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a b s t r a c t 

In this work, we present a simple, robust and fast method to the perspective- n -point (P n P) problem 

for determining the position and orientation of a calibrated camera from known reference points. Our 

method transfers the pose estimation problem into an optimal problem, and only needs to solve a 

seventh-order and a fourth-order univariate polynomial, respectively, which makes the processes more 

easily understood and significantly improves the performance. Additionally, the number of solutions of 

the proposed method is substantially smaller than existing methods. Experiment results show that the 

proposed method can stably handle all 3D point configurations, including the ordinary 3D case, the quasi- 

singular case, and the planar case, and it offers accuracy comparable or better than that of the state-of-art 

methods, but at much lower computational cost. 

© 2018 Elsevier B.V. All rights reserved. 
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. Introduction 

Determining the position and orientation of a calibrated camera

rom n 3D points and their 2D projections, which is also known

s the perspective- n -point (P n P) problem [5] , has numerous appli-

ations in computer vision and robotics. Examples include robot

ocalization [6,8] , augmented reality [17] , structure-from-motion

SfM) [4] , spacecraft pose estimation during descent and landing

18,23] . Considering the importance of the P n P problem, a large

mount of research effort has been devoted to solving this prob-

em over the past few decades. The existing P n P methods can be

lassified as iterative and non-iterative methods. 

Classical iterative methods formulate the P n P problem into a

on-linear least-squares problem [15] , and then solve it using it-

rative optimization methods, i. e., Gauss–Newton and Levenberg–

arquardt [9] method. However, iterative methods are sensitive

o the initialization, and are easily trapped into a local minimum,

hich will leads to poor accuracy, especially when no redundant

oints ( n ≤ 6) are available. 

For non-iterative methods, the traditional methods apply linear

perations to obtain solutions, i. e., the DLT [1] and HOMO method

16] . Non-iterative methods have an advantage of less computing
∗ Corresponding author. 
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osts, but are sensitive to noise. Quan and Lan [21] and Ansar and

aniilidis [2] presented two linear solutions for the P n P problem,

ith respective computational complexity O ( n 5 ) and O ( n 8 ). How-

ver, they are still inaccurate when n is small. On the contrary,

hey are very time-consuming when n is large. To overcome these

roblems, Lepetit et al. [12] introduced four virtual control points

o represent the 3D reference points, and proposed the first lin-

ar complexity method, named EP n P, with respect to the number

f the points. EP n P is computationally efficient, but is inaccurate

or n = 4 or 5, due to its underlying linearization scheme. To im-

rove accuracy, Li et al. [14] proposed another non-iterative O ( n )

olution, named RP n P, which transfers the P n P problem into a sub-

ptimal problem by solving a seventh-order polynomial. RP n P is

ery efficient and works well for both non-redundant ( n ≤ 6) and

edundant points cases. Hesch and Roumeliotis [7] developed the

rst globally optimal method (called DLS) with complexity O ( n ),

hich formulates the P n P problem into a multivariate polynomial

ystem using the camera measurement equations, and employs the

ultiplication matrix to determine all roots of the system. Unfor-

unately, the accuracy of DLS is unstable because of the Cayley pa-

ameterization, which has a singularity for any 180-degree rota-

ions. To resolve these drawbacks, Zheng et al. [26] proposed the

P n P method, which adopts the non-unit quaternion parameteri-

ation to replace the Cayley parameterization, and uses the Gröb-

er basis [11] to solve the P n P problem. To our knowledge, OP n P is

ne of the most accurate non-iterative methods until now. To ex-

https://doi.org/10.1016/j.patrec.2018.02.028
http://www.ScienceDirect.com
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Fig. 1. Illustration of the P n P problem. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

W  

 

 

 

 

 

 

c  

m

 

i

 

i

 

p  

m

P  

w  

m

2

 

3  

s  

l⎧⎪⎪⎨
⎪⎪⎩  

 

a  

o  

fi  

s  

b  

o  

c

c

2

 

m  

c

λ  

w

R

a  

c  

t  

t

tend the scope of application, Kneip et al. [10] presented the UP n P

method, which is applicable to both central and non-central cam-

era systems [3] . However, its accuracy is worse than OP n P in some

configurations. Recently, the P n P f [20,25] and P n P fr [19] methods

were proposed to solve the pose estimation problem in the case of

an uncalibrated camera. However, the accuracy of these methods

is usually lower than the classical P n P method. 

