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Abstract: Biological neurons can receive inputs and capture a variety of external stimuli, which can be encoded and transmitted as 
different electric signals. Thus, the membrane potential is adjusted to activate the appropriate firing modes. Indeed, reliable neuron 
models should take intrinsic biophysical effects and functional encoding into consideration. One fascinating and important ques-
tion is the physical mechanism for the transcription of external signals. External signals can be transmitted as a transmembrane 
current or a signal voltage for generating action potentials. We present a photosensitive neuron model to estimate the nonlinear 
encoding and responses of neurons driven by external optical signals. In the model, a photocell (phototube) is used to activate a 
simple FitzHugh-Nagumo (FHN) neuron, and then external optical signals (illumination) are imposed to excite the photocell for 
generating a time-varying current/voltage source. The photocell-coupled FHN neuron can therefore capture and encode external 
optical signals, similar to artificial eyes. We also present detailed bifurcation analysis for estimating the mode transition and firing 
pattern selection of neuronal electrical activities. The sampled time series can reproduce the main characteristics of biological 
neurons (quiescent, spiking, bursting, and even chaotic behaviors) by activating the photocell in the neural circuit. These results 
could be helpful in giving possible guidance for studying neurodynamics and applying neural circuits to detect optical signals. 
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1  Introduction 
 

The nervous system consists of many functional 
units that process signals and encode information. To 
carry out their function, neurons must be sensitive to 
different stimuli and respond appropriately and rap-
idly. In generic neuron models (Gu and Pan, 2015; Hu 
et al., 2016; Mondal and Upadhyay, 2018; Hu and Liu, 
2019; Wang YH et al., 2019), external forcing in-
cludes physical current forcing, acoustical signals, 

audio signals, electromagnetic radiation (Duan et al., 
2018; Ye et al., 2018; Meng et al., 2019; Takembo 
et al., 2019a, 2019b), noise (Hauschildt et al., 2006; 
Richardson and Swarbrick, 2010; Wu et al., 2017), 
and optical signals. These external stimuli are often 
described by their equivalent transmembrane currents 
or induction currents (Upadhyay et al., 2017; Xu Y 
et al., 2018b), which can change neuronal membrane 
potentials and induce a variety of neuronal firing 
patterns and oscillation modes. Based on some of 
these neuron models, standard bifurcation analysis 
can be used to reproduce the main dynamical proper-
ties of neuronal electrical activities and to predict 
when the bursting synchronization (Batista et al., 
2013; Jia et al., 2018; Rakshit et al., 2018c) and 
neuronal disease (Hagell et al., 2002; Seifert and 
Steinhäuser, 2013) might occur. Furthermore,  
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astrocytes have been coupled to connect neurons to 
build reliable neuron-astrocyte networks to estimate 
the biological function of astrocytes (Postnov et al., 
2009; Nazari et al., 2015; Pankratova et al., 2019). 

From the dynamical viewpoint, many nonlinear 
oscillators can be activated to reproduce firing pat-
terns in biological neurons, specifically by applying 
external periodical forces and selecting excitation 
parameters. Han et al. (2014, 2015, 2018) and Yu Y 
et al. (2017) conducted several instructive studies to 
investigate mode transitions, fast-slow analysis of 
time delay effects, and frequency excitation effects on 
nonlinear oscillators. Therefore, most dynamical 
systems can be tamed by applying periodical stimu-
lation or adjusting excitation parameters. Using these 
methods, spiking, bursting, and even chaotic behav-
iors can be generated to reproduce the main dynam-
ical properties of electrical activities in biological 
neurons. Furthermore, many neural circuits (Erokhin 
et al., 2011; Haghiri et al., 2016; Pham et al., 2016; 
Nair et al., 2017; Xu F et al., 2018) can be developed 
using these theoretical neuron-like oscillators by a 
variety of nonlinear electric components. Indeed, this 
physical effect becomes important when building 
neuron models, because an electromagnetic field is 
induced in the cell when the density of intracellular 
and extracellular ions changes, such as when sup-
plying the channel current for generating action po-
tential firing patterns. Therefore, magnetic flux and 
memristive synapses (Park et al., 2015; Wu et al., 
2016; Rajagopal et al., 2019) have been introduced 
into neuron models, and the effect of electromagnetic 
induction (Ge et al., 2018; Wu et al., 2019) has been 
estimated by calculating the induction current across 
cell membrane. To further understand this physical 
effect, electric field variables (Ma J et al., 2019a) have 
been used to build new biophysical neuron models. 
Modeling field coupling (Xu Y et al., 2018a, 2019; Lv 
et al., 2019) between neurons helps describe signal 
exchange and propagation across neural networks. In 
fact, when neurons are connected with a capacitive 
synapse, e.g., when neural circuits are coupled by a 
capacitor which propagates signals between neurons 
(Liu et al., 2019), electric field coupling is activated. 
When neurons are connected with an inductive syn-
apse, e.g., when neural circuits are coupled by an 
inductor (Yu DS et al., 2017; Yao et al., 2019), mag-
netic field coupling is switched to benefit signal 

