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ABSTRACT Automatic and accurate detection of chest X-ray lesion is a challenging task. In the chest
X-ray image, the lesions are shown with blurred boundary contours, different sizes, variable shapes, uneven
density, etc. Besides, the deep convolutional neural network (CNN) consists of traditional convolution
units, which has the limitations of rectangular sampling. The CNN extracts difficultly the deformation
and refined features of chest X-ray lesions. Because of these factors, the accuracy of the lesion detection
algorithm is not high. To deal with problems, we propose the deformation and refined features based
lesion detection on the chest X-ray algorithm called DRCXNet. Firstly, the deformable convolution with
amplitude modulation (AMDCN) is built to extract the deformation features of the lesions on the chest
X-ray. Secondly, to obtain the refined feature, the global features and local features are fused, which can
enrich the feature space of the lesion. Thirdly, the pooling layer combines with the AMDCN and region
proposal network to establish the deformable pooling layer, which enhances the model’s sensitivity to the
lesion location. During the training, the model is optimized by the improved regression loss function with
a gradient control factor. On the public datasets RSNA and ChestX-ray8, the proposed method outperforms
seven popular detection algorithms. The proposed method is a significant performance in both qualitative
and quantitative experiments. Its comprehensive evaluation scores, sensitivity, precision, and the mean dice
similarity coefficient are 0.866, 0.914, 0.836 and 0.859 respectively. The proposed algorithm achieves a very
satisfactory result.

INDEX TERMS Chest X-ray, deformable convolution, deformation feature, refined feature, lesion detection.

I. INTRODUCTION
As an essential part of the respiratory system, the quantitative
diagnosis evaluation of the lung is critical. The chest X-ray
examination is one of the most common and cost-effective
medical imaging techniques, which screen lung diseases and
others [1]. Given an X-ray image, radiologists can identify
acute and chronic cardiopulmonary disease, or verify that the
pacemaker is orthodontic. However, the proportion of radiol-
ogists is declining, especially in areas with inadequate med-
ical resources [2], [3]. Therefore, high-precision automated
image screening technology can improve the work efficiency
of radiologists and allow doctors with more time to focus
on diagnosis. Moreover, the technology is also expanded
to remote areas and compensates for the lack of local
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medical services. In the past few decades, although computer-
aided diagnosis (CAD) technology assists the radiologist
to read and analyze image data [4]–[6]. However, in CAD
systems, many lesion detection algorithms are designed by
shallowmachine learning ormanual featuremethods [7], e.g.,
on the qualitative diagnosis of the pulmonary nodule in CT
images, the CAD system still has a large number of leaky
detection nodule lesions. Therefore, Bergtholdt et al. [8] pro-
posed a support vector machine (SVM) classifier, and the sen-
sitivity of classifier is 0.859. Alam et al. [9] built a classifier
based on PCA, linear SVM, and multi-kernel SVM, which
can compare and discriminate between healthy controls (HC)
and Alzheimer’s disease (AD) patients. This classifier up
to about 0.84 stratification accuracy with multi-kernel SVM
along with high sensitivity and specificity above 0.85. How-
ever, the accuracy of these traditional algorithms in detecting
lesions generally not meet the diagnosis’s requirements at
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current medical images analysis. Besides, due to the differ-
ences of patient or imaging equipment, the lesion detection
of traditional algorithms are weakly robust and generaliza-
tion, and expand the application in other tasks difficultly.
Therefore, the reading and analysis of chest X-ray images
are mainly performed by radiologists. In recent years, the risk
of lung disease increases dramatically due to environmental
factors, and the data of lung X-ray screening also increases
dramatically. Due to the characteristics of lesions are an
insignificant feature, variable size, morphology, and the sub-
tle changes of lesion texture, it is difficult for doctors to
analyze a large number of chest X-ray images manually in
long hours of work. Furthermore, manual screening relies on
doctors’ experience, which leads to somemistakes inevitably.
Therefore, for the above issue, we can develop an automatic
lesion detection algorithm by computer vision technology in
chest X-ray. It will be a high clinical diagnostic value to assist
doctors in diagnosis.

In recent years, with the development of artificial intel-
ligence technology, deep learning has been widely applied
in the field of medical image analysis and promotes
the development of medical image analysis to precision
medicine [10], [11]. In 2017, Litjens et al. [12] surveyed and
analyzed 300 articles of deep learning about medical image
analysis. They classified the methods and the applied scenes
of the model. The report pointed out that deep learning meth-
ods, especially convolutional neural networks, have quickly
become a method of usually favorite for medical image
analysis. Deep learning is benefited from large-scale label
data to learn models. It is used to apply end-to-end learning
tasks, and its performance is significant compared with the
traditional algorithm [13]. e.g., in works of Pattrapisetwong
and Chiracharit [14] and Anavi et al. [15], they used deep
convolutional neural networks (CNN) to extract different
types of lesion features in the chest X-ray image and to clas-
sify multiple classes of lesions. Esteva et al. [16] proposed
a detection algorithm based deep learning on the dermato-
logical grading of skin cancer, which reached the level of
dermatologists. Zhu et al. [17] designed a DeepLung model,
which contained a three-dimensional fast convolutional neu-
ral network based on R-CNN and a gradient enhancement
machine based on the dual-path network. Its detection per-
formance in pulmonary nodules was comparable with the
experienced doctors. Rajpurkar et al. [18] built a pneumo-
nia detection CheXNet with a 121-layer DenseNet, which
achieved an F1 score of 0.435 on the ChestX-ray8 database
[19] and its performance was higher than the radiologist
statistically and significantly. Kermany et al. [20] used trans-
fer learning and DCNN to identify the lesion categories in
retinal images. By transfer learning, the method was also
tested on the classification of pneumonia in pediatric chest
X-ray. Liang et al. [21] proposed a dense network with
relative location awareness for thorax disease identification.
They used U-Net to segmentation and introduced the loca-
tion information into the network. After the location of
the disease was combined with the incidence, the method