The most recent works, i. e., DLS, OP n P, and UP n P method, for-

mulate the P n P problem as a minimization problem, and then solve

it using the Gröbner basis technique. However, the Gröbner basis

technique needs to construct a large elimination template, because

of the large number of unknowns and the high maximum degree

of the P n P problem. This process takes significant time and is dif-

ficult to assure reliability. All of these disadvantages will reduce

overall performance and limit general understanding. 

In contrast to previous methods, in this paper we propose a

simple, robust, and fast solution to the classical P n P problem. Our

method transfers the P n P problem into an optimal one, that only

needs to solve a seventh-order and fourth-order univariate poly-

nomial without using the Gröbner basis technique. The number of

the solutions for our method is substantially smaller than existing

globally optimal methods, i. e., the DLS and OPnP method. All of

these make the processes more easily applicable and significantly

improve the performance. The experiment results show that our

method can stably address all 3D point configurations, including

the ordinary 3D case, quasi-singular case, and planar case. It also

offers accuracy com parable to the leading methods, but at much

lower computational cost. 

The rest of the paper is organized as follows. Section 2 presents

the derivations of our method. Section 3 provides a thorough

analysis of the proposed method by simulated experiments.

Section 4 shows the real tests. Section 5 , finally, concludes the

work. 

2. Proposed method 

As shown in Fig. 1 , suppose a reference point W i whose coor-

dinates in the world frame and the normalized image plane are

 i = [ X w 

i 
, Y w 

i 
, Z w 

i 
] T and f i = [ u i , v i , 1] T , respectively. Note that the

superscript indicates the different coordinate frame, i. e., w indi-

cates the world frame. Our goal is to retrieve the rotation matrix

R and the translation vector t between the world frame and the

camera frame using n ( n ≥ 4) reference points when the camera is

calibrated. 

2.1. Building an object frame 

The first step involves the definition of a new, intermediate ob-

ject frame from the 3D reference points. As shown in Fig. 1 , we
hoose the center of 
−−−→ 

W i W j as the origint O a , and create an inter-

ediate frame [ O a − �
 X a , � Y a , � Z a ] , where 

�
 X a = 

W j − O a 

‖ W j − O a ‖ 

�
 Z a = 

�
 X a × [0 , 1 , 0] T 

‖ 

�
 X a × [0 , 1 , 0] T ‖ 

�
 Y a = 

�
 Z a × �

 X a 

‖ 

�
 Z a × �

 X a ‖ 

, (1)

f | [0 , 1 , 0] T � X a | ≤ | [0 , 0 , 1] T � X a | , and 

�
 X a = 

W j − O a 

‖ W j − O a ‖ 

�
 Y a = 

[0 , 0 , 1] T × �
 X a 

‖ [0 , 0 , 1] T × �
 X a ‖ 

�
 Z a = 

�
 X a × �

 Y a 

‖ 

�
 X a × �

 Y a ‖ 

, (2)

f | [0 , 1 , 0] T � X a | > | [0 , 0 , 1] T � X a | . 
Via the transformation matrix T wo = [ � X a , � Y a , � Z a ] 

T , the reference

oint W i = [ X w 

i 
, Y w 

i 
, Z w 

i 
] T can be easily transformed into the inter-

ediate frame using 

 i = T wo (W i − O a ) i = 1 , 2 , . . . , n, (3)

here P i = [ X 
p 
i 
, Y 

p 
i 

, Z 
p 
i 

] T , and the superscript p indicates the inter-

ediate object frame. 

