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a b s t r a c t

Due to the variation in material properties through the thickness, bifurcation buckling cannot generally
occur for plates or beams made of functionally graded materials (FGM) with simply supported edges. Fur-
ther investigation in this paper indicates that FGM beams subjected to an in-plane thermal loading do
exhibit some unique and interesting characteristics in both static and dynamic behaviors, particularly
when effects of transverse shear deformation and the temperature-dependent material properties are
simultaneously taken into account. In the analysis, based on the nonlinear first-order shear deformation
beam theory (FBT) and the physical neutral surface concept, governing equations for both the static behav-
ior and the dynamic response of FGM beams subjected to uniform in-plane thermal loading are derived.
Then, a shooting method is employed to numerically solve the resulting equations. The material properties
of the beams are assumed to be graded in the thickness direction according to a simple power law distri-
bution in terms of the volume fractions of the constituents, and to be temperature-dependent. The effects
of material constants, transverse shear deformation, temperature-dependent material properties, in-plane
loading and boundary conditions on the nonlinear behavior of FGM beams are discussed in detail.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

This paper is concerned with the mechanical behaviors of
beams made of functionally graded materials (FGM) under an
in-plane loading. The extremely complicated bending caused by
in-plane thermal loading for beams with simply supported ends
is included in the analysis. It is found that the response of load–
frequency for the beams is quite different from what was observed
in the analysis for beams made of pure materials when effects of
both the transverse shear deformation and the temperature-
dependent material properties are simultaneously taken into
account.

Many studies have been conducted on the static and dynamic
behavior of FGM beams. Librescu et al. [1] studied the behavior of
thin-walled beams made of FGM operating at high temperatures,
which included vibration and instability analysis along with the
effects of volume fraction and temperature gradients. A review
of various investigations on FGM including thermo-mechanical
studies is found in Birman and Byrd [2]. Employing the finite ele-
ment method, Bhangale and Ganesan [3] carried out thermo-elas-
tic buckling and vibration analysis of a sandwich beam made of
FGM. Based on the two-dimensional theory of elasticity, Ying
et al. [4] presented solutions for bending and free vibration of
ll rights reserved.

: +82 62 530 1689.
FGM beams resting on a Winkler–Pasternak elastic foundation.
Static, free and wave propagation analyses were carried out by
Chakraborty et al. [5] to examine the behavioral difference in
FGM beams. Aydogdu and Taskin [6] investigated the free vibra-
tion behavior of a simply supported FGM beam by using classical
beam theory, parabolic shear deformation theory and exponential
shear deformation theory. Kapuria et al. [7] presented a finite ele-
ment model for static and free vibration responses of layered
FGM beams using an efficient third order zigzag theory for esti-
mating the effective modulus of elasticity and its experimental
validation for two different FGM systems under various boundary
conditions. Yang and Chen [8] studied the free vibration and elas-
tic buckling of FGM beams with open edge cracks by using clas-
sical beam theory. Li [9] proposed a new unified approach to
investigate the static and the free vibration behavior of Euler–Ber-
noulli and Timoshenko beams. Using the modal expansion tech-
nique, Yang et al. [10] investigated both free and forced
vibrations of cracked FGM beams subjected to an axial force
and a moving load. Xiang and Yang [11] studied both free and
forced vibrations of an FGM beam with variable thickness under
thermally induced initial stresses based on the Timoshenko beam
theory. The free vibration of orthotropic FGM beams under vari-
ous end support conditions was investigated by Lu and Chen
[12]. They used an approximate laminate model and a hybrid
state-space differential quadrature method to find the semi-ana-
lytical solutions based on the two-dimensional theory of elastic-
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Fig. 1. Geometry and coordinates of a beam.
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ity. Zhong and Yu [13] presented a general two-dimensional solu-
tion for a cantilever beam in terms of Airy’s stress function. Re-
cently, a new beam theory was presented by Sina et al. [14] to
analyze free vibration of FGM beams. Using the modified differen-
tial quadrature method, Pradhan and Murmu [15] carried out
thermo-mechanical vibration analysis of FGM beams and sand-
wich beams resting on a variable Winkler foundation. The free
vibration characteristics and the dynamic behavior of a simply
supported FGM beam under a concentrated moving harmonic
load were investigated by Simsek and Kocatürk [16]. Li and Shi
[17] proposed a state-space method based differential quadrature
to study the free vibration of a functionally graded piezoelectric
material beam under different boundary conditions.