achieved the area under the curve (AUC) of 0.820. Besides,
He et al. [22] proposed a Mask R-CNN method, which inte-
grated three-branch (segmentation, regression and classifi-
cation) to achieve the segmentation and detection. Mask
R-CNN as a baseline used to other segmentation, detection
or both task, eg. Chathurika andWijesinghe [23] proposed an
approach based on Mask-RCNN to automate the detection
and segmentation of ulcers. The position of the lesion is also
crucial to the doctor. However, these methods focus on the
classification and few studies care on the detection of lesions.
Moreover, these methods are using conventional convolution
units. Because of CNN’s limitation of rectangular sampling,
the model based-CNN is limited to learn the fixed geometric
structure when learning the transformation of feature space
of lesions. In the chest X-ray image, e.g., bronchial type,
the typical image changes are irregular infiltration around
the bronchi, and its cross-section and longitudinal section
feature an outward-extending image. The interstitial type
shows a nearly reticular texture on the image, and the pul-
monary angiogram disappears almost. Alveolar type shows
‘‘air bronchus characteristics’’ and ‘‘air alveolar characteris-
tics’’ in the chest X-ray. Lung nodule shows circular plaques
of varying sizes and uneven density, and so on. Therefore,
it is difficult to extract the deformation features, refined and
reinforced features by the traditional CNN. Those factors lead
to lower performance of the lesion detection method with
traditional CNN.

For the above problems, we propose the deformation and
refined features based lesion detection on the chest X-ray
algorithm. It mainly contains dynamic convolution and bal-
ance loss function. The method can get the deformation and
refined features, and it reinforces the attributes of the lesion
feature. Moreover, the feature fusion links the global features
and local features of the lesion, and the rich feature informa-
tion can be obtained. Furthermore, in training, the improved
loss function suppresses the imbalance problem between the
difficult and easy sample in the multi-classification lesion
detection task. Those strategies can improve the accuracy of
lesion detection in chest X-rays.

In this paper, the major contributions of our work are as
follows:

1) Reinforced deformation features. In the proposed
method, the residual module is designed by the con-
volution factorization and the amplitude modulation
deformable convolution module (AMDCN). By this
module, the sub-network in our framework is built to
extract the deformation features of the lesion. It rein-
forces the attributes of the lesion feature.

2) Refined features. The global features and local features
are connected by feature fusion, i.e., the detail features
in lower layers and semantic features in high layers are
combined to enrich the feature space of the lesion.

3) Deformable pooling layer. To solve the alignment
problem in detection, and introduce the lesion loca-
tion information for the pooling layer, the pooling
layer combines with the AMDCN and region proposal
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FIGURE 1. The framework of the proposed method. (a) The sub-network extracts deformation features by the deformable convolution with
amplitude modulation layers. (b) The special feature fusion structure obtains the refined features. (c) The pooling layer in lesion predictor is
built by the deformable convolution with amplitude modulation and the RoI location information from RPN. (d) The region proposal network
[24](RPN). (e) The improved loss function optimizes the model in training.

network (RPN) to build the position-sensitive RoI pool-
ing layer.

4) Reliable loss function. The imbalance between difficult
and easy samples leads to the imbalance of gradient
propagation. To avoid the training difficulty, which is
caused by the imbalance back-propagation, the model
is optimized by the improved regression loss function
with a gradient control factor.

The structure of the paper is as follows. First, the frame-
work of the proposed method is introduced. Second,
the framework is further described in detail by the deforma-
tion feature extraction method, the refined features extraction
method, the deformable position-sensitive RoI pooling layer,
and the improved loss function. Third, the proposed method
compares with the mainstream method on the public dataset,
and also make the ablation test to verify the effectiveness and
robustness of the proposed method. Final, we discuss and
summarize the advantages, disadvantages, and improvement
direction of the proposed method.

II. FRAMEWORK OVERVIEW AND MATERIALS
In this section, we introduce the deformation and refined fea-
tures based lesion detection on the chest X-ray (DRCXNet)
in detail. It mainly includes five parts. (i). framework
overview. (ii). deformation feature based deformable convo-
lution. (iii). refined features and deformable pooling layer.
(iv). optimized prediction and loss function. (v). dataset.

A. FRAMEWORK OVERVIEW
The framework of the proposed method consists of five
modules as shown in Fig. 1. The feature space is enriched

by extracting deformation features and refined features,
thereby improving the accuracy of lesion detection. More-
over, the model parameters are optimized by the improved
loss function. The operating mechanism between modules
is shown in Fig. 1(a)-(e). Firstly, in order to obtain the
deformation features and reinforced the feature characteri-
zation, the deformable CNN sub-network is established for
extracting features, as shown in Fig. 1(a). The better result is
achieved by the deeper CNN theoretically. However, the deep
network also brings the gradient dispersion or gradient explo-
sion, which leads to the network system cannot converge [25].
Although batch normalization can alleviate these issues and
make the network deeper, the batch normalization is added
excessively, which leads to network degradation, accuracy
reduction, or training saturation. Therefore, to avoid the
negative effect of depth and batch normalization, the par-
ticular residual units is established by convolution factor-
ization and residual method, which make the output change
of the network layer to be more sensitive and highlight
the slight adjustment. To obtain the deformation feature of
lesion, the amplitude-modulated deformable convolution is
introduced to improve the feature extractor, which avoids the
limitation of rectangular sampling in traditional convolution.
The blue blocks are offsets of the deformable convolution
layers, which are attached to the traditional convolution.
This method makes convolution more free and flexible. Sec-
ondly, in order to obtain the refined features and enrich
feature space, a special feature fusion structure is established,
as shown in Fig. 1(b). As the number of convolutional lay-
ers increases, the detail features (such as texture features,
shapes, etc.) are transformed into semantic features in the
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FIGURE 2. Traditional convolution residual module transforms to deformable convolution residual module. (a) The residual block is built by the
traditional convolution. (b) The kernel shape of the traditional convolution. (c) The sampling effect is calculated through three layers of the
traditional convolution. (d) The kernel shape of the deformable convolution with amplitude modulation. (e) The sampling effect is calculated
through three layers. (f) The residual block is built by the deformable convolution with amplitude modulation.