.2. Determining a rotation axis using least-square residual 

Every remaining point together with the P i and P j forms a

-point subsets. By using the P3P (perspective-three-point) con-

traint [13] , each subset can build a fourth-order polynomial as fol-

ows: 
 

 

 

 

 

 

 

f 1 (x ) = a 1 x 
4 + b 1 x 

3 + c 1 x 
2 + d 1 x + e 1 = 0 

f 2 (x ) = a 2 x 
4 + b 2 x 

3 + c 2 x 
2 + d 2 x + e 2 = 0 

. . . 

f n −2 (x ) = a n −2 x 
4 + b n −2 x 

3 + c n −2 x 
2 + 

d n −2 x + e n −2 = 0 

. (4)

Instead of directly solving a series of fourth-order polynomi-

ls, a cost function F = 

∑ n −2 
i =1 f 2 

i 
(x ) is defined as the square sum

f these polynomials. The minima of F can then be determined by

nding the roots of its derivative F ′ = 

∑ n −2 
i =1 f i (x ) f ′ 

i 
(x ) = 0 . F ′ is a

eventh-order polynomial, which has at most 4 minima, and can

e easily solved by the eigenvalue method [22] . Once the minimal

f F is determined, the depths of P i and P j can be calculated ac-

ording to the P3P constraint [13] , and then the rotation axis Z a 

an be calculated as Z a = 

−→ 

P i P j / ‖ P i P j ‖ . 
.3. Retrieving the pose by solving an optimal problem 

When the Z a -axis of [ O a − �
 X a , � Y a , � Z a ] is determined, the transfor-

ation from the intermediate object frame [ O a − �
 X a , � Y a , � Z a ] to the

amera frame [ O c − �
 X c , � Y c , � Z c ] can be expressed as 

i f i = R c P i + t c i = 1 , 2 , . . . , n, (5)

here 

 c = R 1 R 2 = 

[ 

r 1 r 2 r 3 
r 4 r 5 r 6 
r 7 r 8 r 9 

] [ 

1 0 0 

0 x −y 
0 y x 

] 

nd t c = [ t 1 , t 2 , t 3 ] 
T . R 1 is an arbitrary rotation matrix whose third

olumn [ r 3 , r 6 , r 9 ] 
T equals the rotation axis Z a , and R 1 should meet

he orthogonal constraint of the rotation matrix. R 2 denotes a rota-

ion of α degrees around the Z − axis, with x = cosα and y = sinα. 
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R c can be further expressed as 

 c = 

[ 

m 

T 
1 

m 

T 
2 

m 

T 
3 

] 

= 

[ 

r 1 r 2 x + r 3 y −r 2 y + r 3 x 
r 4 r 5 x + r 6 y −r 5 y + r 6 x 
r 7 r 8 x + r 9 y −r 8 y + r 9 x 

] 

. (6) 

y combining Eqs. (5) and (6) , we have 

i 

[ 

u i 

v i 
1 

] 

= 

[ 

m 

T 
1 

m 

T 
2 

m 

T 
3 

] 

P i + 

[ 

t 1 
t 2 
t 3 

] 

. (7) 

fter eliminating the λi , Eq. (7) becomes 

t 1 − t 3 u i = m 

T 
3 P i u i − m 

T 
1 P i 

t 2 − t 3 v i = m 

T 
3 P i v i − m 

T 
2 P i i = 1 , 2 , . . . n. (8) 

y denoting a new unknown s = [ x, y, 1] T , Eq. (8) can be repre-

ented as 

 i t c = B i s i = 1 , 2 , . . . n, (9) 

here 

 i = 

[
1 0 −u i 

0 1 −v i 

]
nd 

 i = 

[
r 8 Y 

p 
i 

u i + r 9 Z 
p 
i 

u i − r 2 Y 
p 

i 
− r 3 Z 

p 
i 

r 8 Y 
p 

i 
v i + r 9 Z 

p 
i 
v i − r 5 Y 

p 
i 

− r 6 Z 
p 
i 

r 9 Y 
p 

i 
u i − r 8 Z 

p 
i 

u i − r 3 Y 
p 

i 
+ r 2 Z 

p 
i 

r 7 X 

p 
i 

u i − r 1 X 

p 
i 

r 9 Y 
p 

i 
v i − r 8 Z 

p 
i 
v i − r 6 Y 

p 
i 

+ r 5 Z 
p 
i 

r 7 X 

p 
i 

v i − r 4 X 

p 
i 

]
. 

q. (9) is satisfied for every points, hence 
 

 

 

 

A 1 

A 2 

. . . 
A n 

⎤ 

⎥ ⎥ ⎦ 

t c = 

⎡ 

⎢ ⎢ ⎣ 

B 1 

B 2 

. . . 
B n 

⎤ 

⎥ ⎥ ⎦ 

s ⇐⇒ At c = Bs ⇐⇒ t c = Cs, (10)

here C = (A 

T A ) −1 A 

T B . 