Variation in material properties through the thickness of FGM
plates or beams results in quite different behaviors for plates or
beams made of pure materials under both static and dynamic load-
ing conditions. For example, bifurcation buckling generally cannot
occur for FGM plates or beams with simply supported edges due to
in-plane loading. Transverse deflection is initiated, regardless of
the magnitude of the loading, as is often the case with laminated
composite materials [18–20]. The phenomenon was taken into ac-
count by Shen [21] and Aydogdu [22]. Shen [21] stated that bifur-
cation buckling does not take place for FGM rectangular plates
with simply supported edges due to the bending–stretching cou-
pling. In the past, several analyses had been reported concerning
the buckling of FGM plates, which cannot exist physically, as
pointed out by Qatu and Leissa [20]. The flatness conditions of an
FGM plate during the pre-buckling stage were presented by Aydog-
du [22]. However, few researchers have further studied these spe-
cial behaviors of FGM plates or beams in detail. Shen [23] analyzed
the influence of various factors such as thermal loading and in-
plane boundary conditions on the nonlinear bending of FGM
plates. nonlinear bending and post-buckling of an FGM circular
plate under a thermal loading and uniform radial pressure, respec-
tively, were investigated by Ma and Wang [24,25]. They found that
transverse deflections occur immediately when an in-plane com-
pressive load is applied to a simply supported FGM circular plate.

To the authors’ knowledge, no researchers have given much
attention to the static behavior of FGM beams with simply sup-
ported edges due to an in-plane loading. The vibrational response
of buckled or bended FGM beams due to an in-plane loading has
not been studied when transverse shear deformation in conjunc-
tion with temperature-dependent material properties are taken
into consideration. These are the primary objectives of the present
investigation.

Stretching–bending coupling does not exist in the constitutive
equations for an FGM plate when the coordinate system is located
at the physical neutral surface of the plate [26,27], therefore, the
governing equations and boundary conditions for the FGM plate
can be simplified. In the present investigation, based on the nonlin-
ear first-order shear deformation beam theory (FBT) and the phys-
ical neutral surface concept, governing equations for both the static
behavior and dynamic response of FGM beams subjected to a uni-
form in-plane thermal loading are derived; then, a shooting meth-
od is employed to numerically solve the resulting equations. The
material properties of the beams are assumed to be graded in the
thickness direction according to a simple power law distribution
in terms of the volume fractions of the constituents and to be tem-
perature-dependent. The effects of material constants, transverse
shear deformation, temperature-dependent material properties,
in-plane loading and boundary conditions on the nonlinear behav-
ior of the FGM beams are discussed in details. The numerical
results obtained herein show that FGM beams subjected to an in-
plane thermal loading do exhibit some unique and interesting
characteristics in both static and dynamic behaviors, particularly
when effects of both the transverse shear deformation and the
temperature-dependent material properties are simultaneously
taken into consideration.

2. Basic equations

A beam made of functionally graded materials with uniform a
cross-section of area A, height h and length l is considered here,
as shown in Fig. 1. The Cartesian coordinate system (x, y, z), with
an origin at the middle of the beam is used in this analysis. The
xoy plane is taken to be the undeformed mid-plane of the beam,
the x-axis coincides with the centroidal axis of the beam and z-axis
is the vertical coordinate pointing upwards.