high dimensional feature space, and the detection operations
are performed on high dimensional features. Because of
the deeper CNN networks misses the detail feature of lesion
easily, the feature fusion layer is built by the Gaussian delo-
calization algorithm to overcome this issue, i.e., the refined
features are obtained by connecting the high-level semantic
features and the low-level details globally from the feature
extractor. Thirdly, the region proposal network (RPN) [24],
a candidate bounding box generation network, is used in the
proposed method to obtain the location information of the
region of interest (RoI). Fourthly, to build a better lesion
predictor, we establish the deformable position-sensitive RoI
pooling layer in lesion predictor through the deformable con-
volution with amplitude modulation and the location infor-
mation of RoI, as shown in Fig. 1(c) and (d). Because of
the traditional pooling process is similar to the convolution
process, it reduces the feature space resolution under a fixed
scale. To avoid repeated convolution operations and reduce
computational complexity, the features of inputting the pool-
ing layer are obtained by once convolution and dimension
reduction process on the refined features.Moreover, the lower
spatial resolution features make to align between the predic-
tion bounding boxes and the label boxes difficultly, i.e., the
prediction bounding boxes are too big or too small. Therefore,
the module (c) and (d) suppress this problem by introducing
the location information and the deformable ability in the
proposed method simultaneously. At last, for optimal model
parameters of the proposed method, the Soft-NMS is applied
in the proposed method to screen for more accurate results.
Then, the prediction error is calculated by the improved loss
function to optimize the model.

B. DEFORMATION FEATURE BASED
DEFORMABLE CONVOLUTION
In chest X-ray, the lesion is characterized by insignificant
features, diverse lesions, and variable scales. Among them,

the contour is blurred due to the similarity of the lesion
characteristics to the background tissue characteristics. It is
difficult for a general model to extract key information from
these lesion characteristics. Due to the increased depth of
the convolutional network, its feature extraction capabil-
ity is greatly degraded after being negatively affected by
depth [26], In order to fully learn the characteristics of the
lesion, the feature extraction sub-network of the proposed
method references to [26]. In the proposed method, the resid-
ual method and convolution factorization are built to establish
residual block, as shown in Fig. 2(a), i.e., the volume integral
group calculation is implemented by the convolution factor
decomposition, and the feed-forward link is fitted to map
the residual feature. At the same time, due to the limita-
tions of traditional convolution rectangle sampling, it results
in traditional CNN being limited to fixed geometries when
learning the spatial transformation of lesion features. Besides,
since the lesion label is also a rectangular bounding box,
the background noise will be introduced into the feature space
while learning by traditional CNN. Under the influence of
the above factors, the feature representation ability will be
weakened by traditional CNN, as shown in Fig. 2 (b) and (c).
In order to overcome this limitation of traditional convolu-
tion, the dilated convolution [27] and the dynamic convo-
lution [28], [29] are designed by the special sampling of
the convolution kernel, which improves the feature spatial
resolution and rich features effectively. However, for the
spatial representation of lesion feature, there is still a prob-
lem that the convolution structure design is single, and the
feature extraction effect is not good. Therefore, the learning
ability of spatial geometric deformation is introduced into
the convolution in the proposed method by referring to the
deformation mechanism [29]. The intensity of the deforma-
tion is controlled by the amplitude modulation mechanism,
so that the convolutional model can obtain more features of
the lesion and suppress the background noise. In this way,
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the proposed method can obtain the enriched deformation
features, thereby suppressing the influence of background
noise on the network, as shown in Fig. 2(d) and (e). Therefore,
the offsets {1pk |k = 1, 2, 3...N ,N = |R|}, which are
a two-dimensional fraction, are attached to the traditional
convolutional kernel. Then, the use of amplitude modulation
1mk controls the sampling points of the convolutional kernel
to select the foreground and background. The deformable
convolution with amplitude modulation module (AMDCN)
can be got, as in

y(p) =
∑
pk∈R

ω(pk ) · x(p+ pk +1pk ) ·1mk , (1)

where y(p) denotes the output feature of convolution calcu-
lation at a sampling point p on the input feature map. pk
is the sampling point of the convolution kernel, R denotes
the receptive field size of the convolution kernel. There-
fore, the established residual module with AMDCN is shown
in Fig. 2(f). Considering the computational efficiency of the
model and referencing to the ResNeXt-101 [26] structure,
the group convolution is used to build the backbone of the
proposed method. The group convolution can decrease the
computation complexity and obtain the model with fewer
parameters. At the 101st layer of backbone, it takes a 1 ×
1 × 1024 fully convolution for dimensionality reduction.
All convolutional blocks are reconstructed by a topology of
convolution factorization. Then those blocks are connected
in parallel according to the concept of group in the proposed
method. The capacity of the group is limited by a cardinal-
ity, which also makes the network design more convenient.
Therefore, the feature extraction sub-network with AMDCN
is established to extract the deformation features. Besides,
the feature set {Cl |l ∈ [2, 3, 4, 5]} is copied from the output
of convolutional layers: Conv2, Conv3, Conv4, and Conv5,
which are used as input to the feature fusion module.