Similarly, R c P i can also be expressed as 

 c P i = Q(P i ) s, (11)

here 

(P i ) = 

[ 

r 2 Y 
p 

i 
+ r 3 Z 

p 
i 

r 3 Y 
p 

i 
− r 2 Z 

p 
i 

r 1 X 

p 
i 

r 5 Y 
p 

i 
+ r 6 Z 

p 
i 

r 6 Y 
p 

i 
− r 5 Z 

p 
i 

r 4 X 

p 
i 

r 8 Y 
p 

i 
+ r 9 Z 

p 
i 

r 9 Y 
p 

i 
− r 8 Z 

p 
i 

r 7 X 

p 
i 

] 

. 

eplacing (10) and (11) in (5) , expanding, and rearranging the

erms, we have 

i e i = M i s i = 1 , 2 , . . . , n, (12)

here e i = f i / ‖ f i ‖ is the normalized direction vector and M i =
(P i ) + C. 

From Eq. (12) , λi can be expressed as 

i = e T i M i s i = 1 , 2 , . . . , n. (13)

fter plugging Eq. (13) back into (12) , we have 

 i e 
T 
i M i s = M i s i = 1 , 2 , . . . , n (14)

ote that Eq. (14) is not perfectly satisfied due to the noise. The

esidual of Eq. (14) can be written as 

i = (e i e 
T 
i M i − M i ) s = E i s i = 1 , 2 , . . . , n. (15)

n addition, there is a constraint that x 2 + y 2 = 1 . Hence, we di-

ectly minimize the sum of the squared residuals to build a cost

unction with a constraint. The simplified cost function is 

 = s T Gs + λ(1 − x 2 − y 2 ) i = 1 , 2 , . . . , n, (16)
n which 

 = 

n ∑ 

i =1 

E T i E i = 

[ 

G 11 G 12 G 13 

G 12 G 22 G 23 

G 13 G 23 G 33 

] 

s a know 3 × 3 symmetric matrix, and λ is a Lagrange multiplier.

he minima of Eq. (16) can be determined by solving the polyno-

ial system of its first-order optimality condition. By calculating

he derivative of ε with respect to x, y and λ, the first-order opti-

ality condition reads 

∂ε 

∂x 
= G 11 x + G 12 y − λx + G 13 = 0 

∂ε 

∂y 
= G 12 x + G 22 y − λy + G 23 = 0 

∂ε 

∂λ
= 1 − x 2 − y 2 = 0 . (17) 

y solving Eq. (17) and eliminating λ, we can express y via 

 = 

2 G 12 x 
2 + G 23 x − G 12 

(G 11 − G 22 ) x + G 13 

. (18) 

y squaring both sides of Eq. (18) , and substituting y 2 = 1 − x 2 into

t, we finally obtain a fourth-order polynomial of the form 

 

4 F 4 + x 3 F 3 + x 2 F 2 + xF 1 + F 0 = 0 , (19) 

here 

F 4 = 4 G 

2 
12 + G 

2 
22 + G 

2 
11 − 2 G 11 G 22 

F 3 = 4 G 12 G 23 + 2 G 11 G 13 − 2 G 13 G 22 

F 2 = G 

2 
23 + 2 G 11 G 22 + G 

2 
13 − 4 G 

2 
12 − G 

2 
11 − G 

2 
22 

F 1 = 2 G 13 G 22 − 2 G 11 G 13 − 2 G 12 G 23 

F 0 = G 

2 
12 − G 

2 
13 . 