It is assumed that the material properties P (such as Young’s
modulus E, thermal expansion coefficient a and mass density q)
of the beam vary through the height of beam and can be expressed
as follows [24]

PðzÞ ¼ ðPm � PcÞ
h� 2z

2h

� �n

þ Pc ð1Þ

Here, the subscripts, m and c, denote the metallic and ceramic con-
stituents, respectively, and n is the gradient index. The material
properties of the form P that are temperature-dependent can be
written as

P ¼ P0ðP�1T�1 þ 1þ P1T þ P2T2 þ P3T3Þ ð2Þ

where P0, P�1, P1, P2 and P3 are the coefficients of the temperature,
T(K) and are unique to each constituent. In this paper, Poisson’s ra-
tio, m is assumed to be a constant value of 0.28.

Based on the physical neutral surface concept put forward by
Zhang and Zhou [27], the physical neutral surface of an FGM beam
is given by z = z0,

z0 ¼
R h=2
�h=2 zEðzÞdzR h=2
�h=2 EðzÞdz

ð3Þ

It can be seen that the physical neutral surface and the geomet-
ric middle surface are the same in a homogeneous isotropic beam.

Under the physical neutral surface concept and the first-order
shear deformation nonlinear beam theory, the displacements take
the following forms:

Uxðx; z; tÞ ¼ �uðx; tÞ þ ðz� z0Þ/ðx; tÞ
Uzðx; z; tÞ ¼ �wðx; tÞ

ð4Þ

where �u and �w are the displacements in the physical neutral surface
along the coordinates x and z, respectively, while / denotes the
slope at z = z0 of the deformed line that was straight in the unde-
formed beam. By using / ¼ � @ �w

@x in Eq. (4), these equations are re-
duced to those of the classical beam theory (CBT). The strains are
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ex ¼ e0
x þ ðz� z0Þe1

x ¼
@�u
@x
þ 1

2
@ �w
@x

� �2

þ ðz� z0Þ
@/
@x

cxz ¼ c0
xz ¼ /þ @

�w
@x

ð5Þ

In the above, e0
x and e1

x are the strain and curvature, respectively, in
the physical neutral surface. c0

xz denotes the transverse shear strain.
The constitutive equations can be deduced by proper integration

Nx ¼
Z

A
rxdA ¼ Axe0

x � NT ¼ Ax
@�u
@x
þ 1

2
@ �w
@x

� �2
( )

� NT

Mx ¼
Z

A
rxðz� z0ÞdA ¼ Dxe1

x �MT ¼ Dx
@/
@x
�MT

Qx ¼
Z

A
sxzdA ¼ Axzc0

xz ¼ Axz /þ @
�w
@x

� �
ð6Þ

where Ax =
R

AE(z)dA, Dx =
R

A(z � z0)2E(z)dA, Axz ¼ ks
R

A
EðzÞ

2ð1þvÞdA,
(NT, MT) =

R
AEaT{1,(z � z0)}dA, also, ks denotes the shear correction

factor, and T is the uniform rise in temperature.
It can be seen that there is no stretching–bending coupling in

the constitutive equations of physical neutral surface theory.
Using Hamilton’s principle, one can derive the following motion

equations and boundary conditions in terms of non-dimensional
variables based on the FBT

@2U
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@W
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@2W
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 !

� b2f5
@4W

@n2@s2
þ f6

@2W
@s2 ¼ 0 ð7cÞ

U ¼ 0; W ¼ 0; u� @W
@n
¼ 0 for a clamped end ð8aÞ

U ¼ 0; W ¼ 0;
@u
@n
� @

2W

@n2 �M ¼ 0

for a simply supported end ð8bÞ

where

F1 ¼ f1
@U
@n
þ 1

2
@W
@n

� �2
( )

� N and

F2 ¼
@2U
@s2 þ f4

@2u
@s2 �

@3W
@n@s2

 !
:

