
Vol.:(0123456789)

SN Computer Science (2020) 1:293
https://doi.org/10.1007/s42979-020-00308-7

SN Computer Science

ORIGINAL RESEARCH

Recognition of Off‑line Handwritten Uyghur Words Using Bayesian
Networks with Grapheme Nodes

Yamei Xu1 · Zhigang Xu1

Received: 9 March 2020 / Accepted: 23 August 2020 / Published online: 4 September 2020
© Springer Nature Singapore Pte Ltd 2020

Abstract
This study proposes a new algorithm that constructs a word Bayesian network (BN) framework with grapheme nodes to
recognize off-line handwritten Uyghur words. First, we build an Uyghur script grapheme library according to the rules and
morphological structure of Uyghur. The library includes main grapheme, affix grapheme, and dot grapheme categories.
Second, word images are segmented into grapheme sequences by subjecting the individual strokes to extraction, segmenta-
tion, and clustering operations. Then we design specific feature extractors and classifiers for specific graphemes to detect
and identify small differences between similar words. Finally, we construct a hierarchical matching model for graphemes,
conjoined segments, and words using a discrete BN. The BN infers word categories from grapheme features, calculates
the confidence of inference, and integrates the grapheme recognition information and word-formation prior information to
obtain the final word recognition results. A word recognition rate of 91.65% is obtained during experiments conducted with a
database consisting of 12,500 samples and a total of 58 trained grapheme categories. These results indicate that the proposed
algorithm not only provides a high word recognition rate by effectively avoiding character over-segmentation errors, but also
employs a small and fully predictable number of training categories, which facilitates strong expansibility.

Keywords Computer application · Text recognition · Uyghur language · Off-line handwritten words · Bayesian network ·
Grapheme

Introduction

Handwritten text recognition is an important application in
the field of pattern recognition because it is crucial for the
digitalization of handwritten documents that is required to
facilitate the electronic storage and computer analysis of
the information contained therein. To this end, significant
advances have been made for applications involving Chi-
nese and Latin characters [1–4]. However, relatively little
research has been conducted for the recognition of handwrit-
ten Uyghur text, and existing studies have mainly focused on
the recognition of individual Uyghur characters [5].

Uygur language has 24 consonants and 8 vowels, for a
total of 32 letters, as shown in Fig. 1. Uyghur employs a cur-
sive script based on Arabic where the shapes of individual
letters depend on where they are connected when combined
into words. Therefore, the 32 letters form 128 characters.
The unique aspects of Uyghur script is illustrated in Fig. 2,
which defines its structural rules according to the following
four points. (1) Words are the smallest linguistic units with
semantic meaning in the Uyghur language. (2) Uyghur words
contain multiple characters written from right to left along
an imagined horizontal axis (baseline). (3) Strokes written
along the baseline are denoted as major strokes, while the
remaining strokes are denoted as subordinate strokes. (4)
One or more characters are connected to form conjoined seg-
ments. (5) Neither the heights nor widths of these connecting
characters are equivalent. (6) The positions of subordinate
strokes tend to vary in handwritten Uygur words because
subordinate strokes are typically written only after the major
strokes have first been written. Therefore, the recognition of
handwritten Uyghur text requires an approach that focuses
on entire words rather than individual characters.

 * Yamei Xu
 yameixu@126.com

 Zhigang Xu
 xzg_cn@163.com

1 School of Computer and Communication, Lanzhou
University of Technology, No. 287 Langongping Road,
Qilihe District, Lanzhou 730050, Gansu, China

http://orcid.org/0000-0001-7046-0182
http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-020-00308-7&domain=pdf

 SN Computer Science (2020) 1:293293 Page 2 of 13

SN Computer Science

Currently, the two dominant strategies for recognizing
cursive words can be divided according to whether character
segmentation is conducted [6], i.e., holistic word recognition
[7–10] and segmentation-driven recognition [11–13]. Algo-
rithms that conduct training and recognition of words as a
whole are relatively simple, but their ability to discriminate
small differences between similar words is comparatively
poor. In addition, the expanding ability of these algorithms
is limited severely by the very large number of word cat-
egories required. In contrast, recognition strategies based
on segmentation address the issues associated with holistic
word recognition by first dividing the words into characters,
and then recognizing words according to the characters with
which they are composed. However, the accurate segmenta-
tion of Uyghur words into characters represents the most
challenging aspect of applying segmentation-driven recog-
nition approaches to this language because Uyghur script
often includes touching strokes, broken characters, writing
errors, scanning noise, and large variations in handwriting
styles. In addition, Uyghur words contain some multi-seg-
ment characters, that is, characters that are morphologically
similar to a combination of other multiple characters, e.g.,

. As such, Uyghur script presents over-
segmentation problems that cannot be solved by currently
available segmentation algorithms, which thereby further
affects the results of word recognition.

To avoid unstable character segmentation results, some
researchers have proposed using parts of characters, which
were called graphemes or primitives, to replace the whole
character as the segmentation unit [14, 15]. Moreover, fea-
ture design for handwritten word image is another impor-
tant factor that influences the performance of a handwriting
recognition system, because extracting good features from
a word image is difficult when the image is degraded or
handwriting variability exists in the word. Youssouf Chher-
awala et al. [16, 17] evaluated a total of five feature sets
from four different categories: pixel distribution, concav-
ity, direction distribution and automatically learned, and
provided a weighted combination scheme to quantify the
relative importance of each feature set, which reflects the
strength and complementarity of multiple features including
handcrafted features and automated ones.

In light of the above discussion, the present study pro-
poses an algorithm to decompose Uyghur words at the level
of graphemes (i.e., at the graphical level of a writing system
involving individual characters or character segments) based
on the unique features of the Uyghur script, and to recognize
words based on the obtained combination of graphemes.
Accordingly, a grapheme library of individual Uyghur words
is first established, and word images are segmented to form
grapheme sequences. Then each grapheme is recognized
according to a combination of morphological features and
position information. Different feature extractors and classi-
fiers were designed for different grapheme categories based
on their individual characteristics. Finally, a grapheme-to-
word BN matching model is constructed, and the grapheme
recognition confidence and word-formation prior informa-
tion are integrated to obtain the word recognition results.

Related Work

According to whether character segmentation is performed,
the methods of recognizing cursive words can be divided
into two strategies: holistic word recognition and segmenta-
tion-driven recognition. The algorithms used can be divided
into word recognition, character segmentation, and character
recognition based on their objectives. The current research
status is described from the following three aspects.

