conduction may encounter the same

heterogeneity blocking in realistic media and the

integer order calculation on spatiotemporal distribu-

tion of heat should be improved for estimating the

sudden changes in gradient temperature when heats

are propagated in the media. This kind of non-uniform

diffusion of heat and wave in the media is plotted in

Fig. 3.

The developed spatial patterns can be reproduced in

most of the reaction–diffusion systems by activating

stochastic diffusion. For example, diffusive poisoning

in the ion channels in the neural network composed of

biological neurons can suppress the electric firing, and

channel blocking-induced defects crack the syn-

chronous firing asymmetrically no matter which

boundary condition is applied. When finite size is
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considered, no-flux boundary condition is often

applied while periodical boundary condition is often

selected in spatiotemporal systems with large or

infinite size. In fact, the diffusion and development

of spatial patterns are dependent on continuous supply

and propagation of energy. In case of heterogeneity,

energy propagation and transmission become non-

uniform. To confirm and predict this asymmetric

diffusion in integer order spatiotemporal systems,

stochastic disturbance becomes important while the

algorithm for boundary condition for heterogeneity

shows much difficult. From the viewpoint of numer-

ical calculation, spatial distribution for diffusion

coefficient can be carefully selected to stand for the

standard Laplace operator in reaction–diffusion sys-

tems, while how to confirm the spatial diffusion

coefficients becomes unknown. In ecological systems,

the species distribution determinates the hunting range

of different predators. On the other hand, stochastic

hunting from predators can change the distribution of

species and preys. It becomes difficult to estimate and

predict the hunting range pattern within spatiotempo-

ral systems with integer order calculation. Heat

propagation in materials can be handled as pattern

formation, and the diffusion equation in two-dimen-

sional space can be obtained by

qcp
oT

ot
¼ qþ o

ox
k
oT

ox

� �
þ o

oy
k
oT

oy

� �
; ð16Þ

where q is material density, q represents the density of

heat flow, k is thermal conductivity and cp denotes the

specific heat capacity at constant pressure,

respectively. In realistic media, the thermal conduc-

tivity can be in spatiotemporal distribution because the

physical property is adjusted when the material is

accumulated with heat within transient period. For

equivalent approach, fractional order Laplace operator

can be suggested for potential application in estimat-

ing the distribution of heat conduction as follows

qcp
oT

ot
¼ qþ k

osT

oxs
þ k

osT

oys
; ð17Þ

where Riesz space [83] derivative is applied to

describe the gradient effect of temperature. The

fractional Laplace operators are collected and com-

pared in the survey [84]. In addition, Caputo derivative

can also be involved to reconsider the evolution of

temperature with time. For similar pattern formation

and wave propagation in the reaction–diffusion sys-

tems and spatial networks, fractional order calculation

can also be applied to consider the effect of non-

uniform diffusion [85], and these equations can be

calculated in similar definition as follows

ou

ot
¼ f ðu; vÞ þ Dursu;

ov

ot
¼ gðu; vÞ;

8><
>: ð18Þ

dsuij
dts

¼ f ðuij; vijÞ þ D
XN

m¼1;n¼1

eijmnumn;

dsvij
dts

¼ gðuij; vijÞ;

8>>><
>>>:

ð19Þ

Fig. 3 Non-uniform diffusion in heat and wave in the media

with heterogeneity, and the brownish red area represents the

wave and energy propagation while the rest region keeps intact

without invasion. The area marked with a white circle depicts

the area supporting the spiral wave, and this kind of non-uniform

diffusion of spatial patterns can be reproduced in excitable neu-

ral network by blocking the ion channels, which can generate

heterogeneity in the media as well. Snapshots are plotted in

color scale
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where Du represents the diffusion coefficient in the

reaction–diffusion system shown in Eq. (18) and the

Riesz space derivative can be adopted to consider the

complexity in spatial diffusion. D in Eq. (19) denotes

the coupling intensity and the connection matrix

eijmn= 1 when the node ij is connected to the node

mn, otherwise, eijmn= 0. Here, Caputo derivative can

be used to calculate the temporal evolution of

variables on any nodes as well. As a result, appropriate

setting for the scale factor s can be suitable to estimate

the wave propagation and heat distribution in media

completely under non-uniform diffusion.

Up to date, a variety of fractional order dynamical

systems have been proposed to estimate dynamics in

many complex systems while some of the works

seldom clarified the biophysical evidences and suffi-

cient scientific background. In fact, most of the

relevant discussions are focused on finding mathe-

matical solutions, proof for existence of stability and

producing similar results within integer order dynam-

ical systems. Therefore, many researchers believed

that the same schemes and scientific questions can be

reproduced and discussed in the fractional order

systems by replacing integer order with fractional

order calculation. For example, many fractional order

neuron models and fractional order circuits [86–96]

are proposed to show the response in neural activities

and mode transition under external stimulus. Further-

more, these fractional order neuron models and

nonlinear circuits can be further used for building

fractional order networks. What is the potential

advantage for proposing fractional order neurons? In

our opinion, fractional order neuron models should fit

with the self-adaption and memory effect of biological

neurons, and biophysical effect should be considered

during the activation of any firing modes. For exam-

ple, it is important to estimate the mode transition in

neural activities intermittently when electromagnetic

radiation is applied on the neurons. In fact, the most

important reason could be that biological neurons are

elastic and the synapses have fractional distribution in

anatomical structure and the biophysical field intra-

cellular and extracellular is non-uniform.