The non-dimensional variables are defined as follows

n ¼ x
l
; W ¼

�w
h
; U ¼ l

h2
�u; w ¼ l

h
/; u ¼ wþ @W

@n
;

b ¼ l
h
; s ¼ tK�1=2; M ¼ MT l2

Dxh
; N ¼ NT l2

Dx
; f 1 ¼

Axh2

Dx
;

f 2 ¼
Axzl

2

Dx
; f 3 ¼

I0l2

AxK
; f 4 ¼

I1

I0h
; f 5 ¼

I0h2

AxzK
; f 6 ¼

I0l4

DxK
;

f 7 ¼
I1l2h
DxK

; f 8 ¼
I2

I0l2
; and K ¼ qm0Al4

Dm0
:

where ðI0; I1; I2Þ ¼
R

A qðzÞ 1; ðz� z0Þ; ðz� z0Þ2
n o

dA, Dm0 ¼ Em0bh3

12 .

3. Nonlinear static behavior

The governing equations of the nonlinear static problem of an
FGM beam under an in-plane thermal loading can be obtained
from Eq. (7) by neglecting the inertial terms. The results are as
follows

d2Us

dn2 þ
dWs

dn
d2Ws

dn2 ¼ 0

d2us

dn2 �
d3Ws

dn3 � f2us ¼ 0

1þ 1
f2

f1
dUs

dn
þ 1

2
dWs

dn

� �2
( )

� N

" #( )
d4Ws

dn4

� f1
dUs

dn
þ 1

2
dWs

dn

� �2
( )

� N

" #
d2Ws

dn2 ¼ 0

ð9Þ

Us ¼ 0; Ws ¼ 0; us �
dWs

dn
¼ 0 for a clamped end ð10aÞ

Us ¼ 0; Ws ¼ 0;
dus

dn
� d2Ws

dn2 �M ¼ 0

for a simply supported end ð10bÞ

where Us, /s and Ws are the displacements of the nonlinear static
equilibrium configuration of an FGM beam.

To understand the nonlinear static behavior of an FGM beam
subjected to an in-plane thermal loading, studies have been carried
out on stainless steel (SUS304)–silicon nitride (Si3N4) FGM beams.
The temperature coefficients corresponding to Si3N4 and SUS304
are listed in Table 1. It is assumed that the temperature in the
stress free state is 300 K. Fig. 2 shows the variations of Young’s
modulus along the thickness of the beam for various values of n,
as calculated from Eqs. (1) and (2). It is evident that an increase
in gradient index, n, results in an increase in Young’s modulus
and the bending rigidity.

We employ the shooting method, as earlier used in [24], to ob-
tain the nonlinear static configuration and vibration modes and the
corresponding natural frequencies as will be presented in the next
section.

The typical thermal post-buckling paths of clamped FGM beams
are shown in Fig. 3. Fig. 3a represents the results of shear deform-
able beams for various values of gradient index, n, and Fig. 3b for
various values of the slenderness ratio, l/h. Fig. 3c depicts the re-
sults for classical beams for different values of gradient index, n.
FBT results for FGM beams for n = 1.0 are compared with the CBT
results in Fig. 3d. Also shown in Fig. 3a and d is the variation of
dimensionless midspan deflection with dimensionless thermal
loading, k (k ¼ 12b2am0DT , where DT is the temperature rise from
the stress free state) for pure metal and ceramic beams. The solid
and dashed lines denote the results for beams with temperature
independent material properties (referred to as TID) and tempera-
ture-dependent material properties (referred to as TD), respec-
tively. As expected, in Fig. 3a, it can be seen that the shape of
post-buckling load–deflection curves for FGM beams appear quite
similar to that for pure material beams; further, the dimensionless
midspan deflection of the FGM beams with material properties be-
tween those of ceramic and metal is intermediate to the deflection
of ceramic and metal beams. This can be attributed to the fact that
Young’s modulus of ceramic is the highest and that of metal the
lowest. A similar discussion holds good for the classical results
shown in Fig. 3c. It can be seen from Fig. 3b that the post-buckling
deflection decreases with an increase in slenderness ratio because



Table 1
Temperature dependent coefficients for Si3N4 and SUS304.