Word Recognition

Unlike Latin languages which are only cursive in hand-
written text, Uyghur and Arabic are cursive by nature.
For both printed and handwritten text, words are writ-
ten in continuous strokes. Currently, cursive word rec-
ognition algorithms are commonly based on the holistic
word recognition strategy. Studies have been carried out
on the recognition of handwritten Arabic words using a

Uyghur letters

consonants

vowels

Fig. 1 32 Uyghur letters

Character segmentation lines

Character

Single character
conjoined segment

Word

Baseline

Subordinate strokes
Major strokes

Multiple characters
conjoined segment

Fig. 2 Structural rules of Uyghur script

SN Computer Science (2020) 1:293 Page 3 of 13 293

SN Computer Science

convolutional neural network model (CNN) [10]. In addi-
tion, algorithms based on multi-stream hidden Markov
model (HMM) [7], support vector machine (SVM) classi-
fier [8], and multi-classifier fusion [9] have also achieved
good results in off-line handwritten Arabic word recogni-
tion. The holistic approach performs well when the lexicon
is predefined, fixed and small in size. However, as ana-
lyzed in the preceding section, holistic word recognition
algorithms have two disadvantages for Uyghur words: first,
they have poor discrimination ability to distinguish small
differences between similar words; second, they require
training of all word categories, so the algorithm must be
retrained when expanding to larger vocabularies.

The segmentation-based recognition strategy can solve
the problems that the holistic word recognition algorithm
has poor discrimination ability and the algorithm’s difficulty
to expand. Attempts have been made on cursive text recog-
nition based on the segmentation strategy [11–15]. For off-
line Arabic word recognition, Parvez et al. [11] proposed a
character segmentation and word recognition algorithm that
combines structural features with a fuzzy polygon matching
algorithm. Zaiz et al. [12] proposed a character segmentation
and word recognition algorithm based on a SVM charac-
ter classifier and post-processing with a puzzle algorithm.
Ahmad et al. [13] presented a multi-stage HMM-based Ara-
bic text recognition system that represents Arabic charac-
ters by separating the core shapes from the diacritics and
employs a multi-stream contextual sub-core-shaped HMMs
as the word classifier.

In the word recognition algorithm based on character seg-
mentation, the number of training categories for word recog-
nition is fixed to the number of character categories, but the
accuracy of character segmentation has a great impact on the
final word recognition results. Some scholars have sought to
find a more suitable segmentation unit than characters. For
example, Xu Liang et al. [14] built a meta-stroke library
with prior knowledge and presented a Chinese character con-
ceptual model based on stroke relationship learning. Partha
Pratim Roy et al. [15] decomposed text lines into character
primitives and used string matching to spot words in histori-
cal documents.

Therefore, the Uyghur graphemes generated after decom-
position were taken as the segmentation unit in this study.
The extracted grapheme library contained 58 graphemes.
Not only was the number of grapheme training categories
less than the number of Uyghur characters, which was 128,
but the grapheme segmentation accuracy was also much
higher than the character segmentation accuracy because it
could avoid the over-segmentation of multi-segment char-
acters and the incorrect segmentation of subordinate strokes
discussed in the preceding section, which ensured the effec-
tiveness of the segmentation-based Uyghur word recognition
algorithm proposed in this study.

Character Segmentation

The existing character segmentation algorithms are mainly
image analysis methods, including an algorithm based on
vertical projection [18], an algorithm based on pixel locali-
zation [19], and an algorithm based on contour structure
[20]. Among them, Al Hamad et al. [18] proposed an Arabic
character segmentation algorithm based on vertical differen-
tial projection. Elzobi et al. [19] proposed an Arabic charac-
ter segmentation algorithm based on least-pixel localization
and optimal topological structure filtering. Abdelhay Zoizou
et al. [20] proposed an Arabic character segmentation algo-
rithm combining template matching and local minima of
the contour.

In the existing character segmentation algorithms, the
difficulties of Uyghur word segmentation are mainly over-
segmentation of multi-segment characters and incorrect seg-
mentation of subordinate strokes. Therefore, in this study, a
grapheme was taken as the segmentation unit, and a hand-
written Uyghur grapheme segmentation algorithm based
on the main stroke over-segmentation and additional stroke
clustering was designed, which effectively solved the above
problems.

Character Recognition

Compared with word recognition, there are more studies on
the recognition algorithms of English, Chinese, and Ara-
bic characters and numbers. Currently, the popular algo-
rithms are those based on neural network or deep learning,
which commonly use a convolutional neural network as
the classifier. For example, Lamghari et al. [21] proposed
a handwritten Arabic character recognition algorithm com-
bining hybrid features with a feed-forward neural network.
Chaouki Boufenar et al. [22] investigated the applicability
of deep convolutional neural networks using transfer learn-
ing strategies.

The word recognition algorithm proposed in this study is
based on grapheme segmentation and recognition. Although
using a convolutional neural network as the classifier to
identify Uyghur graphemes can achieve a high recognition
rate, the method is also faced with various problems, such as
numerous parameters, and a large consumption of computing
resources. The Uyghur grapheme library that we have estab-
lished has the following characteristics: (1) the main graph-
emes and the affix graphemes are mostly each composed
of a single stroke; (2) the dot graphemes are composed of
dots, and have distinct structural characteristics; (3) the dot-
connected strokes are two- or three-dot continuous strokes,
and the shape of the dot-connected strokes is completely
different from that of the unconnected dot strokes. Consider-
ing the unique characteristics of the above Uyghur character
graphemes, we used different classification methods for the

 SN Computer Science (2020) 1:293293 Page 4 of 13

SN Computer Science

three types of graphemes, achieving a shorter recognition
time while obtaining a recognition rate comparable to the
convolutional neural network classifier.

Grapheme Library

We divided graphemes from 128 types of Uyghur characters
to obtain relatively independent and integrable script com-
ponents. The graphemes can be divided into the following
three categories: (1) main graphemes (MGs), i.e., compo-
nents of major strokes written along the baseline; (2) dot
graphemes (DGs), i.e., combinations of dot strokes; (3) affix
graphemes (AGs), i.e., components of subordinate strokes
other than DGs. The constructed grapheme library is listed
in Table 1, and consists of 46 MGs, 7 DGs, and 6 AGs. As
shown in Table 1, MGs, which can be pre-connected, dou-
ble-connected, post-connected, and stand-alone, refer to the
positions of MGs in conjoined segments, and the DGs are
denoted according to dotted lines indicative of whether the
graphemes lie above or below the baseline. Uyghur words
can then be segmented into grapheme sequences according
to the constructed grapheme library. This is illustrated in
Fig. 3 for the word . This word includes the fol-
lowing sequence of characters from right to left: , , ,
, , , , and . The corresponding grapheme composition
of the word can then be expressed by the MG sequence ,
, , , , , , , , , , and , by the DG sequence , ,
and , finally, by the AG .

Decomposing words at the level of graphemes rather than
individual characters not only effectively solves the problem
of over-segmentation, but also enhances minute differences
between similar words, which facilitates the detection and
recognition of these differences. For instance, the difference
between similar words, e.g., and , is very small,
but the DG sequence in the former word is , , and ,
while that of the latter word is and , which are quite dif-
ferent, and the words are readily distinguished based on the
classification results obtained using the grapheme classifiers
proposed in this paper.