C. REFINED FEATURES AND DEFORMABLE
POOLING LAYER
In the convolution process of CNN, the output neurons are
only related to the small portion of input image or feature
map, which is determined by the operational characteristics
of the convolution kernel. To solve this problem, the proposed
method fuses high-level semantic features and low-level
details to enrich the feature space, which can improve the
prediction accuracy of the network for the target of the lesion.
The strategy is to fuse the twice sampling features of the
Cl+1 layer and the Cl layer. Then multi-scale features of
the lesion are obtained by analogy. However, this way is the
kind of adjacent feature space information supplement, and
it often dilutes and ignores the information of non-adjacent
feature layers. In order to solve the above problem, the refined
feature fusion is proposed in the proposed method, as shown
in Fig. 1 (b). The lateral output features are obtained from
some network layers of the proposed method, and the scale of
the output feature is reshaped to fit the scale of the target fea-
ture fusion layer. Combined with the Gaussian non-localized

feature fusion mechanism, the weighted feature fusion is
performed according to the correlation between the features.
Therefore, the refined features are obtained, as shown in

φt =
1
Nl

lmax∑
lmin

f (Cl,Ct × sl(Cl |Ct ))× rt (Cl), (2)

where φt denotes the refined feature with the same dimension
generated on the l-th feature space Cl . Nl is the number of
feature layers of the fusion. f (Cl,Ct ) denotes the correlation
coefficient matrix of the l-th and t-th layer feature, which is
calculated by Embedded Gaussian. rt (Cl) denotes the feature
of the input feature Cl after reshape. sl(Cl |Ct ) denotes the
scale factor of the l-th layer feature Cl and the t-th layer
feature Ct . Then, the refined features are entered into the
pooling layer and fully convolution layer, which can obtain
preliminary prediction results of the lesions in the X-ray
image.

Because of the deepening of the number of layers of
the network, the invariance of the network model to the
target’s translation and rotation is stronger. This property
is of positive significance to ensure the robustness of the
lesion detection model. However, in the problem of lesion
detection, the layers of the network are over-deepen to lead a
significant reduction in the network’s ability to perceive the
lesion location. Therefore, to solve this problem, the proposed
method uses the RPN to introduce the lesion position infor-
mation into the pooling process and adopts the same structure
as the deformable convolution to construct the deformable
position-sensitive RoI pooling layer with amplitude modula-
tion, as shown in Fig. 1 (c) and (d). In this way, the quantiza-
tion operation in the feature aggregation process is canceled
during the pooling process. The pixel coordinates of the
float number are obtained by using the bilinear interpolation
method, which causes the feature aggregation process to be
converted into a continuous amount of operations. There-
fore, the deformable position-sensitive RoI pooling response
model can be obtained by referring to (1), as shown in (3).
First, the RoI region generated by the RPN is mapped to the
feature map and the offset receptive field, which is generated
by the fully convolution layer. The RoI area is divided into
m× m bins (m is an adjustable parameter, the default setting
is 7). Therefore, the RoI pooling offset {1pij|0 ≤ i, j ≤ m}
of the (i, j)-th bin can be generated by a fully convolutional
layer. The output of the (i, j)-th bin in the model is calculated
from its feature score map.

yc(pk |2)=
∑

pij∈bin(i,j)

x(pk+pij+1pij|2)·1mij/nk , (3)

where pk denotes the upper left corner bin of the k-th RoI
feature. pij denotes the (i, j)-th bin in the RoI. 1mij denotes
the amplitude modulation, which can suppress the diffusion
phenomenon of the sample beyond the region of interest.
Therefore, the sampling of the region of interest is concen-
trated around the lesion. In the actual calculation, the features
ofm×m bins are normalized by the fully convolution layer to
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obtain m× m offsets of 1p̂ij. However, the size of the RoI is
inconsistent, and the height andwidth of the input featuremap
are also inconsistent, these offsets cannot be directly used.
Therefore, it is corrected by a gain γ (default γ is 0.1), and
by dot (w, h) with γ1p̂ij, the truth value is 1pij = γ1p̂ij ·
(w, h). After the pooling layers and post-processing layers,
the preliminary prediction results are obtained for the position
information of the lesions in the image. Then, the prediction
error is used by loss function to optimize the model of the
proposed method.

D. OPTIMIZED PREDICTION AND LOSS FUNCTION
Since the preliminary prediction results contain many noise
targets, the results are needed to optimize the bounding
boxes of the lesion and remove the repeated boxes. How-
ever, the non-maximum suppression method (NMS) uses
the highest confidence coefficient, the confidence level of
the adjacent lesion bounding boxes are forced to 0. There-
fore, the missed detection occurs for the lesion with large
regional overlap, resulting in the detected area of the lesion
is incomplete, such as pneumonia and pulmonary nodules
simultaneously. In order to solve such problems, the proposed
method uses Soft-NMS to improve the NMS using linear
weighting and establishes a soft non-maximum suppression
model, as in (4).

si =

{
si, IoU < Nt
si(1− IoU (b∗, bi)), IoU ≥ Nt

, (4)

where si is the probability on predicted lesion, Nt is the
threshold of suppression, and IoU (b∗, bi) denotes intersec-
tion over union (IoU) between the predicted lesion bounding
boxes bi and the ground-truth b∗. Using Soft-NMS to opti-
mize the preliminary prediction results can reduce the missed
rate of lesions and increase the detection rate of lesions.

In the training, the loss function makes the predicted value
to gradually approach the true value, the loss reaches a min-
imum when the predicted value is equal to the true value.
In order to realize the end-to-end and efficient learning of the
proposed method, the proposed method establishes the loss
function, as in (5) and (6).