Material Properties P0 P�1 P1 P2 P3

Si3N4 E [Pa] 348.43e+9 0.0 �3.070e�4 2.160e�7 �8.946e�11
a [K�1] 5.8723e�6 0.0 9.095e�4 0.0 0.0
q [kg/m3] 2370.0 0.0 0.0 0.0 0.0

SUS304 E [Pa] 201.04e+9 0.0 3.079e�4 �6.534e�7 0.0
a [K�1] 12.330e�6 0.0 8.086e�4 0.0 0.0
q [kg/m3] 8166.0 0.0 0.0 0.0 0.0
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Fig. 2. Variation of Young’s modulus through thickness of the FGM beam for different values of n.
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this means a reduction in the influence of transverse shear defor-
mation. As expected, compared to the shear deformable beams,
the classical beams have a higher critical thermal buckling load
and lower post-buckling deflection, particularly when tempera-
ture-dependent material properties are taken into consideration
as shown in Fig. 3d. From Fig. 3, it can also be observed that the
critical thermal buckling load of the FGM beams has reduced when
the temperature-dependent material properties are considered; in
contrast with this, the temperature-dependent material properties
result in an increase in the deflection of FGM beams.

Fig. 4 demonstrates the variation of dimensionless critical ther-
mal buckling load, kcr, with gradient index, n, based on the FBT for
various values of slenderness ratio, l/h. Also shown in Fig. 4 are the
classical results. It is clear that there is a sharp increase in the
dimensionless buckling temperature at the early stage of n; the
critical buckling temperature increases slowly with an increase
in gradient index, n, as it approaches the homogenous ceramic
composition. This trend is to be expected because Young’s modulus
of ceramic is higher than that of metal. It is also seen from Fig. 4
that as the value of the slenderness ratio, l/h, increases, the critical
buckling temperature increases up to the classical results. Such a
trend is observed because the effect of transverse shear deforma-
tion is ignored in the classical beam theory.

Fig. 5 shows the variation of dimensionless midspan deflection
Ws(0) with thermal load for a simply supported FGM beam based
on the FBT. Also shown in Fig. 5d are the classical results. It is seen
from Fig. 5 that simply supported FGM beams under an in-plane
thermal load exhibit quite different behavior from the thermal
post-buckling of clamped FGM beams, as shown in Fig. 3. Trans-
verse displacements occur no matter how small the in-plane loads;
therefore, there is no bifurcation buckling in this case, which fur-
ther verify the conclusion made by several investigators [18–21].
From Fig. 5, it is also seen that there are two different solution
branches of the load–deflection curve for simply supported FGM
beams under an in-plane thermal load, which appear quite similar
to the behavior corresponding to imperfect beams, as elaborated in
[28]. Furthermore, depending on the load level, the beams may
have three different values of deflection corresponding to a given
load, that is, three deformed configurations may exist for a simply
supported FGM beam for a given load, as shown in Fig. 6, but the
minimum configuration for which the magnitude of deflection is
the smallest over all three configurations is unstable, as pointed
out by Looss and Joseph [28].

The variation of deflection with thermal load for a simply sup-
ported FGM beam with and without temperature-dependent prop-
erties is shown in Fig. 7 for different values of slenderness ratio, l/h,
and in Fig. 8 for different value of gradient index, n. The results in
Fig. 7a and Fig. 8a (resp., Fig. 7b and Fig. 8b) are presented for a
beam with TID (resp., TD). It can be observed from Fig. 7 when
the temperature-dependent material properties are taken into con-
sideration that the transverse shear deformation strongly influ-
ences the load–deflection curves. In contrast, if the material
properties are independent of temperature, the transverse shear
deformation does not much influence the load–deflection curves.
In Fig. 8, it is also seen that the temperature-dependent material
properties significantly affect the deflection of a simply supported
FGM beam.