Grapheme Segmentation and Recognition

Grapheme Segmentation

The specific steps adopted for grapheme segmentation of
Uyghur words in the present study are given as follows.

Pre-processing and stroke extraction An image of an
off-line handwritten Uyghur word is pre-processed using
binarization, normalization, broken stroke repair, thinning,
slant correction, and correction of conjoined segments, using
algorithms presented in a previous work [23]. The set of N′
strokes, denoted as S = (S1, S2,… , SN�) , is then extracted
through connected domain detection.

Detection of disconnected dot strokes The area of each
connected domain C(Si) is calculated, and a dot stroke is
identified based on the criterion C(Si) < T , where T is a pre-
set dot area threshold (i.e., 1/6 of the average stroke area of
the training samples). The set of s′ disconnected dot strokes
is denoted as P = (P1,P2,… ,Ps�).

Calculation of the baseline position and baseline domain
The Hough transform is applied to the remaining strokes,
i.e. S − P , and the baseline position B is determined accord-
ing to local maxima to obtain the baseline domain [Bu,Bd] .
The baseline domain extraction is conducted according to
the ratio of the horizontal projection value of the strokes to
the total projection value, denoted as � , where the factor �
determines the size of the baseline domain. The empirical
value of � obtained in the experiments was 0.7.

Table 1 Grapheme library of Uyghur script, including main graph-
emes (MGs), dot graphemes (DGs), and affix graphemes (AGs)

Baseline

Main grapheme Grapheme segmentation

Affix grapheme Dot grapheme

Fig. 3 A example for grapheme composition of the Uyghur word

SN Computer Science (2020) 1:293 Page 5 of 13 293

SN Computer Science

Determination of the MG segmentation points Strokes
written along B are extracted as a set of strokes, denoted as
SM . Then the vertical differential projection [18] of SM in the
interval [Bu,Bd] is calculated, and the intersections of SM and
vertical lines corresponding to local projection minima are
taken as the segmentation points. However, because graph-
emes at the end of conjoined segments, e.g., and , are
likely to be over-segmented, segmentation points are deleted
if they lie outside of [Bu,Bd].

Acquisition of MGs The set SM is vertically segmented
from the MG segmentation points, and the set of r MGs is
denoted from right to left as M = (M1,M2,… ,Mr).

Acquisition of DGs Dot strokes are often written connect-
edly in handwriting, and Uyghur script usually employs six
forms of connectedly written dot strokes, which are given
as follows along with the DGs that are conjoined within
parentheses: (), (), or (), and or (). First, con-
nectedly written dot strokes are recognized in the range of
the remaining undetermined strokes, i.e. S − P −M . These
strokes may include , , , , , , , , , , and , for a total
of 12 categories.

Then the connectedly written dot strokes are established
as disconnected dot strokes, and the maximum and mini-
mum algorithm [24] are employed for clustering the set of
fully disconnected dot strokes. According to the rule that
dot strokes are written on only one side of the baseline, the
distance measure between dot stroke P and dot group C is
defined as follows:

where x̄(⋅) and ȳ(⋅) are the x-axis coordinate and y-axis coor-
dinate of the image center, respectively. The set of s clus-
tered dot groups is denoted from right to left as DGs, i.e.
D = (D1,D2,… ,Ds).

Acquisition of AGs The AGs are formed from all single
strokes not denoted as MGs and DGs, and the set of t AGs is
denoted from right to left as A = (A1,A2,… ,At).

Grapheme matching Each DG or AG is matched to its
corresponding nearest MG. If two AGs or two DGs simul-
taneously match a single MG, the MG will be matched with
the nearest AG or DG. Then the other AG or DG will be
matched to its second nearest MG, respectively. Figure 4
presents an illustration of the grapheme matching process,
where the matching results are DG1 matching MG1, DG2
matching MG5, DG3 matching MG10, and AG1 matching
MG4.

Grapheme Recognition

Different feature extractors and classifiers were designed
for MGs, AGs, and DGs based on their individual

(1)d(P,C) =

{
+∞, [ȳ(P) − B][ȳ(C) − B] < 0

[x̄(P) − x̄(C)], otherwise,

characteristics. These characteristics and the extracted fea-
tures are defined as follows.

Because the structural features of DGs, e.g., the num-
ber and position of dots, are determined and intuitive, the
characteristic features were defined as the number of dots
nd = 1, 2, 3 , the relative position of the dots with respect
to the baseline pd = 0, 1 , where 0 indicates that the dot lies
above the baseline and 1 indicates that it lies below, and the
relationship between two dots rd = 0, 1 , where 0 indicates a
horizontal relationship between two dots and 1 indicates a
vertical relationship. The recognition distance of a grapheme
x for the candidate of the ith category is denoted herein as
di(x) , and this value can be calculated as follows:

where (nd)i , (pd)i , and (rd)i express the grapheme features nd ,
pd , and rd , respectively, for the candidate of the ith category,
and ND is the number of categories. Here, ND = 7 for DGs.
Considering that the probability of obtaining an errone-
ous dot position is far less than the probability of obtaining
an erroneous number of dots, the first moment of pd was
adopted as an exponential term to enhance the effect of dot
position features, and the feature distances for nd and rd were
both increased by 1 to avoid cases of di(x) = 0.

The extraction of MGs and AGs conducted in the present
work combines the Freeman chain codes in four directions,
i.e., horizontal, vertical, left diagonal and right diagonal,
with the extraction of elastic mesh directional features
(EMDFs) [25]. In particular, we first adopt the pre-pro-
cessing proposed to normalize the grapheme image. Sec-
ond, the foreground pixels of the grapheme binary image
are detected, and the neighboring points of each pixel are
marked in the four directions, as shown in Fig. 5a, so that
the four directional features of the pixel are obtained by cal-
culating the number of neighboring points in each direction.
Then the image is partitioned into elastic meshes according
to the image pixel projection onto the horizontal and verti-
cal directions. The mesh parameters were determined by
experiments. Taking into account the area ratios of MGs and

(2)
di(x) =[|nd − (nd)i| + 1] × [|rd − (rd)i| + 1]

× 10|pd−(pd)i|, i = 1,… ,ND,

DG1AG1DG2DG3

MG1MG2

MG3

MG4

MG5

MG6

MG7
MG8

MG9
MG1
0
10

Fig. 4 Illustration of a grapheme matching process

 SN Computer Science (2020) 1:293293 Page 6 of 13

SN Computer Science

AGs, 8 × 8 was set as the mesh size for MGs and 4 × 4 for
AGs. This is illustrated by the 8 × 8 mesh of the MG shown
in Fig. 5b. Finally, the sum of each directional feature for all
pixels in each grid is counted to obtain the 8 × 8 × 4 dimen-
sion features for the grapheme.