Sc(2) =
eyc(2)

c∑
ci=0

eyci (2)
, (5)

L(Sc, b(x,y,w,h)|2) = Lcls(Sc, Sc∗ )+ λ[c∗]Lreg(b, b∗), (6)

where Sc is the predicted classification response. c denotes
the predicted lesion category (c = 0 is the background)
and c∗ indicates the labeled value. yc(2) is the response of
the deformable position-sensitive RoI pooling. 2 denotes all
learned parameters of the proposed method. b(x,y,w,h) is the
predicted lesion bounding box and b∗ is the ground-truth
value. Lcls denotes the cross entropy loss function of classifi-
cation and Lcls(Sc, Sc∗ ) = −lncls(Sc|Sc∗ ). λ is the weighted
average parameter of the loss L. Lreg denotes the Soft-
L1 regression loss function of bounding box. In the training,

the proposed method uses the OHEM [30] method to mine
difficult samples. However, the method is sensitive to noise
samples, and a large gradient is generated for difficult sam-
ples, resulting in simple samples are ignored, i.e., the small
gradient is submerged. The proposed method improves the
regression loss function Smooth-L1 to overcome this prob-
lem. The loss function is properly modulated on the gradient
response of the sample to balance the training process, i.e.,
when the sample error response value is in the |x̂(b,b∗)| ≤ 1
range, a slightly larger gradient value is generated. Therefore,
the Smooth-L1 loss function is remodeled into the Soft-
L1 boundary regression loss function model, as in (7).

Lreg(b, b∗) =


α

β
(β̂) ln(β̂)− α|x̂|, if |x̂| ≤ 1

ln(β + 1)|x̂| + C, others,
(7)

where, β̂ = β|x̂(b,b∗)| + 1. x̂ represents the regression error
value of (b, b∗). α represents the gradient control factor and
default value is 0.5. β represents the upper bound factor of
the adjustment regression error, the value is e2/3 − 1 and.
C indicates that the connection factor ensures that Lreg is
continuously steerable, the value is 1− 0.75β−1.

In order to optimize the loss function, the weight and
bias parameters need to be constantly updated by the back-
propagation. Because the deformable convolution is used to
improve the proposed method, the gradient of the offset in
the back-propagation of the proposed method is calculated as
in (8) and (9).

∂y(p)
∂1pk∂1mk

=

∑
pk∈R

ω(pk ) ·
∂x(p+ pk +1pk ) ·1mk

∂1pk∂1mk

=

∑
pk∈R

[
ω(pk ) ·

∂G(q, p+ pk +1pk ) ·1mk
∂1pk∂1mk

x(q)
]
, (8)

∂y(pk )
∂1pij∂1mij

=
1
nk

∑
pij∈bin(i,j)

∂x(pk + pij +1pij) ·1mij
∂1pij∂1mij

=
1
nk

∑
pi,j∈bin(i,j)

∑
q

[
∂G(q, pk + pij +1pij) ·1mij

∂1pij∂1mij
x(q)

]
,

(9)

where 1pk and 1pij are both a two-dimensional vector, then
∂1pk denotes ∂1pxk and ∂1p

y
k , and 1pij denotes ∂1p

x
ij and

∂1pyij.G represents a bilinear difference function. BecauseG
is a two-dimensional function, the proposed method simplify
it by dimensionality reduction, p̂ = p + pk + 1pk denotes
an arbitrary fractional position, and q enumerate any position
in the feature map x. For the convenience of calculation,
G(q, p̂) = g(qx , p̂x) · g(qy, p̂y) can map the offset to the
x-axis and y-axis.
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FIGURE 3. The statistical distribution of lesions. (a) indicates the statistical distribution of lesions in BBP dataset. (b) indicates the statistical
distribution of lesion after the preprocessed BBP_x dataset.

FIGURE 4. The ways of preprocessing data are horizontal flip, diagonal flip, contrarotate and clockwise rotation in BBP
dataset.

E. DATASETS
In this paper, the proposed method is verified by two public
chest X-ray image datasets. The detailed introduction of the
datasets is as follows.
RSNA Pneumonia dataset [31]. Radiological Society of

North America (RSNA) collaborated with the US National
Institutes of Health, Society of Thoracic Radiology, and
MD.ai to develop a rich dataset as the RSNA pneumonia
dataset. Radiologists reviewed all pneumonia data labels for
chest X-ray images and confirmed by clinical history, vital
signs, and radiology. RSNA dataset contains 29,684 DICOM
fileswith a resolution of 26,684 training dataset and 3,000 test
dataset. The annotation information includes patient ID,
lesion category, and lesion position.
ChestX-ray8 dataset [19]. Dr. Lule’s team develops

this dataset. ChestX-ray8 dataset contains 32,727 cases of
patients, a total of 108,948 frontal view X-ray images. Since
the category information is obtained from the NLP [19]
method, which is linked to one or more keywords for each
image radiographic report, the data have not the position

information of each lesion. For obtaining the accurate posi-
tion information of lesion, radiologists manually annotate a
part of the dataset to form the bounding boxes for patholo-
gies (BBP) dataset. The BBP dataset contains 983 images,
and each of the eight classifications consisted of 200 case
lesions, with a total of 1,600 case lesions. In the experiment,
the multi-classification performance of the proposed method
is tested by the BBP dataset.
Data preprocessing. In the BBP dataset, the use of

expended data avoids overfitting on the training model of the
proposed method. The numbers of each category images are
divided into the training data and testing data according to
2:1. The training dataset is 1,067, and the testing dataset is
533, as shown in Fig. 3(a), showing the statistical distribution
of lesions of type 8+1 (1 is the normal case). Then, the BBP
dataset is preprocessed through the three ways, which are
horizontal flip, diagonal flip, and rotation of ±20◦, as shown
in Fig. 4. Such operations keep the features of lesion structure
and texture consistent with the original data and ensure that
the images have predictive invariance of scaling, rotation,
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and translation. The preprocessed data is named BBP_x data,
among which the training set is 3,691, and the test data set
is 1,845. The statistical distribution of the preprocessed data,
as shown in Fig. 3(b).