Up to date, many dynamical systems and models

with integer order have been extended to calculate the

dynamics in fractional order type. From the mathe-

matical viewpoint, it is acceptable to replace the

integer order with fractional order on most of the

dynamical systems, and stability analysis can be

further applied. However, reliable computational

models should take account into the physical principle

and scientific background (ecological, biological and

engineering evidences) and fast effective algorithm

are also critical.Machado et al. [97–99] presented new

perspective for definitions of fractional derivatives,

and rich examples were supplied for extensive inves-

tigation on the application of fractional calculus. The

nonlinear systems show complex dynamics, in which

this history information is rich and the forthcoming

information becomes difficult for possible prediction.

When the three classical fractional calculus are used to

model and potential optimal control, the reliability of

numerical algorithm becomes very important. When

memristor is involved to build memristive circuits, the

dynamics of the system is much dependent on the

initial value of memristive variable (e.g., magnetic

flux). Petras [100] ever discussed numerical applica-

tion in chaotic behavior analysis of fractional mem-

ristor-based systems. However, the accumulation of

numerical error becomes significant and numerical

methods of higher accuracy should be reconsidered.

The predictor–corrector approach [101] is one of the

most often used methods for fractional differential

equations, and it provides a simulation tool for

fractional modeling accurately. For extensive guid-

ance, readers can find possible help in the instructive

works [102]; thus, the most suitable scheme can be

selected for more specific fractional order systems. As

is well known, the reliability of discretization is

critical for handling continuous dynamical systems.

Therefore, some researchers appreciated the dynamics

in maps and discrete systems because some of them

are more effective in processing digital signals in

experiments. By the same way, discrete fractional

calculus was recently proposed on time scale theory

[103, 104], and it can provide an exact discretization

method which leads to less numerical errors caused by

the memory effects. Some recent applications in

fractional discrete-time systems [41, 105] exhibit the

new feature.

In a summary, it is important to findmore evidences

for the application of fractional calculation when the

potential mechanisms have been clarified. Many

researchers with reliable knowledge in applied math-

ematics can optimize the algorithm while the defini-

tion should depend on the physical mechanism and

relevant background condition. Many readers need
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clear interpretation when fractional calculus is applied

to solve scientific problems. This mini-review presents

some suggestions and similar definition for nonlinear

science; it indicates which condition can find reliable

solution by applying fractional calculation. The

boundary condition, initial setting, non-uniform dif-

fusion and viscoelasticity all indicate the complex

effect of memory in these nonlinear processing. On the

other hand, the effect of fractional calculation can

provide helpful guidance for improving the physical

properties of electronic components and propose

feasible strategy for economic field. For example,

the stock markets are characterized by long-range

correlations and persistent memory [106], which are

found in natural and artificial systems, and these

features are well modeled by means of the tools of

fractional calculus. As is well known, the physical

memristor has distinct memory effect, and the appli-

cation of fractional calculus in this component

becomes much attractive [107, 108], in which multi-

dimensional scaling locus and fractional generaliza-

tion of memristor were investigated in detail.

5 Conclusions

In this review, several examples relevant to physics

problems are supplied to explain why fractional order

calculation should be applied on nonlinear oscillators

and spatiotemporal systems. Damping and viscoelas-

tic deformation induces uniform distribution in pres-

sure on the moving particles, boundary and memory

effect in the electric components involved in the active

nonlinear circuits, heterogeneity and non-uniform

diffusion in the spatiotemporal system, e.g., asym-

metric diffusion of oxygen in alveoli, electric signal

propagation in cardiac tissue, proposed challengeable

questions for the deterministic systems with integer

order calculation due to time-varying spatial distribu-

tion in intrinsic parameters. Therefore, fractional order

calculation can be applied to approach exact solution

when these intrinsic parameters are supposed with

invariant values. In the last twenty years, many

fractional order systems are used to discuss the

dynamics, wave stability, initials and boundary effect

while the scientific background of these nonlinear

equations with fractional order operator is left out.

From dynamical viewpoint, distributed time delays

and stochastic disturbance can be introduced in the

regular systems, which can be further tamed to

reproduce similar dynamics in fractional order dynam-

ical systems. In fact, the main losses are physical

memory effect and possible energy leakage in the

boundary when a system is described by regular

derivative. For obtaining exact modeling and calcula-

tion, fractional order derivative should be applied on

complex systems with distinct memory effect, non-

uniform diffusion, energy leakage, boundary effect,

viscoelastic force. Our mini-review does not discuss

exact algorithm and solutions for these fractional order

systems while we just want to supply some possible

evidences and background knowledges for readers in

this field.
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