For classification, we note that a compact modified quad-
ratic discriminant function (MQDF) [26] can facilitate the
optimal classification of Gaussian samples, and can be used
to improve the classification performance obtained with a
limited number of samples. Therefore, the compact MQDF
classifier was applied to calculate the recognition distance of
MGs and AGs. The MQDF is defined as follows:

where �i and �i,j are the mean vector and covariance matrix
of the ith category, respectively, which can be obtained
by the maximum likelihood estimation during training,
while �i,j represents the jth eigenvalue of the correspond-
ing eigenvector of �i,k . In addition, l is the feature dimen-
sion, and q denotes the number of dominant eigenvectors,
where q < l , and the constant �i is a compensation factor. In
particular, before using MQDF, the dimension l is usually
compressed by linear discriminant analysis (LDA). Then the
storage of the original MQDF parameters is further com-
pressed through mapping the parameter space into multiple
subspaces by splitting the dimension using a small set of

(3)

di(x) =
1

�i

�
‖x − �i‖2 −

q�

j=1

(1 −
�i

�i,j
)[��

i,j
(x − �i)]

2

�

+

q�

j=1

log�i,j + (l − q)log�i, i = 1,… ,NM,

prototypes clustered from the multiple subspaces [26]. In
addition, NM = 46 for MGs and NM = 6 for AGs, as dis-
cussed with respect to Table 1.

Finally, the number of graphemes included in a sample
word and word categories is made uniform by defining an
empty grapheme Φ category for each type of grapheme,
where the characteristic feature of Φ is an all-zero vector
with the same size as the grapheme type to which it belongs,
e.g., 8 × 8 × 4 for MGs, 4 × 4 × 4 for AGs, and 3 for DGs.
Therefore, we adopted a total of 47 MGs, 8 DGs, and 7 AGs
when including Φ categories.

Confidence Transformation

A confidence transformation was applied to the recognition
distance dk(x) output by the grapheme classifier to obtain the
grapheme recognition confidence P(�k|x) of the grapheme
x relative to the candidate of the kth category �k . The con-
fidence transformation method [27], employs the soft-max
function to modify the sigmoid function as follows:

where � and � are the confidence parameters whose values
are optimized by minimizing the cross entropy (CE) loss
function for the training data set [27].

Modeling and Recognition of Uyghur Words

Bayesian Network Modeling of Uyghur Words

A BN, which is also known as a confidence network, is a
data model based on probabilistic analysis and graph theory
that is used to predict uncertain events. The ability of BN
models to synthesize prior information and sample infor-
mation effectively has led to their increasing application in
the field of pattern recognition in recent years [28, 29]. To
capitalize on these benefits, the present work constructed
a hierarchical matching model between words, conjoined
segments, and graphemes using a discrete BN based on
the grapheme sequences generated by the segmentation of
an Uyghur word. The model was employed to form a rela-
tional network graph using individual graphemes as the state
nodes, where the directed edges between state nodes repre-
sent the relationships and probabilities of state occurrences,
and the parent nodes point to the child nodes.

Figure 6 illustrates the structure of the grapheme-based
Uyghur word recognition algorithm established in this study,
which includes two parts, i.e., the word sample features and
the grapheme BN model of Uyghur words. Among these, the
sample features are the grapheme feature sequences obtained

(4)P(�k�x) =
exp[−�dk(x) + �]

1 +
∑NG

i=1
exp[−�di(x) + �]

, k = 1,… ,NG,

(a) Freeman chain codes in four directions

(b) 8 × 8 mesh of EMDFs for the MG

H1 H8

V1

V8

H2

V2

4: right diagonal

3: left diagonal

1: horizontal

2: vertical

3
1

2
1

4

4 2 3

Fig. 5 Feature extraction for MGs and AGs

SN Computer Science (2020) 1:293 Page 7 of 13 293

SN Computer Science

after an individual word sample is decomposed into graph-
emes and the features extracted. The model can be specifi-
cally interpreted as follows.

Structure regularization of the BN model The numbers
of conjoined segments and graphemes included in a sam-
ple word and a word category are usually not equivalent. In
this case, the recognition probability for the word category
derived from the sample word will not be calculated. There-
fore, the empty grapheme Φ is used to expand the number
of graphemes contained in the conjoined segments, and
regularize the model structure of the sample word and the
word category. For example, the word category
in Fig. 7 contains three conjoined segments, i.e., L1 , L2 , and
L3 from right to left, where each segment contains 7, 2, and
3 MGs, respectively. This is denoted as a (7, 2, 3) structure.
However, if a sample word is (7, 3, 4) structure, Fig. 7 shows
that including the Φ category allows the (7, 2, 3) structure of
the word to be modified into a (7, 3, 4) structure.

State nodes The circular boxes in Fig. 6 represent the state
nodes of the BN model. The state nodes can be divided into

MGs, DGs, and AGs, where any individual word is an
ordered combination of graphemes. As shown in Fig. 6, the
word WI includes the conjoined segments L1, L2,… , Ln ,
among which the conjoined segment Li , i = 1,… , n includes
MG nodes, where each MG node Mi

j
 , j = 1,… , ki corre-

sponds to two parent nodes, i.e., DG node Di
j
 and AG node

Ai
j
 . Because the conjoined segments in the word are divided

by only 7 categories of MGs (i.e., , , , , , , and), the
state transition relationships between MG nodes at the con-
vergence of adjacent conjoined segments was taken into
consideration.

State transition probability The solid arrows between the
state nodes in Fig. 6 represent the state transition probabili-
ties, with parent nodes pointing to child nodes. The state
transition probability can be divided into two categories: (1)
the transition probability representing the compositional
relationship of the graphemes, which is denoted as P(Mi

j
|Di

j
)

from DGs to MGs, and P(Mi
j
|Ai

j
) from AGs to MGs,

i = 1,… , n , j = 1,… , ki ; (2) the transition probability indi-
cating the correlation between the graphemes, i.e., the transi-
tion probability between MGs at the convergence of adjacent
conjoined segments, which is denoted as P(Mi

1
|Mi−1

ki−1
) ,

i = 2,… , n.
Word sample features The square box in Fig. 6 presents

the grapheme features of the sample word, including the
features of MG sequence M1

1
,… ,M1

k1
 , … , Mn

1
,… ,Mn

kn
 , the

features of DG sequence D1
1
,… ,D1

k1
 , … , Dn

1
,… ,Dn

kn
 , and

the features of AG sequence A1
1
 , … , A1

k1
 , … , An

1
,… ,An

kn
.