F. EVALUATION
The proposed method, which is the particular design frame-
work, can get the classification and position of the lesion
simultaneously. Moreover, II-D indicates the classification
accuracy and localization accuracy shadow each other. The
comprehensive evaluation score is used to illustrate the per-
formance of the proposed method, which is calculated by
the accuracy of classification and localization. nTP is the
number of correct lesions detected, nFP is the number of
wrong lesions detected, and nFN is the number of missed
lesions detected. Sensitivity S, Precision P, and Consistency
D are calculated respectively, as in (10) and (12).

S = nTP/(nTP+ nFN ) (10)

P = nTP/(nTP+ nFP) (11)

D =
1
N

N∑
k=1

DSC (12)

where DSC (Dice similarity coefficient) is the consistency
coefficient between the predicted banding box (BBox) and
the real labeling BBox. DSC is calculated by DSC =

2× |Ak ∩ Bk |
/
(|Ak | + |Bk |). Ak denotes the bounding boxes

of labeling lesions, and Bk denotes the bounding boxes of
testing lesion. As in (13), the comprehensive evaluation score
is equal to the average weighted sum of F1 score and con-
sistency D, where F1 = 2 × S × P/(P + S). The higher
the CE value is, the better the detection performance of the
model.

CE = 0.5× F1+ 0.5× D (13)

III. RESULTS
In the experiment, we designed quantitative experiments and
qualitative experiments. The experiments of all methodswork
on the same experimental platform. The graphic card config-
uration of the platform is GTX2080 8G and CUDA 10.1. The
proposed method is achieved by Python 3.6, OpenCV-4.1,
MXNet-1.5, Numpy-1.11, Cython-0.25, and so on. Exper-
imental results show that the lesion detection performance
of the proposed method is consistent on both systems of
windows10 and Ubuntu 16.04. The model can predict the
lesions of 5-6 images per second. The detailed parameters
used for training the model follow: Epochs (15); learning rate
(0.5) and step (4.83); Warm up for learning rate (0.0005) and
step (4000); Frequent (100); Image batch size (ctx*2) and
scales (1024, 1024); Momentum (0.9); Optimizer (Nadam);
RCNN feat stride (16); Shuffle image (true); Anchor scales
(8, 16, 32) and ratios (0.5, 1, 2); ROIs batch size (128); BBOX
regression thresh (0.5); RPN Batch size (256); RPN Positive
overlap (0.7); NMS thresh (0.7).

A. QUALITATIVE RESULTS
In the results of qualitative experiments, the proposed method
compares with some popular detection methods. These
comparison methods mainly include YOLOv3 [32], Faster
R-CNN [24], R-FCN [33],Mask R-CNN [22], CheXNet [18],
and Kaggle-rsna18 [31] models. The Kaggle-rsna18 model
comes from the champion free-source model in 2018 Kag-
gle’s RSNA competition. The v1 of the model indicates that
it’s structure is based on the RetinaNet [34], which is a feature
pyramid framework. At the same time, the model uses the
Focal loss function to optimize the problem of extremely
unbalanced positive and negative samples in the lesion detec-
tion task. Faster R-CNN(D) and R-FCN(D) are using the
deformable convolution module. Mask R-CNN* are using
the detection function without the segmentation. In the test
data, the results of the partial images are visualized, as shown
in Fig. 5. The bottom in the figure shows the ground-truth
(GT) of the X-ray image, and the lesion is masked the green
bounding box. The prediction results are marked by a red
bounding box to indicate the lesion location and area. At the
same time, the category and probability of lesion prediction
are marked on the upper left of the BBox. In the visual-
ization results, it shows that there are serious misdetection
lesions on ChexNet and above other models. For small target
lesions, such as Nodule lesions, the proposed method and
Kaggle-RSNA are detecting it, but misdiagnosis of lesions
also occurred. We analyzed some of the test results and found
that each model performed poorly on the location of small
lesions. However, the proposed method has more accurate
detection results than the comparison method. Therefore,
the results show that the detection effect of DRCXNet is
better than the comparison method. The qualitative results
prove that the proposed method has a higher performance to
lesion detection in chest X-ray.

B. QUANTITATIVE RESULTS
In the quantitative experiments, the lesion detection perfor-
mance of the method is analyzed by calculating the CE , P,
S, and D values of the prediction results. The ability of the
method to locate the lesion can be also analyzed by calculat-
ing the D value. The quantitative experimental results of the
proposed method and the popular depth learning detection
algorithms are shown in Table 1. Among these comparison
methods, YOLOv3 [32] uses up-sampling and feature fusion
to get multi-scale lesion detection. Its structure and feature
pyramid are very similar. Faster R-CNN [24] and R-FCN [33]
are divided into two stages. First, the residual units are used
to extract features. Second, the prediction of classification
and position is performed by the features. CheXNet [18] is
a 121-layer DenseNet structure that captures the details of
the lesion. Kaggle-rsna18 v1 model is based on the Reti-
naNet [34] structure, which is a feature pyramid model [37].
It also uses the focal loss function to optimize the difficult
training problem, which is caused by a sample imbalance in
the dataset. Kaggle-rsna18 v2 uses a deformable convolu-
tion [29] without amplitude modulation. Faster R-CNN (D)

14682 VOLUME 8, 2020



C. Li et al.: Deformation and Refined Features Based Lesion Detection on Chest X-Ray

FIGURE 5. The qualitative results of the proposed method and comparison methods. Faster R-CNN (D) and R-FCN (D) indicate that those
models use the deformable convolution with amplitude modulation.
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TABLE 1. The experimental results of the quantitative between the proposed method and comparison methods on RSNA and BBP_x datasets. Faster
R-CNN (D) and R-FCN (D) indicate that those models use the deformable convolution with amplitude modulation.