The FBT results for simply supported FGM beams under an in-
plane thermal loading are compared with corresponding results
based on the CBT in Fig. 9. The results in Fig. 9a are presented for
a beam with TID and the results in Fig. 9b for a beam with TD. In
Fig. 9, it is seen that the FBT results for the beams are almost iden-
tical to the classical results when the material properties are as-
sumed to be constant with respect to the temperature. In
contrast, if the material properties are dependent on the tempera-
ture, the transverse shear deformation strongly influences the
load–deflection curves, which trend is similar to that observed in
Fig. 7.



0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0

0.0 0.5 1.0 1.5 2.00.0 0.5 1.0 1.5 2.0

0

50

100

150

200

250

300

λ

Ws(0)

n =0.1
n =1.0
n =10.0

 metal
 ceramic

l/h=20

0

50

100

150

200

λ

W
s
(0)

l/h =10.0
l/h =20.0
l/h =40.0
n =1.0

(a) shear deformable beams (b) shear deformable beams 

0

50

100

150

200

250

300

n=10.0
n=1.0
n=0.1

λ

W
s
(0)

 metal
 ceramic

0

50

100

150

200

λ

W
s
(0)

n =1.0, CBT
n =1.0, l/h =20.0, FBT

(c) classical beams                      (d) comparison between FBT and EBT results 

Fig. 3. Post-buckling paths of clamped FGM beams.

0 20 40 60 80 100
0

20

40

60

80

100
l/h=10., FBT
l/h=5., FBT

λ cr

n

  CBT
l/h=20., FBT

Fig. 4. Variation of critical thermal buckling load with gradient index.

L.S. Ma, D.W. Lee / Composite Structures 93 (2011) 831–842 835
4. Dynamic response

Now, we turn our attention to the dynamic response of FGM
beams under an in-plane thermal loading.

In this investigation, we focus on steady-state vibrations corre-
sponding to infinitesimal deformations that are superimposed
upon the static nonlinear deformed configuration of an FGM beam.
We seek solutions of Eqs. (7) and (8) of the following form [29,30]

Uðn; sÞ ¼ UsðnÞ þ Udðn; sÞ
uðn; sÞ ¼ usðnÞ þudðn; sÞ
Wðn; sÞ ¼WsðnÞ þWdðn; sÞ

ð11Þ
where Ud(n, s), /d(n, s) and Wd(n, s) are the dynamic responses near
the nonlinear static equilibrium configuration for the FGM beam.

Substituting Eq. (11) into Eqs. (7) and (8), using Eqs. (9) and (10)
and neglecting the nonlinear terms Ud(n, s), /d(n, s) and Wd(n, s),
we obtain the following equations for determining Ud, /d and Wd:
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@Wd
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Ud¼0; Wd¼0;
@ud
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�@

2Wd
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where
F1s ¼ f1
dUs

dn
þ 1

2
dWs

dn

� �2
( )

� N and

F2d ¼
@2Ud

@s2 þ f4
@2ud

@s2 �
@3Wd

@n@s2

 !
:

It should be noted that the method employed here is not based
on the superposition of solutions to the static and dynamic prob-
lems as is commonly used in linear problems. Here, it is a process
of decomposition rather than superposition [31]. On substitution
of Eq. (11) into Eqs. (7) and (8), the static parts of the resulting
equations are the same as the static beam equations based on
the FBT (that is, Eqs. (9) and (10)). Upon subtracting the static
equations from the aforementioned resulting equations and by
considering small amplitude vibration in the vicinity of nonlinear
static equilibrium, the dynamic equations are generated. The solu-
tion process involves solving Eqs. (9) and (10) to generate the static
solution, which in turn, is substituted in Eqs. (12) and (13) to de-
rive the dynamic solution.