Grapheme recognition probability The solid arrows
from the grapheme features of the sample word to the state
nodes of the graphemes in Fig. 6 indicate the recognition
probabilities of the grapheme of the sample word with
respect to the grapheme categories, i.e., the grapheme

L1

Graphemes

WI

M1
1

A1
1D1

1

Conjoined segments

Word

M2
1

A2
1D2

1

Mk1
1

Ak1
1Dk1

1

L2

M1
2

A1
2D1

2

Mk2
2

Ak2
2Dk2

2

Ln

M1
n

A1
nD1

n

Mkn
n

Akn
nDkn

n

M1
1M2

1Mk1
1

A1
1A2

1Ak1
1

D1
1D2

1Dk1
1

Sample
features

M1
2Mk2

2

A1
2Ak2

2

D1
2Dk2

2

M1
nMkn

n

A1
nAkn

n

D1
nDkn

n

Grapheme
BN model

Fig. 6 BN model of Uyghur words

L1

Φ ΦΦΦΦΦΦΦΦΦΦΦΦ

ΦΦΦΦΦ

Φ

Φ

Φ

ΦΦΦΦΦ

MGs

DGs

L2L3

AGs

Fig. 7 Structure regularization of the BN model of Uyghur words

 SN Computer Science (2020) 1:293293 Page 8 of 13

SN Computer Science

recognition confidences P(�k|x) , which were obtained
according to the aforementioned recognition algorithm.

Word Recognition Algorithm

The proposed BN model was employed for word recog-
nition. The process essentially calculates the recognition
confidence values of all grapheme categories from the
grapheme features of the word sample, and then outputs
the categories according to their recognition confidence
in descending order. The complete recognition process
includes the learning stage and the recognition stage,
which are described as follows.

Learning stage The network topology structure of the
BN model is determined by the component structure of the
word category, as shown in Fig. 6. However, the parame-
ters of the BN model must be learned from training data.
These parameters include the state transition probability
and the grapheme recognition probability. The state transi-
tion probability includes P(Mi

j
|Di

j
) , P(Mi

j
|Ai

j
) , i = 1,… , n ,

j = 1,… , ki and P(Mi
1
|Mi−1

ki−1
) , i = 2,… , n , which were

learned using maximum likelihood estimation with 15,000
Uyghur words extracted from the Uyghur language corpus
as the statistical data. The grapheme recognition probabil-
ity is the grapheme recognition confidences P(�k|x) ,
k = 1,… ,NG , which were calculated by Eq. (4).

Recognition stage Let P(WI|X) denote the recognition
confidence with respect to the categories of Uyghur words
WI , where I = 1,… ,NW , and NW is the number of word
categories. The P(WI|X) values for the features of a test
sample X were calculated according to the network topol-
ogy structure and parameters of the BN model. We calcu-
late P(WI|X) according to the probability multiplication
formula and the conditional independence of the BN as
follows:

where Vi represents the state node associated with the word
WI in the BN model, Pa(⋅) is the set of parent nodes of the
node Vi , and Sh represents the path distribution of Pa(⋅) . In
addition, the following equation for P(WI|X) can be obtained
based on the word composition and the topological structure
of the BN model:

where the following definitions hold:

(5)P(WI|X) =
N∏

i=1

P(Vi|Pa(Vi), S
h), I = 1,… ,NW,

(6)P(WI|X) =
n∏

i=1

P(Li|X) =
n∏

i=1

ki∏

j=1

P(Mi
j
|Pa(Mi

j
)),

where G = M,D,A represents the three categories of graph-
emes, and P(Gi

j
|(XG)

i
j
) is the grapheme recognition confi-

dence. Therefore, for a test sample with grapheme features
X , the preferred recognition result (i.e., the first choice) is
the word category corresponding to the maximum posterior
probability, which is given as follows:

Experiments

The Off‑line Uyghur Handwriting Database

Since no benchmark database is available for Uyghur text
recognition, this article introduces an off-line Uyghur hand-
writing database denoted as OUHD (Off-line Uyghur Hand-
writing Database). The database is used to evaluate the pro-
posed algorithm, as well as for training. It contains a total
of 12500 off-line Uyghur handwritten words, included 500
categories. The data collected were written by 25 different
native Uyghur writers without restrictions regarding form so
as to ensure authentic and practical samples. We divided the
data samples in the database into 25 groups according to the
writers, each with 500 word samples. Some samples of the
OUHD are shown in Fig. 8.

The performance of the proposed grapheme recogni-
tion algorithm was evaluated using an Uyghur grapheme

(7)

P(Mi
j
|Pa(Mi

j
)) =P(Mi

j
|(XM)

i
j
)P(Mi

j
|Di

j
)P(Di

j
|(XD)

i
j
)

∙P(Mi
j
|Ai

j
)P(Ai

j
|(XA)

i
j
)

=
∏

G=D,A

P(Mi
j
|Gi

j
)

∏

G=M,D,A

P(Gi
j
|(XG)

i
j
), i = 1 or j ≠ 1

(8)

P(Mi
j
|Pa(Mi

j
)) =P(Mi

j
|Mi−1

ki−1
)P(Mi−1

ki−1
|Pa(Mi−1

ki−1
))

∙
∏

G=D,A

P(Mi
j
|Gi

j
)

∏

G=M,D,A

P(Gi
j
|(XG)

i
j
), i ≠ 1 and j = 1,

(9)I = arg max{P(WI|X), I}.

Fig. 8 Samples of words from the OUHD Uyghur handwriting data-
base

SN Computer Science (2020) 1:293 Page 9 of 13 293

SN Computer Science

database obtained by manually segmenting the data samples
in the OUHD. The grapheme database was used for both
training and grapheme recognition. The database contains
25 groups, for a total of 113275 grapheme data samples,
including 76125 MGs, 9525 AGs, and 27625 DGs. Some
data samples are shown in Fig. 9.

The following subsections present analyses of the appli-
cation of the proposed algorithm to experimental data, and
also include a comparison of the results with those obtained
by other existing algorithms in the field. However, owing
to a lack of existing algorithms for the recognition and
segmentation of handwritten Uyghur words, we employed
some established algorithms developed for the recognition
of handwritten Arabic text and applied them to the OUHD.
This is possible because Arabic and Uygur characters are
similar in shape, and the 32 basic letters of Uygur and the
28 basic letters of Arabic share 21 equivalent letters. The
programming code is single threaded, and was implemented
as C++ scripts. All experiments were conducted on a PC
with a 2.6 GHz Intel i5-4300M CPU and 4.0 GB of memory.

Grapheme Segmentation Results

The effect of the grapheme segmentation algorithm was
quantitatively evaluated based on three criteria: accuracy
rate, recall rate, and false detection rate. The accuracy rate
refers to the ratio of correct segmentation results to the total
number of segmentation points obtained by the algorithm.
The recall rate refers to the ratio of the number of segmen-
tation results that have been correctly detected by the algo-
rithm in the correct segmentation position. Finally, the false
detection rate is the difference between 1 and the calculated

accuracy rate, which includes over-segmentation and bad
segmentation, where over-segmentation occurs when a
grapheme is divided into more than one grapheme, and bad
segmentation occurs when segmentation points incorrectly
segment two adjacent graphemes.