propagation between neurons. For further details, 
readers can refer to Ma J et al. (2019b). 

As mentioned above, neurons receive synaptic 
signals in the form of synaptic currents from adjacent 
neurons. Furthermore, different external stimuli can 
be converted into synaptic currents via appropriate 
receptors. For example, photoelectric sensors encode 
light stimuli with certain frequencies into electric 
signals, which can activate the visual system. In this 
study, we present a phototube in the simple FitzHugh- 
Nagumo (FHN) neuron model (Binczak et al., 2006; 
Cubero et al., 2006; Gaiko, 2011), which is described 
as the Bonhoeffer-van der Pol oscillator (Keener, 
1983; Kyprianidis et al., 2012). The photocell is used 
as a reliable voltage/current source and thus supplies 
the neuron with continuous stimuli. 
 
 

2  Model, scheme, and discussion 
 
A Bonhoeffer-van der Pol oscillator can be ac-

tivated to generate bursting and spiking patterns by 
applying carefully modulated external periodical 
excitation. Therefore, it is often used to investigate 
the dynamics of neural activities. When building 
neural circuits, external forcing can be treated as a 
voltage source or a current source (Kyprianidis et al., 
2012). This simple circuit can be further used to 
model the synchronization stability between neurons. 
Because of the physical properties of the phototube, 
which can convert light into an electrical current, a 
phototube can be used as a realistic voltage source 
that excites and regulates neural activities. Inspired by 
the contributions of Kyprianidis et al. (2012), we 
select a physical phototube as a voltage source to 
excite the FHN neural circuit. The circuit is illustrated 
in Fig. 1. 

Characteristics of the nonlinear resistor (NR) 
connected in the circuit (FitzHugh, 1961; Keener, 
1983) are estimated by 
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where ρ and V0 are the normalization parameters of 
the nonlinear resistor and V the output voltage of the 
capacitor. The photoelectric effect (Brust, 1965; 
Agostini and Petite, 1988; Georges, 1995) is a  
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phenomenon in which electrons in some materials are 
excited by photons to form a current when an elec-
tromagnetic wave above a certain frequency is ap-
plied. For further experimental physical investigation, 
a phototube is designed as a voltage source and a 
control component in nonlinear circuits. A photocell 
is a basic photoelectric conversion device based on 
the external photoelectric effect. A photocell can 
convert light signals into electrical signals in some 
frequency bands. Photocells are characterized as ei-
ther vacuum photocells or gas photocells. The typical 
structure of a photocell is to vacuum the spherical 
glass shell, to coat the inner hemisphere surface with a 
layer of photoelectric material as the cathode, and to 
place a small spherical or annular piece of metal as the 
anode. If the ball is filled with a low-pressure inert gas, 
it becomes an inflatable photocell. Photoelectrons 
collide with gas molecules during their flight to the 
anode and ionize the gas, which increases the sensi-
tivity of photocells. The metals used as photocathodes 
include alkali metal, mercury, gold, and silver. Based 
on experimental tests, the voltage-photocurrent rela-
tionship of phototube is shown in Fig. 2. 