If the beam is not buckled or bended, that is, /s(n) = Ws(n) = 0,
then Eqs. (12) and (13) govern the linear vibrations of a pre-buck-
led beam.

We assume that Eqs. (12) and (13) have a solution of the form
[29,30]

fUdðn; sÞ;udðn; sÞ;Wdðn; sÞg ¼ fuðnÞ; �uðnÞ;wðnÞgeixs ð14Þ

where x ¼ �x
ffiffiffiffi
K
p

, �x is the natural frequency of the beam. The sub-
stitution of Eq. (14) into Eqs. (12) and (13) yield the following ordin-
ary differential equations for the amplitudes, u(n), �uðnÞ and w(n).
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We note that Eqs. (15) and (16) are the same as those of free
vibration for FGM beams with initial deformations of Us, us and
Ws. However, here the initial deformations are unknown, and are
to be determined by solving the coupled nonlinear Eqs. (9) and
(10).

By simultaneously solving the boundary-value problems, Eqs.
(9) and (10) and Eqs. (15) and (16), we get frequencies and the cor-
responding mode shapes of a thermally deformed FGM beam with
either a simply supported or a clamped boundary condition.
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buckling as expected, regardless of whether or not the material
properties are dependent on the temperature. This decrease in fre-
quency with thermal load is attributed to the fact that the ther-
mally induced compressive stress weakens the beam stiffness. In
the post-buckling domain, the fundamental natural frequency in-
creases monotonously with an increase in thermal load when tem-
perature-dependent material properties are not taken into
consideration, as shown in Fig. 10a, c and e; this is quite similar
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to the trend for homogenous or composite beams observed in
[29,30]. Thereby, this increase in frequency with thermal load im-
plies that a buckled beam can support additional loads without
failure. Furthermore, we see that the characteristic curves are con-
tinuous but not differentiable at k = kcr. The results plotted in Fig. 3
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configurations of the beam are totally different. A similar discus-
sion holds good for classical results that account for the variation
in material properties with respect to the temperature and are
shown in Fig. 10f. However, if the transverse shear deformation
and temperature-dependent material properties are simulta-
neously taken into consideration, the natural frequency increases
initially with an increase in the thermal load and reaches a peak
value and thereafter reduces rapidly, particularly when the value
of the slenderness ratio, l/h, is small, as shown in Fig. 10b and d.
This is quite different from the behavior of FGM beams with TID,
as shown in Fig. 10a, c and e and for homogenous or composite
beams, as observed in [29,30]. In Fig. 10c, for a given value of the
thermal load, when the slenderness ratio, l/h, is larger, the natural
frequency is higher in the pre-buckling domain and lower in the
post-buckling domain.

The variation of natural frequency of vibration in the vicinity of
the nonlinear static bended configuration for a simply supported
FGM beams with thermal load is shown in Fig. 11. In Fig. 11a–d,
the results for shear deformable beams are displayed and the re-
sults for classical beams are shown in Fig. 11e and f. The results
in Fig. 11a, c and e are presented for a beam with TID and the re-
sults in Fig. 11b, d and f are for a beam with TD. We note that dy-
namic behavior of simply supported FGM beams is quite different
from that of clamped FGM beams, as observed in Fig. 10. It is seen
from Fig. 11a, c, e and f that the natural frequency decreases ini-
tially with an increase in the thermal load and reaches its mini-
mum value; thereafter, it increases. However, if the effects of the
transverse shear deformation and temperature-dependent mate-
rial properties are simultaneously taken into consideration, the
natural frequency increases up to a certain value, then decreases
and again starts increasing up to a peak value; thereafter, it re-
duces rapidly, particularly when the value of the slenderness ratio,
l/h, is small, as shown in Fig. 11b and d. This is quite different from
the trend for FGM beams with TID, as shown in Fig. 11a and c. It
also can be observed from Fig. 11c and d when the temperature-
dependent material properties are taken into consideration that
the transverse shear deformation strongly influences the load–fre-
quency curves. In contrast, if the material properties are indepen-
dent of the temperature, the transverse shear deformation does not
much influence the load–frequency curves. As a result, the trans-
verse shear deformation and temperature-dependent material
properties play an important role in the dynamic behavior of the
FGM beam.