We compared the segmentation results obtained using
three grapheme segmentation algorithms on the OUHD.
Algorithm 1 is the proposed grapheme segmentation algo-
rithm for handwritten Uyghur text. Algorithm 2 is a seg-
mentation algorithm for handwritten Arabic text based on
least-pixel localization and optimal topological structure
filtering [19]. Algorithm 3 is a segmentation algorithm for
handwritten Arabic text that locates segmentation points by
combining template matching and local minima of the con-
tour [20]. The total number of grapheme segmentations for
the 500 word categories in the OUHD was 4031, including
25 groups for a total of 100775. Table 2 shows the overall
segmentation performance results and the computation times
of these three segmentation techniques.

As may be seen from Table 2, our grapheme segmenta-
tion algorithm performed very well with an accuracy rate
of 98.44%. The false detection rate was only 1.56%, which
included 0.84% over-segmentation and 0.72% bad segmen-
tation errors. Comparing the three algorithms, we can see
that the over-segmentation error of the proposed algorithm
is much less than those of algorithms 2 and 3 owing to the
use efficient heuristic techniques, and more importantly, the
use of grapheme analysis to cluster dot strokes after stroke
separation, which greatly reduces the over-segmentation
of DGs. These results are very promising, because correct
segmentation is essential for supporting a high grapheme
recognition rate.

Figure 10 presents an example to illustrate the segmenta-
tion results of a word sample using the different segmenta-
tion algorithms. The word sample shown in Fig. 10a
consists of 15 graphemes, including the MG sequence ,
, , , , , , , and , the DG sequence , , and
, and the AG . The successfully segmented word using the
proposed algorithm is presented in Fig. 10b. In addition, the
segmentation result of algorithm2 is presented in Fig. 10c
for comparison. It can be seen that some graphemes are
over-segmented into two graphemes, such as the seventh
MG , the tenth MG , and the first DG . We also present
the segmentation result of algorithm 3 in Fig. 10d, where Fig. 9 Samples of graphemes manually extracted from the OUHD

Table 2 Comparison of the
grapheme segmentation
performances of three
algorithms

Accuracy
rate (%)

Recall rate (%) False detection rate (%) Runtime
(ms/
word)Over-seg-

mentation
Bad seg-
mentation

Total

Algorithm 1 (proposed) 98.44 99.98 0.84 0.72 1.56 97
Algorithm 2 [19] 84.78 99.08 13.12 2.10 15.22 146
Algorithm 3 [20] 95.33 98.69 3.64 1.03 4.67 85

 SN Computer Science (2020) 1:293293 Page 10 of 13

SN Computer Science

we note the over-segmentation of the DG . A conjunction
of the dot strokes and natural variations in the locations of
strokes tend to induce over-segmentation for algorithms 2
and 3 because these algorithms match the dot strokes, rather
than the DGs, with the MGs. In addition, algorithm 2 suf-
fers from a high proportion of over-segmentation errors for
the MGs because it only considers the topological structure.

Grapheme Recognition Results

The leave-one-out method was adopted for cross validation.
Here, one group was selected from the 25 groups of data
samples for testing, and the other 24 groups were used for
training. Each group was selected for testing in turn, and the
average recognition rate was calculated based on the com-
bined results. The performance of the proposed algorithm
was evaluated by comparing the experimental results of two
recognition algorithms for three types of graphemes. Algo-
rithm 1 was the proposed grapheme recognition algorithm,

while algorithm 2 was an off-line handwritten Arabic char-
acter recognition method that combines statistical and struc-
tural features with an artificial neural network [21]. Table 3
lists the grapheme recognition results and the computation
times of the two algorithms.

The results in Table 3 indicate that the proposed algo-
rithm provided better recognition results than algorithm 2.
This is because our algorithm uses different recognizers for
different types of graphemes. While the recognition rates
of the proposed algorithm for MGs and AGs are compa-
rable to those of algorithm 2, the computation times were
substantially decreased because the distance classifier has a
shorter operation time than the artificial neural network clas-
sifier employed in algorithm 2. Moreover, the recognition
rate of the proposed algorithm for DGs was 99.99%, which
is 1.86% greater than that obtained by algorithm 2 because
dot strokes that are conjoined in writing can be effectively
recognized when extracting structural features and consider-
ing the information of grapheme segmentation, which also
greatly decreases the required recognition time.

Word Recognition Results

In the experiments, the recognition performances of five
algorithms on the OUHD were compared. Algorithm 1 was
the off-line handwritten Uyghur word algorithm proposed
in the present study. Algorithm 2 [11] and algorithm 3 [12]
are based on segmentation-driven recognition. Here, algo-
rithm 2 is an off-line Arabic handwriting recognition algo-
rithm using structural techniques, which first integrates a
segmentation algorithm into the recognition phase and uti-
lizes a polygonal approximation algorithm. Then the seg-
mented character is modeled by fuzzy polygons and later
recognized using a fuzzy polygon matching algorithm.
Finally, the best hypothesis of a sequence of recognized
characters for each word is selected by dynamic program-
ming. Algorithm 3 recognizes an off-line handwritten Arabic
word using a set of stages that include segmentation, feature
extraction, character classification, and post-treatment. In
the character classification stage, a support vector machine
(SVM) classifier is used based on two horizontal and verti-
cal scanning masks. In addition, a puzzle algorithm is added
as a post-processor. Algorithm 4 [7] and algorithm 5 [8]
are based on holistic recognition. Algorithm 4 proposes an

(a) sample word

(b) segmentation result for algorithm 1

(c) segmentation result for algorithm 2

(d) segmentation result for algorithm 3

Fig. 10 Illustration of grapheme segmentation obtained by the differ-
ent algorithms

Table 3 Comparison of
grapheme recognition
performances for two
algorithms

MGs AGs DGs

Recogni-
tion rate
(%)

Runtime
(ms/graph-
eme)

Recogni-
tion rate
(%)

Runtime
(ms/graph-
eme)

Recogni-
tion rate
(%)

Runtime
(ms/graph-
eme)

Algorithm 1(proposed) 98.28 122 99.87 121 99.99 37
Algorithm 2 [21] 98.27 732 99.82 731 98.13 729

SN Computer Science (2020) 1:293 Page 11 of 13 293

SN Computer Science

off-line handwritten Arabic recognition algorithm based on
asynchronous multi-stream hidden Markov model (HMM),
which models the interaction between multiple features
composed of a combination of statistical and structural fea-
tures, which are extracted over the columns and rows of the
word image using a sliding window approach. Algorithm 5
is a handwritten Arabic/Persian word recognition algorithm
based on combined features and an SVM classifier. Here, the
word image is broken into an m × n window and the features
include the angle, number, location, and size of straight lines
extracted from each window.