Using a mathematical approach, the curve in 
Fig. 2 is estimated using a variety of nonlinear func-
tions as follows: 
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That is, three kinds of nonlinear functions can be 
selected to represent the relationship between the 
voltage and photocurrent across the phototube. For 
simplicity and consistency with the variables in Fig. 1, 
the photocurrent across the phototube is selected as 
the first type in Eq. (2), and is defined by 
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where IH is the maximum current, Vs the output 
voltage of the phototube, and Va the normalized pa-
rameter associated with the phototube. Guided by the 
physical Kirchhoff law, the circuit equations in Fig. 1 
are obtained by 
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The phototube can generate a time-varying forcing 
current is, which is calculated using the transcendental 
equation as follows: 
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For further dynamical analysis, the physical variables 
are mapped into dimensionless variables by applying 

Fig. 1  Implementation of the circuit built for the 
FitzHugh-Nagumo neuron 
A phototube is used to capture external illumination and 
high-frequency lights, and it activates photocurrents from the 
phototube and is considered as the voltage source Vs. NR is 
the nonlinear resistor, C the capacitor, L the induction coil, E
the constant voltage source, K the cathode, and A the anode in 
the phototube 

Fig. 2  A plot of the relationship between voltage and 
photocurrent 
U and I represent the voltage and current of the phototube, 
respectively. IH1 and IH2 are the maximum currents (saturation 
currents) emitted from the phototube when the light intensi-
ties (i1 and i2) are strong enough. Ua denotes the reverse 
cut-off voltage and is dependent on the material properties of 
the phototube cathode 
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the scale transformation for the variables and param-
eters as follows: 
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As a result, the equivalent FHN neuron driven by the 
photocurrent can be rewritten by 
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In addition, the variables and parameters are con-
sistent with the definition in Keener (1983), and the 
parameters are selected as a=0.8, b=0.8, and c=0.1, 
with the parameter ξ fixed at different values for 
calculating the firing patterns and nonlinear responses 
in the FHN neuron driven by the phototube. From the 
dynamical viewpoint, a broad range of parameters (a, 
b, c, and ξ) can be selected to generate a variety of 
firing patters and oscillations. In a practical way, more 
phototubes can be connected in parallel, thus en-
hancing the photocurrent intensity. 

In the general case, the driving voltage source 
has the following form: 

 

s cos( ),u A                             (8) 
 

where A and ω denote the amplitude and frequency of 
the excitation, respectively. That is, the phototube can 
be used as a voltage source for generating a time- 
varying stimulus, thus activating the neural circuit. 
According to the known experiments examining the 
photoelectric effect in phototubes, a photocurrent can 
be induced in the phototube when the frequency of 
external illumination is beyond the intrinsic fre-
quency threshold, which is dependent on the material 
of the phototube cathode. From a dynamical view-
point, the angular frequency of the photocurrent and 
the voltage of the phototube can be selected from a 
large range of values. Indeed, the excitability of this 
neuron can be adjusted by the external stimulus, 
which, in turn, regulates its firing patterns and oscil-

latory modes. It is important to apply the standard 
nonlinear stability analysis to this neuron model with 
the external voltage source removed from system (7), 
expressed as follows: 
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where the dissipativity of this autonomous neuron 
oscillator is approached by V=1–ξ–x2–bc. The os-
cillator becomes dissipative when 1–ξ–x2–bc<0. Only 
one equilibrium point S0=(0, 0) is detected by setting 
a=0 and b(1–ξ)=1. In the generic case, there are three 
equilibrium points Si=[mi, (mi+a)/b] (i=1, 2, 3). To 
present the simple form, intermediate parameters  
are defined as p=3(b–bξ–1)/b, q=−3a/b, ω=0.5· 

 1 i 3 ,   and then the form is approached as  

follows: 
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Furthermore, there are three real roots under the 
condition of 9a2b+4(b–bξ–1)3≤0, while for 9a2b+ 
4(b–bξ–1)3>0, one real root and two complex roots 
are observed. The properties of these equilibria can be 
determined using the associated characteristic poly-
nomial as follows: 
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It can be confirmed that S0 can be obtained when 
b(1–ξ)=1 and a=0, and that S0 is unstable. Two pos-
sible bifurcation sets can be obtained for Si (i=1, 2, 3). 
One is expressed as 
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where simple bifurcation (S) may occur. The other 
type can be written as 
 

2 2: (1 ),H c b c                      (13) 
 
where Hopf bifurcation (H) may occur. As a result, 
when an external voltage source is applied and acti-
vated, the equilibrium point will be disturbed, thus 
inducing instability. 