Fig. 12 shows a comparison of frequency between a shear
deformable beam with n = 1.0 and l/h = 10.0 and a classical beam
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with n = 1.0. Fig. 12a and b denote the results for a clamped beam
and a simply supported beam, respectively. Fig. 12a and c are the
results for a beam with TID. The results for a beam with TD are
shown in Fig. 12b and d. For a clamped beam, the transverse shear
deformation significantly affects the natural frequency, particu-
larly when the temperature-dependent material properties are ta-
ken into account. For a simply supported beam, the transverse
shear deformation does not much affect the natural frequency
when the temperature-dependent material properties are inde-
pendent of the temperature. In contrast, if the material properties
are dependent on the temperature, the transverse shear deforma-
tion strongly influences the frequency, as shown in Fig. 12d.

Fig. 13 shows the variations of dimensionless fundamental fre-
quency with gradient index for clamped and simply supported
FGM beams, respectively, based on the FBT. Also shown in Fig. 13
are the classical results. It is clearly seen from these figures that
the dimensionless frequencies increase with an increase in gradi-
ent index, n, as discussed in Fig. 4 for a critical buckling thermal
load.

Fig. 14 shows the effect of slenderness ratio on dimensionless
fundamental frequency of an FGM beam when k = 0. The results
in Fig. 14a and b are for beams with clamped and simply supported
edges, respectively. As expected, an increase in the slenderness ra-
tio results in an increase in the dimensionless fundamental fre-
quency. This is because as the value of l/h increases, the influence
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of the transverse shear deformation becomes smaller and the beam
has larger transverse shear stiffness.

Fig. 15 shows the mode shapes of FGM beams with clamped and
simply supported edges. The results obtained herein indicate that
the mode shapes of the FGM beams are independent of gradient in-
dex, n.

5. Conclusions

The following conclusions are arrived from present study.
Under an in-plane thermal loading, clamped FGM beams exhibit

typical thermal post-buckling behaviors. All the beams with inter-
mediate properties undergo corresponding intermediate values of
the midspan deflection. The transverse deflection of a simply sup-
ported FGM beam subjected to an in-plane thermal load is initi-
ated, regardless of the magnitude of the loading. As a
consequence, the bifurcation buckling does not occur for simply
supported FGM beams. The load–deflection curve for simply sup-
ported beams has two different branches and three deformed con-
figurations may exist for a given thermal load.

An increase in the gradient index, n, results in an increase in the
dimensionless critical buckling temperature for a clamped FGM
beam and a decrease in deflection of such an FGM beam. The
dimensionless natural frequency for FGM beams increases as the
gradient index, n, increases when the material properties are inde-
pendent of the temperature.

Temperature-dependent material properties result in an in-
crease in the deflection, a reduction in the thermal buckling
strength of an FGM beam, and a decrease in the dimensionless nat-
ural frequency for FGM beams.

An increase in the slenderness ratio, l/h, results in a reduction in
the influence of the transverse shear deformation. As a conse-
quence, the dimensionless critical buckling temperature and the
natural frequency of classical beams are higher than those of shear
deformable beams. In contrast with this, the deflection of classical
beams is lower than that of shear deformable beams.

Various factors such as material constants, the transverse shear
deformation, temperature-dependent material properties, in-plane
loading, slenderness ratio and boundary conditions play important
roles in the static response and dynamic behavior of FGM beams.
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