We evaluated the performance of the proposed word
recognition algorithm on the OUHD database described in
“The Off-line Uyghur Handwriting Database”, and adopt the
leave-one-out method for conducting cross validation. Here,
each group from the 25 groups of data samples was selected
in turn for testing with the other groups employed for train-
ing, and the average recognition rate was calculated. Table 4
summarizes the word recognition performance of the five
algorithms. It can be seen that the algorithm proposed in
this study (algorithm 1) provided the highest first choice
word average recognition rate of 91.65%, which verifies the
effectiveness of the algorithm.

Detailed analysis was conducted by firstly comparing
the performances of segmentation-driven algorithms (algo-
rithms 1, 2, and 3) and holistic algorithms (algorithms 4
and 5) based on the results listed in Table 4. The results
indicate that the proposed algorithm has the highest first
candidate recognition rate, and its recognition rate of the top
five candidates is slightly greater than that of algorithm 4.
It can be concluded that this is because the proposed algo-
rithm improves the recognition accuracy of similar words by
extracting features at the grapheme level to achieve local-
ized recognition of subtle differences between similar words.
We verified this conclusion by selecting two groups of two
similar words from the 500 categories of the OUHD. The
first group of similar words was and , and the
second group was and . We counted the number of
samples that were correctly identified as the first choice by
the five different algorithms from the 25 samples of each
of the above words, and the comparison results are listed

in Table 5. We note that the difference in the first group of
similar words is the occurrence of DG , and the difference
in the second group is the occurrence of MG or . How-
ever, algorithms 2 and 3 must distinguish characters and

 for the first group and characters and for the second
group. The fact that algorithms 4 and 5 must identify the
entire word clearly illustrates the stronger discrimination
ability of the proposed algorithm based on the recognition
of graphemes. In addition, the proposed algorithm considers
six types of connectedly written dot strokes during the seg-
mentation process, and can, therefore, correctly recognize
connectedly written forms of , such as and . However,
algorithm 3 extracts dot strokes as a pre-classification, and
does not consider conjoined dot strokes. Therefore, the rec-
ognition rate of algorithm 3 is low for words containing the
graphemes and , such as in the second group of similar
words.

Second, a comparison of the word recognition rates
obtained by the segmentation-based algorithms 1, 2, and
3 suggests that the proposed modeling based on grapheme
decomposition can avoid the over-segmentation of multi-
segment characters during the segmentation process, and
achieve better recognition performance. Here, multi-segment
characters refer to those characters that are easily segmented
into multiple graphic segments, such as , which can be
segmented into , , and . The over-segmentation of these

Table 4 Comparison of the
Uyghur word recognition
performances of five algorithms

Recognition rate (%) Number of training categories (recogni-
tion strategy)

Runtime
(ms/
word)

1st choice Top 2 Top 5

Algorithm 1 (proposed) 91.65 93.77 95.12 58 (Segmentation-driven recognition) 624
Algorithm 2 [11] 80.32 83.85 86.34 128 (Segmentation-driven recognition) 922
Algorithm 3 [12] 75.56 78.11 82.61 128 (Segmentation-driven recognition) 783
Algorithm 4 [7] 87.94 90.25 95.08 500 (Holistic recognition) 301
Algorithm 5 [8] 85.03 88.96 93.37 500 (Holistic recognition) 557

Table 5 Comparison of the recognition performances of the five
algorithms for similar words

Number of correct 1st choice identifica-
tions in 25 samples

Group 1 Group 2

Algorithm 1(proposed) 25 24 24 24
Algorithm 2 [11] 24 23 23 24
Algorithm 3 [12] 23 23 19 18
Algorithm 4 [7] 21 20 21 22
Algorithm 5 [8] 21 21 18 20

 SN Computer Science (2020) 1:293293 Page 12 of 13

SN Computer Science

multi-segment characters seriously detracts from the perfor-
mance of the character segmentation algorithm, which then
reduces the accuracy of word recognition. Algorithms 2 and
3 determine the over-segmentation of multi-segment charac-
ters based in part on the character recognition results. How-
ever, this strategy is invalidated for Uyghur characters such
as . This is because is a graphic segment in Arabic not a
character, but, in Uyghur, is not only a graphic segment of
the character , but is also a middle form of the character .
Therefore, a character recognizer cannot determine whether

 is a character or some other graphic element. Therefore,
our algorithm reduces over-segmentation errors through
grapheme decomposition and modeling (see the results in
Table 1), which further increases the word recognition rate.

Third, we note from Table 4 that the numbers of train-
ing categories required by segmentation-driven algorithms
are small and fixed, which means that these algorithms are
readily expanded to the task of large-scale vocabulary rec-
ognition. In contrast, holistic algorithms require a relatively
large number of categories, and this number increases as the
size of the vocabulary increases. Specifically, the number of
training categories required by the proposed algorithm are
quite small because the algorithm conducts word recogni-
tion at the grapheme level, and these categories consist of
46 MGs, 6 AGs (see Table 1), and 6 conjoined dot strokes

(), (), or (), and or (), for a total of only 58 cat-
egories. Algorithms 2 and 3 segment words at the character
level; therefore, these require training categories composed
of 128 characters. However, algorithms 4 and 5 are based
on holistic recognition strategies, such that their required
number of training categories are equal to the entire lexicon
of the experimental database, which is 500 in this paper.

Finally, the runtime results in Table 4 indicate that the
recognition algorithms based on segmentation require more
computation time than the holistic recognition algorithms.
This is because the segmentation modules employed in seg-
mentation-driven algorithms increase the algorithm com-
plexity to some extent.

Conclusion

The complicated strokes and connected writing employed
in handwritten Uyghur text make it difficult to accu-
rately extract the characteristics of the individual char-
acters employed in the writing. Therefore, the algorithm
proposed in this study decomposed Uyghur script at the
grapheme level, and designed different feature extractors
and classifiers for the different graphemes. As a result,
the algorithm not only can detect and recognize slight
differences between similar words, but is also robust for
the detection of complex handwriting features such as the
connected writing of dots and stroke deformations. The

algorithm calculated the posterior probabilities of the can-
didate categories using a BN model. The BN model not
only accommodated the complex structure and graphic
description of Uyghur script, but also integrated seman-
tic information with the grapheme identification process,
grapheme compositional structure, and conjoined seg-
ments, and thereby effectively increased the word recog-
nition rate relative to presently available word recognition
algorithms applicable to similar cursive scripts. In addi-
tion, the decomposition of graphemes into a small and
fully predictable number of categories greatly reduces the
number of categories needed for algorithm training, and
the algorithm is readily expandable to Uyghur text recog-
nition tasks involving a large vocabulary.