We focus on the influence of the driving photo-
current on the dynamics of the FHN neuron. With the 
parameters fixed at a=0.7, b=0.8, c=0.1, ω=1.004, 
and ξ=0.175, the bifurcation diagram with excitation 
amplitude variation is plotted in Fig. 3, where y rep-
resents the value of variable y on the Poincaré pro-
jection at x=−0.5. Using the Matlab platform, ODE45 
is applied to find solutions for the neuron model. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Appropriate settings for the external stimulus 

amplitude can induce chaos and bursting firing. In 
fact, the dynamics are dependent on the selection of 
intrinsic parameters. Therefore, these parameters are 
tamed to reveal the mode transition and dynamics 
selection with parametric excitation (Fig. 4). 

We confirm that the cascades of period-doubling 
bifurcations to chaos are obtained in all the variation 
processes of the parameters, and that period windows 
can be detected in the chaotic regions. To better il-
lustrate this, the output series for variables are shown 
in Figs. 5, 6, and 7 to discern mode oscillations in the 
quiescent, bursting, and spiking states, respectively. 

Fig. 5 shows that the neuron exists in a quiescent 
state after a certain transient period when the ampli-
tude of the external stimulus is below the excitation 

intensity threshold. Then, the external stimulus is 
changed to trigger a new electrical firing mode, and 
the results are shown in Fig. 6. 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
 

 
 

 
 
 
 
 
 
 
 
 
 

Fig. 3  Bifurcation diagram for a=0.7, b=0.8, c=0.1, 
ω=1.004, and ξ=0.175 
A is the amplitude of the external stimulus 

Fig. 4  Bifurcation diagrams calculated by changing the 
intrinsic parameters (a, b, c, A, ω, ξ): (a) b=0.8, c=0.1, 
A=0.9, ω=1.004, ξ=0.175; (b) a=0.7, c=0.1, A=0.9, ω=1.004, 
ξ=0.175; (c) a=0.7, b=0.8, A=0.9, ω=1.004, ξ=0.175; 
(d) a=0.7, b=0.8, c=0.1, A=0.9, ξ=0.175; (e) a=0.7, b=0.8, 
c=0.1, A=0.9, ω=1.004 

Fig. 5  Transient pulse and quiescent state approached by 
setting a=0.7, b=0.8, c=0.1, A=0.03, ω=0.035, and ξ=0.175

0 50 100
t

−2

−1

0

1

2

x

Fig. 6  A continuous bursting pattern generated by setting 
a=0.7, b=0.8, c=0.1, A=0.8, ω=0.005, and ξ=0.175 

x
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When the current across the phototube is further 
increased, the neuron thus presents a continuous 
bursting pattern, and neural activities show intermit-
tent dense spiking. As spiking patterns are often de-
tected in biological neurons and neural circuits, we 
further tame the voltage source to excite the neuron, 
and the firing patterns of spiking are presented in 
Fig. 7. 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
According to Figs. 5–7, most firing patterns and 

characteristics of the neural activities can be repro-
duced in the new neuron model by altering the current 
of the phototube. Therefore, this neuron is suitable for 
describing the dynamical response and information 
encoding of optical signals. The neuron model is 
oscillator-like, and it shows common periodical and 
chaotic behaviors generated by many nonlinear os-
cillators when external forcing is applied. An intuitive 
illustration is presented in Fig. 8, showing the calcu-
lated sampled time series and chaotic attractors. 