TABLE 2. The experimental results of the number of layers of deformable convolution with amplitude modulation in the proposed method, e.g.,
AMDCN-5/4 indicates that Conv5 and Conv4 of the proposed method are the deformable convolutional layers.

and R-FCN (D) are using deformable convolutionwith ampli-
tude modulation, which can help the model improve feature
extraction capabilities. In the experiment, all model is tested
on the BBP_x and RSNA datasets and calculate S, P, and D,
and used them to calculate the comprehensive evaluation.
As shown in Table. 1, the proposed method shows the outper-
formance comparedwith the comparisonmethods.Moreover,
all the indicators of evaluation on the BBP_x dataset are
slightly lower than the value on the RSNA dataset. The first
reason, there is only pneumonia type in RSNA, and it has a
large amount of dataset than BBP_x data. The second reason,
these lesions have large differences in shape scale and char-
acteristics, which makes the model shows different detection
effects on multi-type lesion detection, such as small lesion
is more difficult detection. At the same time, on the BBP_x
dataset, YOLOv3, CheXNet, and Kaggle-rsna-v1, they have
a higher recall ratio for small target lesions. The reason is
that those methods adopt a feature fusion strategy similar to
the pyramid model, which can be more scale information is
introduced into the model. Besides, the proposed method is
more computationally complex, and it takes more time to test
one image. However, in medical image analysis, the accuracy
and CE of lesion detection are more important than the slight
difference in computational efficiency.

C. ABLATION STUDY
The ablation experiments of the proposed method are
designed by four interesting parts. (i) The effect of different
deformable convolution. (ii) The effect of different strategies

of refined feature fusion. (iii) The effect under the NMS and
Soft-NMS. (iv) The effect of loss function on model training.

1) DEFORMABLE CONVOLUTION WITH
AMPLITUDE MODULATION
The two experiments prove that the deformable convolution
with amplitude modulation is very helpful to the proposed
method, as shown in Table. 2.

a: THE NUMBER OF LAYERS
With the increase in the number of deformable convolution
layers, the detection performance of the proposed method
is gradually improving. The performance improvement of
the proposed method in the BBP_X dataset is slightly bet-
ter than that on the RSNA dataset. This phenomenon also
proves that the deformable convolution is sensitive to the
deformation features and scale features of the lesion. The
deformable convolution can effectively promote the feature
extraction sub-network of the proposed method to learn the
rich lesion feature space. As shown in Fig. 6, it visual-
izes the output feature maps of the different layers in the
feature extraction sub-network. This feature visualization
further proves the view that as the deformable convolu-
tion layer increases, the response of the proposed method
to the lesion is also gradually increased, which is pre-
sented as a clear high hot spot on the feature map. How-
ever, the time of prediction single image is also increas-
ing with the more number of deformable convolutional
layers.
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FIGURE 6. The visualization output feature maps of the different layers with the
amplitude modulation deformable convolution.

TABLE 3. The experimental results of the deformable convolution with amplitude modulation (AMDCN) and without it (DCN). The (n) is the dilation of
deformable convolution and n = 1, 2, 3.

b: AMPLITUDE MODULATION AND DIFFERENT DILATIONS
The influence of amplitude modulation is verified on the
deformable convolution. DCN indicates the deformable con-
volution without amplitude modulation. AMDCN indicates
the deformable convolution with amplitude modulation.
In the experiment, the dilation of the deformable convo-
lution is 1, 2, and 3, respectively. As shown in Table. 3,
the deformable convolution with amplitude modulation can
effectively improve the detection of the proposed method.
When the dilation is 2, the DCN and AMDCN have better
lesion detection effects, while AMDCN(2) performs bet-
ter. As shown in Fig. 8, it visualizes the output features
of the conv5 in feature extraction sub-network. It shows
that AMDCN(2) is relatively outperformance for the feature
response of the lesion. The experimental results show that
AMDCN can promote the network to better learn the features
of the lesion and suppress the background noise.

2) THE REFINED FEATURE FUSION
The experimental results of the different fusion strategies and
deformable pooling layer are shown in Table. 4.

a: DIFFERENT FUSION STRATEGIES
The proposed method considers the influence of global fea-
tures and local features. Four feature refinement strategies

are T = 5, T = 4/5, T = 3/4/5, T = 2/3/4/5 for comparison
verification.When T is 3/4/5, the proposedmethod can obtain
the best lesion detection effect. Because the more feature
layers fused in the network, the more low-level details are
introduced into the network, but it also brings in a lot of noise
features. Therefore, an appropriate T is obtained to balance
the performance of our high-level semantic features and the
underlying detail features. As shown in Fig. 8, it visualizes
the refined features of different T strategies. The different T
strategies have different refined features. The refined feature
response performs better as T = 3/4/5. Therefore, the global
features combine with local features to enrich the feature
space, which enables the network to obtain more detailed
feature information.

b: DEFORMABLE POOLING LAYER
As shown in Table. 4, the experimental results are the
position-sensitive RoI pooling layer with AMDCN and
without it in the last two rows. The D increment in this
experimental result is relatively high, which further indi-
cates that the deformable position-sensitive pooling layer
improves the regression of lesion location. Furthermore,
these experimental results demonstrate that the deformable
convolution can improve the performance of the proposed
method.
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FIGURE 7. The visualization output features of the conv5 in the proposed
framework with different dilation.

TABLE 4. The experimental results of refined feature fusion under strategy T, e.g. T = 4/5 indicates that Conv4 and Conv5 are the base-layer for refined
feature fusion respectively. In last two rows, the experimental results are the position-sensitive RoI pooling layer with AMDCN and without it.

FIGURE 8. The visualization refined features of different T strategies.

3) OPTIMIZATION OF THE PREDICTION RESULTS
We compare the predictive performance of the proposed
method by import NMS and soft-NMS. As shown in Table. 5,
the experimental results are verified by the impact of the

two optimization methods on the model prediction results.
It shows that the IoU threshold has a massive impact on the
experimental results. On both datasets, our method is a higher
performance on lesion detection when IoU is 0.5. In the case
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TABLE 5. The experimental results of the proposed method with NMS or soft-NMS on RSNA and BBP_x datasets.