Funding This study was funded by National Natural Science Founda-
tion of China, NSFC (Grant numbers 61562058 and 61761028).

Compliance with Ethical Standards

Conflict of interest The authors declare that they have no conflict of
interest.

References

 1. Impedovo S. More than twenty years of advancements on frontiers
in handwriting recognition. Pattern Recognit. 2014;47(1):916–28.

 2. Kaur H, Kumar M. A comprehensive survey on word rec-
ognition for non-Indic and Indic scripts. Pattern Anal Appl.
2018;21:897–929.

 3. Tanzila S, Abdulaziz SA, Amjad R. Online versus offline Arabic
script classification. Neural Comput Appl. 2016;27(7):1797–804.

 4. Mohammad TP, Sabri AM. Offline Arabic handwritten text rec-
ognition: a survey. ACM Comput Surv. 2013;45(2):1–35.

 5. Xu Y, Lu Z, Li J. Handwritten Uyghur character recognition based
on radical dictionary and time division direction feature. J Jilin
Univ (Eng Technol Ed). 2013;43(3):740–6.

 6. Tanzila S, Amjad R, Mohamed EB. Methods and strategies on off-
line cursive touched characters segmentation: a directional review.
Artif Intell Rev. 2014;42(4):1047–66.

 7. Jayech K, Mahjoub MA, Amara NEB. Synchronous multi
stream hidden Markov model for offline Arabic handwriting
recognition without explicit segmentation. Neurocomputing.
2016;214(19):958–71.

 8. Tavoli R, Keyvanpour M, Mozaffari S. Statistical geometric com-
ponents of straight lines (SGCSL) feature extraction method for
offline Arabic Persian handwritten words recognition. IET Image
Process. 2018;12(9):1606–16.

 9. Tamen Z, Drias H, Boughaci D. An efficient multiple classifier
system for Arabic handwritten words recognition. Pattern Recog-
nit Lett. 2017;93(7):123–32.

 10. Ghanim TM, Khalil MI, Abbas HM. Comparative study on deep
convolution neural networks DCNN-based offline Arabic hand-
writing recognition. IEEE Access. 2020;8:95465–82.

 11. Parvez MT, Mahmoud SA. Arabic handwriting recognition using
structural and syntactic pattern attributes. Pattern Recognit.
2013;46(1):141–54.

SN Computer Science (2020) 1:293 Page 13 of 13 293

SN Computer Science

 12. Zaiz F, Babahenini MC, Djeffal A. Puzzle based system for
improving Arabic handwriting recognition. Eng Appl Artif Intell.
2016;56(11):222–9.

 13. Ahmad I, Fink GA. Handwritten Arabic text recognition using
multi-stage sub-core-shape HMMs. Int J Doc Anal Recognit.
2019;22:329–49.

 14. Xu L, Wang Y, Li X, et al. Recognition of handwritten Chi-
nese characters based on concept learning. IEEE Access.
2019;7:102039–53.

 15. Roy PP, Rayar F, Ramel J-Y. Word spotting in historical docu-
ments using primitive codebook and dynamic programming.
Image Vision Comput. 2015;44:15–28.

 16. Chherawala Y, Roy PP, Cheriet M. Feature design for offline
Arabic handwriting recognition: handcrafted vs automated? In:
The 12th International Conference on Document Analysis and
Recognition (ICDAR), IEEE, Washington, 2013;290–294

 17. Chherawala Y, Roy PP, Cheriet M. Feature set evaluation
for offline handwriting recognition systems: application to
the recurrent neural network model. IEEE Trans Cybern.
2015;46(12):2825–36.

 18. Al Hamad HA, Zitar RA. Development of an efficient neural-
based segmentation technique for Arabic handwriting recognition.
Pattern Recognit. 2010;43(8):2773–98.

 19. Elzobi M, Al-Hamadi A, Al-Aghbari Z, et al. IESK-ArDB: a data-
base for handwritten Arabic and an optimized topological segmen-
tation approach. Int J Doc Anal Recognit. 2013;16(3):295–308.

 20. Zoizou A, Zarghili A, Chaker I. A new hybrid method for Ara-
bic multi-font text segmentation, and a reference corpus con-
struction. J King Saud Univ Comput Inf Sci. 2018;. https ://doi.
org/10.1016/j.jksuc i.2018.07.003.

 21. Lamghari N, Charaf MEH, Raghay S. Hybrid feature vector for
the recognition of Arabic handwritten characters using feed-for-
ward neural network. Arab J Sci Eng. 2018;43:7031–9.

 22. Boufenar C, Kerboua A, Batouche M. Investigation on deep learn-
ing for off-line handwritten Arabic character recognition. Cognit
Syst Res. 2018;50:180–95.

 23. Xu Y. A study of key techniques for Uighur handwriting recogni-
tion. PhD. thesis, 2013; Xidian University, Chain, Xi’an.

 24. Juan A, Vidal E. Comparison of four initialization techniques for
the K-medians clustering algorithm. In: Advances in Pattern Rec-
ognition, Lecture Notes in Computer Science, Springer, Berlin,
2000;842–852.

 25. Jin L, Wei G. Handwritten Chinese character recognition with
directional decomposition cellular features. Circuits Syst Comput.
1998;8(4):517–24.

 26. Wei X, Lu S, Lu Y. Compact MQDF classifiers using sparse cod-
ing for handwritten Chinese character recognition. Pattern Rec-
ognit. 2018;76(4):679–90.

 27. Wang Q, Yin F, Liu C. Handwritten Chinese text recognition by
integrating multiple contexts. IEEE Trans Pattern Anal Mach
Intell. 2012;34(8):1469–81.

 28. Liu L, Wang S, Su G, et al. Towards complex activity recognition
using a Bayesian network-based probabilistic generative frame-
work. Pattern Recognit. 2017;68(8):295–309.

 29. Wu Z, Zhang J, Chen K, et al. Yoga posture recognition and quan-
titative evaluation with wearable sensors based on two-stage clas-
sifier and prior Bayesian network. Sensors. 2019;19(23):1–19.

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1016/j.jksuci.2018.07.003
https://doi.org/10.1016/j.jksuci.2018.07.003

	Recognition of Off-line Handwritten Uyghur Words Using Bayesian Networks with Grapheme Nodes
	Abstract
	Introduction
	Related Work
	Word Recognition
	Character Segmentation
	Character Recognition

	Grapheme Library
	Grapheme Segmentation and Recognition
	Grapheme Segmentation
	Grapheme Recognition
	Confidence Transformation

	Modeling and Recognition of Uyghur Words
	Bayesian Network Modeling of Uyghur Words
	Word Recognition Algorithm

	Experiments
	The Off-line Uyghur Handwriting Database
	Grapheme Segmentation Results
	Grapheme Recognition Results
	Word Recognition Results

	Conclusion
	References