Appropriate parameter selection can thus trigger 
chaotic attractors and time series for variables in the 
neural circuit. According to the bifurcation diagrams, 
appropriate parameters can be selected to generate 
chaos. Indeed, the neuronal firing pattern and mode 
selection are controlled by the intrinsic parameters 
and external stimulus properties. In particular, the 
current from the phototube as a reliable voltage 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
source can regulate the firing of the neuron. Our re-
sults describe the physical mechanism for the infor-
mation encoding of optical signals. This new neuron 
can be used to extensively to study the collective 
behaviors of neural networks. Additionally, analog 
circuits can be built to reproduce relevant numerical 
results and synchronization between neurons without 
direct channel coupling. In a generic way, the stand-
ard interspike interval (ISI) is often calculated to 
estimate possible mode transitions in neural activities 
using the sampled time-series data from the isolated 
neuron in neural networks. In particular, ISI-based 
bifurcation analysis (Rakshit et al., 2018a; Bera et al., 
2019) is helpful in prediction and detection of regu-
larity in firing patterns and chimera states in networks 
with time-varying stimuli and connections. ISI-based 
bifurcation analysis presents a simple but effective 

Fig. 7  Continuous spiking patterns generated by setting 
a=0.7, b=0.8, c=0.1, A=0.8, ω=0.08, and ξ=0.175: (a) time 
series for variable x; (b) time series for variable y 
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Fig. 8  Sampled time series for variables x (a) and y (b)
and formation of the chaotic attractor (c) approached at 
a=0.7, b=0.8, c=0.1, A=0.9, ω=1.004, and ξ=0.175 
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way to calculate the bifurcation by estimating the 
dependence of firing patterns and the amplitude of the 
observable variable on the intrinsic parameter. In this 
way, standard stability analysis is confirmed using the 
statistical ISI series. 

A variety of electronic components can be used 
to build neural circuits to model different biophysical 
functions. To consider the effects of heterogeneous 
diffusion and electromagnetic induction, a fractional 
order neuron model (Rajagopal et al., 2019) has been 
used to discuss the dynamics of neural activities in the 
presence of electromagnetic radiation. In most studies, 
researchers match the dynamics analysis with bio-
logical experimental data while conducting reliable 
investigations on how to build functional neural cir-
cuits. For example, Ma YQ et al. (2018) presented an 
interesting and important guidance for decision 
making using a spiking neural network. When a 
memristor is included while building neural circuits 
(Xu Q et al. 2018; Bao B et al., 2019; Bao H et al., 
2019; Zhang et al., 2019a, 2019b), the memory field 
effect can be estimated. The addition of a thermistor 
in the nonlinear circuit can allow the detection and 
prediction of slight changes in biological environ-
ments. Furthermore, piezoelectric devices can be 
integrated into nonlinear circuits that allow the de-
tection of slight deformations in the skin and the body. 
For extensive studies, more functional components 
can be integrated into functional neural circuits with 
multi-channel perception. Indeed, when more bio-
logical and artificial neurons are included while 
building neural networks (Bera et al., 2016; Rakshit, 
2018b) by applying different topological connections 
and chimera states (Mostaghimi et al., 2019; Tang 
et al., 2019), spatial pattern transitions (Uzun et al., 
2017; Rostami et al., 2018; Etémé et al., 2019) and 
synchronization stability (Wang CN et al. 2017) can 
be studied further. The circuit described in this study 
is inspired by these interesting works on pattern for-
mation and network synchronization, and can be used 
to build neural networks for detecting and capturing 
optical signals. 

 
 

3  Conclusions 
 
In this study, we proposed a neuron model in 

which a physical phototube is used as a voltage source. 
The phototube can capture high-frequency external 

optical signals which activate the FHN neuron in a 
variety of firing patterns that are characteristics of 
most neural activities, allowing such activities to be 
reproduced and estimated. Detailed bifurcation and 
stability analyses were applied to find the mode de-
pendence of the bifurcation parameters and the cur-
rent from the phototube. When the phototube was 
activated and tamed, the neural circuit can model a 
variety of firing patterns. The sampled time series for 
the membrane potential confirmed this dynamical 
property. This neuron can be used to further capture 
and encode optical signals. Furthermore, the neural 
circuit can be used to build networks for detecting 
optical signals and estimating collective behaviors of 
neural networks exposed to illumination. It also pro-
vides information for designing artificial eyes for 
potential therapeutic applications. 
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