 can be easily solved from Eq. (19) by using the eigenvalue

ethod [22] . After plugging x back into Eq. (18) , y can also be de-

ermined. Eq. (19) has at most 2 minima, and up to eight min-

ma can be obtained in our method (the seventh-order polynomial

as 4 minima), which is significantly less than the DLS and OP n P

ethod, which are 27 and 81 solutions, respectively. For each min-

mum, the coordinates of all points in the intermediate frame can

e calculated via Eq. (5) . Hence, the R and t of the camera with

espect to the world frame are given by a standard 3D alignment

cheme [24] . When n ≥ 6, the P n P problem has a unique solution.

herefore, we choose the minimum with the least re-projection

esidual as the optimum of the solution. When 4 ≤ n < 6, the P n P

roblem has multiple solutions in general [26] . Therefore, we re-

urn all minima to the end solution. 

.4. Refining results using single Gauss–Newton iteration 

In order to further improve the accuracy of the estimated re-

ults, we reformulate the pose estimation problem into a least-

quares problem with three variables, then solve the least-squares

roblem via a single Gauss–Newton step. 

The perspective model from the world frame to the normalized

mage plane can be expressed as 

i f i = RW i + t i = 1 , 2 , . . . , n, (20)

n which t = [ t x , t y , t z ] 
T . We adopt the Cayley parameterization to

xpress the rotation R , which is given by 

 = 

1 

H 

⎡ 

⎢ ⎣ 

ˆ m 

T 
1 

ˆ m 

T 
2 

ˆ m 

T 
3 

⎤ 

⎥ ⎦ 

= 

1 

H 

⎡ 

⎢ ⎣ 

1 + b 2 − c 2 − d 2 2 bc − 2 d 2 bd + 2 c 

2 bc + 2 d 1 − b 2 + c 2 − d 2 2 cd − 2 b 

2 bd − 2 c 2 cd + 2 b 1 − b 2 − c 2 + d 2 

⎤ 

⎥ ⎦ 

, 

here H = 1 + b 2 + c 2 + d 2 . 



34 P. Wang et al. / Pattern Recognition Letters 108 (2018) 31–37 

Ordinary
n=4,5,...,20
δ=2

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

0.5

1

1.5
Mean Rotation Error

Number of Points

R
ot

at
io

n 
E

rr
or

 (
de

gr
ee

s)

LHM
EPnP+GN
RPnP
DLS
OPnP
SRPnP

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

0.5

1

1.5
Median Rotation Error

Number of Points

R
ot

at
io

n 
E

rr
or

 (
de

gr
ee

s)

LHM
EPnP+GN
RPnP
DLS
OPnP
SRPnP

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

0.5

1

1.5
Mean Translation Error

Number of Points

T
ra

ns
la

tio
n 

E
rr

or
 (

%
)

LHM
EPnP+GN
RPnP
DLS
OPnP
SRPnP

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

0.5

1

1.5
Median Translation Error

Number of Points

T
ra

ns
la

tio
n 

E
rr

or
 (

%
)

LHM
EPnP+GN
RPnP
DLS
OPnP
SRPnP

Quasi-
Sigular
n=4,5,...,20
δ=2

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

0.5

1

1.5

2

2.5

3
Mean Rotation Error

Number of Points

R
ot

at
io

n 
E

rr
or

 (
de

gr
ee

s)

LHM
EPnP+GN
RPnP
DLS
OPnP
SRPnP

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

0.5

1

1.5

2

2.5

3
Median Rotation Error

Number of Points

R
ot

at
io

n 
E

rr
or

 (
de

gr
ee

s)

LHM
EPnP+GN
RPnP
DLS
OPnP
SRPnP

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

0.5

1

1.5

2

2.5

3
Mean Translation Error

Number of Points

T
ra

ns
la

tio
n 

E
rr

or
 (

%
)

LHM
EPnP+GN
RPnP
DLS
OPnP
SRPnP

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

0.5

1

1.5

2

2.5

3
Median Translation Error

Number of Points

T
ra

ns
la

tio
n 

E
rr

or
 (

%
)

LHM
EPnP+GN
RPnP
DLS
OPnP
SRPnP

Planar
n=4,5,...,20
δ=2

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

0.5

1

1.5

2

2.5

3

3.5

4
Mean Rotation Error

Number of Points

R
ot

at
io

n 
E

rr
or

 (
de

gr
ee

s)