FIGURE 9. The experimental results under the Smooth-L1 and Soft-L1 loss functions. (a) indicates the gradient curves of error
include the Smooth-L1 and the different gradient control factors of the Soft-L1. (b) indicates the accuracy curves and loss curves
under the Smooth-L1 and Soft-L1 (α = 0.5) in training.

of the equivalent IoU, it shows that the Soft-NMS are better
than NMS to optimize the proposed method.

4) LOSS FUNCTION
In training, the loss function is used as the connection
between themodel and the optimization problem. It optimizes
our model to achieve the best state through iteration. In order
to restrain gradient response imbalance cased the sample
differences, the Smooth-L1 regression loss is improved in
the proposed method. The loss function properties before
and after improvement are shown in Fig. 9(a). The different
gradient control factor α is adjustable, which balances the
gradient’s response strength of the difficult and easy sam-
ples during the learning process, and it can make the model
get optimal lesion detection performance. In the experiment,
some parameters of the proposed method are fixed, such as
the learning rate, the number of iterations, and other param-
eters are set the same. Then, the models with the Smooth-
L1 and Soft-L1 loss functions are validated. Their loss error
and detection accuracy are recorded during the training pro-
cess, as shown in Fig. 9(b). At this time, α is an experience
value of 0.5. It can be seen from the experimental results that
Soft-L1 loss can effectively improve the training accuracy of
the model and reduce the loss error of the model.

IV. DISCUSSION
Because of the chest lesions show blurred boundary contours,
different sizes, variable shapes, and uneven density, it results

in poor performance of most methods for detecting lesions,
e.g., pneumonia usually manifests as an area or areas of
increased opacity on chest X-ray. However, the diagnosis of
pneumonia on chest X-ray is the complex reasoning prob-
lem, which often requires careful observation and knowledge
of anatomical principles, physiology, and pathology. In this
paper, we analyzed the merit and demerit of some methods
about deep convolutional neural networks, and some simple
characteristics of chest X-Ray images. Then, we propose the
deformation and refined features based lesion detection on
the chest X-ray algorithm, which can improve the detection
accuracy of lung lesions. Moreover, the proposed method
can be extended to other tasks of lesion detection. e.g.,
the deformable convolution with amplitude modulation can
be applied to other learning tasks, which can enhance the
ability of the model to extract features. However, we also find
some points worth pondering in the analysis and verification
of the proposed method.

The proposed method achieves better lesion detection per-
formance on two public datasets. Therefore, it also indicates
that the proposed method is a better medical image analysis
model. However, medical image analysis is a very rigorous
task, which needs to be combined with actual clinical appli-
cations. Therefore, the model is needed to optimize through
continuous exact measurement and analysis by the clinical
applications. The proposed method is an end-to-end learning
model. However, some hyper-parameter is inserted in the
proposedmethod, e.g., T in the refined feature fusionmodule,
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and α in the loss function. For other tasks, it is unknown
whether these hyper-parameters allow the proposed method
to achieve better detection performance.

The pooling operation in the proposed method is assigned
a learning offset, while the pooling process is only the mean
pooling or the maximum pooling. It reduces the dimension-
ality of the feature space roughly. If the pooling operations
are learned, we can use a convolution-like process to make
the most appropriate pooling output based on the character-
istics of the input features. In the study, obtaining large-scale
medical image datasets is very difficult and expensive. The
transfer learning method provides some theoretical support
for the few-shot learning tasks [20], [38]. By searching for
common feature spaces or feature hidden spaces between
different lesion detection tasks, transfer learning can trans-
form the learned knowledge to new lesion detection tasks.
Therefore, the transfer learning method can be applied to
the few-shot learning tasks, which can further enhance the
generalization of the model. e.g., Muhammed et al. [39] pro-
posed an approach that uses deep transfer learning to classify
normal and abnormal brain MR images automatically. They
achieve higher classification accuracy on MR images by the
finder of the optimal learning rate and fine-tuning to train the
model. In the study, some lesions have a higher probability
of morbidity at a certain location in the organ. One lesion
maybe causes another lesion [40]. Therefore, this correlation
information can be used to enhance the predictive power
of the lesion detection model, e.g., Liang et al. [21] used
location information of the lesion in the lung to improve
the accuracy of the detection of lesions. In the future works,
the structure information and some diagnostic information
can be used in lesion detection to reinforce reliability and
improve the accuracy. We can also use the graph convolution
network model [41] or ensemble model [42] to build a better
performance fine-grained lesion analysis system. Therefore,
there are many ways to improve the model, which requires us
to continue to explore the best method for different tasks.

V. CONCLUSION
This paper proposes the deformation and refined features
based lesion detection on the chest X-ray algorithm. The
model can extract the enhanced deformation features by a
deformable convolution with amplitude modulation in the
residual module. Furthermore, the enrich feature space of
lesions is obtained from the global features and local features
by the feature fusion. The lesion position sensitivity of the
model is improved by the deformable RoI pooling layer.
In training, to avoid the training difficulty caused by the
imbalance problem between the difficult and easy sample and
the severe imbalance of gradient propagation, the regression
loss function is redesigned by gradient control factor, which
can balance the feedback gradient in the learning process.
In the experiment, the proposed method is evaluated on
the RSNA and ChestX-ray8 datasets, The proposed method
compared with outstanding methods has a significant per-
formance in both qualitative and quantitative experiments.

The experimental results show that the proposed method can
reduce false positive and false negative of detection lesions.
In the future work, with combining the requirements in medi-
cal image analysis, we will continue to optimize the proposed
method by the transfer learning and graph network theory.
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