LHM
EPnP
RPnP
DLS
OPnP
SRPnP

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

0.5

1

1.5

2

2.5

3

3.5

4
Median Rotation Error

Number of Points

R
ot

at
io

n 
E

rr
or

 (
de

gr
ee

s)

LHM
EPnP
RPnP
DLS
OPnP
SRPnP

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

0.5

1

1.5

2

2.5

3

3.5

4
Mean Translation Error

Number of Points

T
ra

ns
la

tio
n 

E
rr

or
 (

%
)

LHM
EPnP
RPnP
DLS
OPnP
SRPnP

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

0.5

1

1.5

2

2.5

3

3.5

4
Median Translation Error

Number of Points

T
ra

ns
la

tio
n 

E
rr

or
 (

%
)

LHM
EPnP
RPnP
DLS
OPnP
SRPnP

Fig. 2. The mean and median rotation and translation errors with the varying of point numbers. 
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Fig. 3. The mean and median rotation and translation errors with the varying of noise levels. 
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Using Eqs. (22) and (24) in Eq. (20) results in 

ˆ 
i e i = 

ˆ M i ̂  s i = 1 , 2 , . . . , n, (25)

here ˆ M i = 

ˆ Q (W i ) + 

ˆ C . 

After plugging ˆ λi = e T 
i 

ˆ M i ̂  s back into Eq. (25) , we finally obtain

he least-squares problem as follows 

ˆ  = 

n ∑ 

i =1 

‖ (e i e 
T 
i 

ˆ M i − ˆ M i ) ̂  s ‖ 

2 = 

n ∑ 

i =1 

‖ ̂

 E i ̂  s ‖ 

2 , (26)

here ˆ E i is a 3 × 10 matrix that can be computed ahead. We then

se the typical Gauss–Newton method to solve the least-squares

roblem. Since the initialization is accurate enough, only one-step

teration is used. 

. Experiments with synthetic data 

In this section, we investigated the performance of the pro-

osed method, referred to as SRPnP, 1 by means of synthetic data,

nd compared the accuracy with the leading P n P methods: 

• LHM: One of the best iterative methods, which is globally con-

vergent in the ordinary case [15] . 
• EP n P (EP n P+GN): The efficient non-iterative method, which

achieves excellent results when n ≥ 6 [12] . 
1 The source code of the proposed method (SRPnP) can be downloaded from 

ttp://pingwang.sxl.cn/ . 

B  

a  

m  

t  
• RP n P: A robust non-iterative method, which works well for

both non-redundant ( n ≤ 5) and redundant point sets [14] . 
• DLS: The direct least-squares method, which is the first method

that computes all solutions of P n P in the general case [7] . 
• OP n P: The first non-iterative methods that is fast, generally ap-

plicable, and globally optimal, which represents the state-of-

the-art solution [26] . 

All methods were implemented via MATLAB, and all codes are

xecuted on a quad-core notebook with 2.5 GHz CPU and 4GB

AM. The source codes can be downloaded from http://pingwang.

xl.cn/ . 

.1. Synthetic data 

We synthesized a virtual perspective camera with an image size

f 640 × 480 pixels, focal length of 800 pixels, and principle point

t the image center. Next, we generated n 3D reference points in

he camera frame, and transformed these 3D points into the world

rame using the ground-truth of rotation R true and translation T true .

inally, we projected these 3D points into the 2D image plane us-

ng the virtual calibrated camera. Depending on the experiment, a

ifferent level of white Gaussian noise was added to the 2D image

lane. 

The accuracy of the PnP problem is closely related to the

onfiguration of the 3D reference points, hence we test the

roposed method at different configurations. Let a matrix M =
 W 1 , W 2 , . . . , W n ] 

T , where W i is the 3D coordinate of the reference

oint and n is the size of the point set. According to the 3 × 3

atrix M 

T M , the configuration of the reference points can be cate-

orized into three groups: 

1) Ordinary Case. rank (M 

T M) = 3 and the smallest eigenvalue of

M 

T M is not close to zero. The reference points were distributed

in the range [-2,2] × [-2,2] × [4,8]. 

2) Planar Case. rank (M 

T M) = 2 . In this case, the reference

points lay on a plane, and were distributed in the range

[ −2,2] × [ −2,2] × [0,0]. 

3) Quasi-Singular Case. rank (M 

T M) = 3 and the ratio of

the smallest eigenvalue to the largest one is very small

( < 0.05). The reference points were distributed in the range

[1,2] × [1,2] × [4,8]. 

The estimated rotation and translation were defined as R and T ,

espectively, and the errors of each were calculated as 

e rot (degrees ) = max 
k ∈{ 1 , 2 , 3 } 

cos −1 (r T k,true r k ) ×
180 

π

e trans (%) = 

‖ t true − t‖ 

‖ t‖ 

× 100 (27) 

here r k, true and r k are the k th column of R true and R , respectively.

.2. The effect with the varying number of points 

The first simulated experiment investigated the performance of

ll methods with the varying number of points. We varied the

oint number n from 4 to 20, and add zero-mean Gaussian noise

ith fixed deviation δ = 2 pixels onto the image projections. The

esults are shown in Fig. 2 , and show that EP n P (EP n P+GN in the

rdinary case) is not accurate enough, especially when n is small,

ue to its underlying linearization scheme. RP n P is also not ac-

urate enough in most cases, because it is a suboptimal method.

HM is much less accurate in the quasi-singular and planar case.

esides, LHM tends to be inaccurate when no redundant points

re available ( n ≤ 5), because of possible local optimum. The DLS

ethod is not stable for the quasi-singular and planar case, due to

he singularities of the Cayley parameterization. On the contrary,

http://pingwang.sxl.cn/
http://pingwang.sxl.cn/
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Fig. 5. Images that is augmented with the projected contour by using the estimated pose. The red marks “ + ” in the input images are the feature points matched with the 

reference image, and the green marks “o” are the re-projection of the features points using the estimated camera pose. (For interpretation of the references to color in this 

figure legend, the reader is referred to the web version of this article.) 
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the SRP n P method offers accuracy comparable to the OP n P method

for both planar and non-planar configurations, and its translation

is slightly better than OP n P in the quasi-singular case. 

3.3. The effect with the varying noise 

The second simulated experiment tested the effects of noise on

the accuracy of all methods. We fixed n = 10 and varied the noise

deviation level δ from 0.5 to 5 pixels. The results are shown in

Fig. 3 . Similar results show that SRP n P and OP n P are comparable in

all cases, which is still much better than other methods in terms

of accuracy. 

3.4. Computational efficiency 

Fig. 4 . shows the computational time with varying 4 ≤ n ≤ 100

and fixed δ = 2 . As evident, our method has high efficiency, due to

the fact that our method only needs to solve a seventh-order and

fourth-order univariate polynomial. EP n P+GN and RP n P are faster

than our method. However, our method is still very competitive,

especially considering its high accuracy and easy implementation.

All of these advantages indicate that our method is suitable for real

tasks, especially when n is not extremely large. Interestingly, the

running time of OP n P remains almost unchanged with increasing

point numbers. This is because the Gröbner basis technique takes a

lot of time. However, the remaining processes take very little time,

due to using the vectorization technique, which can also be used in

further work to improve the computational speed of our method.

Faster performance can also be acquired for the SRP n P by using a

C++ implementation, which will be published upon completion. 

4. Experiments with real images 

We repeat the experiment from [26] to test the proposed

method. We first establish tentative correspondences by match-

ing SIFT points between the input and reference image. After re-

moving outliers by RANSAC, we recalculate the pose of the camera

and augment the input image by using the projection of the model

contour. As shown in Fig. 5 , our method shows the similar and vi-

sually pleasing results. 

5. Conclusions 

In this paper, we developed a new method, which has high ac-

curacy and efficiency, to determine the position and orientation of

a calibrated camera by using n known 3D points and their im-

age projections. The key process of our method is to solve univari-

ate polynomials. The derivations of our method are easy to under-

stand, and the final method is more efficient than existing direct

minimization methods. The experiment results also demonstrated

its superiority in accuracy, when compared with existing leading

methods. 
cknowledgments 
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